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Abstract

Spoken dialogue systems (SDS) are
rapidly appearing in various smart devices
(smartphone, smart-TV, in-car navigating
system, etc). The key role in a success-
ful SDS is a spoken language understand-
ing (SLU) component, which parses user
utterances into semantic concepts in order
to understand users’ intentions. However,
such semantic concepts and their struc-
ture are manually created by experts, and
the annotation process results in extremely
high cost and poor scalability in system
development. Therefore, the dissertation
focuses on improving SDS generalization
and scalability by automatically inferring
domain knowledge and learning structures
from unlabeled conversations through a
matrix factorization (MF) technique. With
the automatically acquired semantic con-
cepts and structures, we further investigate
whether such information can be utilized
to effectively understand user utterances
and then show the feasibility of reducing
human effort during SDS development.

1 Introduction

Various smart devices (e.g. smartphone, smart-
TV, in-car navigating system) are incorporating
spoken language interfaces, a.k.a. spoken dia-
logue systems (SDS), in order to help users finish
tasks more efficiently. The key role in a successful
SDS is a spoken language understanding (SLU)
component; in order to capture the language vari-
ation from dialogue participants, the SLU compo-
nent must create a mapping between the natural
language inputs and semantic representations that
correspond to users’ intentions.

The semantic representation must include “con-
cepts’ and a “structure”: concepts are the domain-
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specific topics, and the structure describes the re-
lations between concepts and conveys intentions.
However, most prior work focused on learning
the mapping between utterances and semantic rep-
resentations, where such knowledge still remains
predefined. The need of annotations results in
extremely high cost and poor scalability in sys-
tem development. Therefore, current technology
usually limits conversational interactions to a few
narrow predefined domains/topics. With the in-
creasing conversational interactions, this disserta-
tion focuses on improving generalization and scal-
ability of building SDSs with little human effort.

In order to achieve the goal, two questions need
to be addressed: 1) Given unlabelled conversa-
tions, how can a system automatically induce and
organize the domain-specific concepts? 2) With
the automatically acquired knowledge, how can a
system understand user utterances and intents? To
tackle the above problems, we propose to acquire
the domain knowledge that captures human’s se-
mantics, intents, and behaviors. Then based on the
acquired knowledge, we build an SLU component
to understand users and to offer better interactions
in dialogues.

The dissertation shows the feasibility of build-
ing a dialogue learning system that is able to un-
derstand how particular domains work based on
unlabeled conversations. As a result, an initial
SDS can be automatically built according to the
learned knowledge, and its performance can be
quickly improved by interacting with users for
practical usage, presenting the potential of reduc-
ing human effort for SDS development.

2 Related Work

Unsupervised SLU Tur et al. (2011; 2012) were
among the first to consider unsupervised ap-
proaches for SLU, where they exploited query logs
for slot-filling. In a subsequent study, Heck and
Hakkani-Tiir (2012) studied the Semantic Web for
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Figure 1: (a): The proposed framework. (b): Our MF method completes a partially-missing matrix
for semantic decoding/behavior prediction. Dark circles are observed facts, shaded circles are inferred
facts. The ontology induction maps observed feature patterns to semantic concepts. The feature rela-
tion model constructs correlations between observed feature patterns. The concept relation model learns
the high-level semantic correlations for inferring hidden semantic slots or predicting subsequent behav-
iors. Reasoning with matrix factorization incorporates these models jointly, and produces a coherent and

domain-specific SLU model.

the intent detection problem in SLU, showing that
results obtained from the unsupervised training
process align well with the performance of tradi-
tional supervised learning. Following their suc-
cess of unsupervised SLU, recent studies have also
obtained interesting results on the tasks of rela-
tion detection (Hakkani-Tiir et al., 2013; Chen et
al., 2014a), entity extraction (Wang et al., 2014),
and extending domain coverage (El-Kahky et al.,
2014; Chen and Rudnicky, 2014). However, most
studies above do not explicitly learn latent factor
representations from the data—while we hypothe-
size that the better robustness can be achieved by
explicitly modeling the measurement errors (usu-
ally produced by automatic speech recognizers
(ASR)) using latent variable models and taking ad-
ditional local and global semantic constraints into
account.

Latent Variable Modeling in SLU Early stud-
ies on latent variable modeling in speech included

the classic hidden Markov model for statistical
speech recognition (Jelinek, 1997). Recently, Ce-
likyilmaz et al. (2011) were the first to study the
intent detection problem using query logs and a
discrete Bayesian latent variable model. In the
field of dialogue modeling, the partially observ-
able Markov decision process (POMDP) (Young
et al., 2013) model is a popular technique for di-
alogue management, reducing the cost of hand-
crafted dialogue managers while producing ro-
bustness against speech recognition errors. More
recently, Tur et al. (2013) used a semi-supervised
LDA model to show improvement on the slot fill-
ing task. Also, Zhai and Williams (2014) proposed
an unsupervised model for connecting words with
latent states in HMMs using topic models, obtain-
ing interesting qualitative and quantitative results.
However, for unsupervised SLU, it is not obvi-
ous how to incorporate additional information in
the HMMs. With increasing works about learn-



ing the feature matrices for language representa-
tions (Mikolov et al., 2013), matrix factorization
(MF) has become very popular for both implicit
and explicit feedback (Rendle et al., 2009; Chen
et al., 2015a).

This thesis proposal is the first to propose a
framework about unsupervised SLU modeling,
which is able to simultaneously consider various
local and global knowledge automatically learned
from unlabelled data using a matrix factorization
(MF) technique.

3 The Proposed Work

The proposed framework is shown in Figure 1(a),
where there are two main parts, one is knowledge
acquisition and another is SLU modeling by MF.
The first part is to acquire the domain knowledge
that is useful for building the domain-specific dia-
logue systems, which addresses the question about
how to induce and organize the semantic concepts
(the first problem). Here we propose ontology in-
duction and structure learning procedures. The on-
tology induction refers to the semantic concept in-
duction (yellow block) and the structure learning
refers to relation models (blue and pink blocks) in
Figure 1(a). The details are described in Section 4.
The second part is to self-train an SLU compo-
nent using the acquired knowledge for the domain-
specific SDS, and this part answers to the ques-
tion about how to utilize the obtained information
in SDSs to understand user utterances and intents.
There are two aspects regarding to SLU modeling,
semantic decoding and behavior prediction. The
semantic decoding is to parse the input utterances
into semantic forms for better understanding, and
the behavior prediction is to predict the subsequent
user behaviors for providing better system interac-
tions. This dissertation plans to apply MF tech-
niques to unsupervised SLU modeling, including
both semantic decoding and behavior prediction.
In the proposed model, we first build a fea-
ture matrix to represent training utterances, where
each row refers to an utterance and each column
refers to an observed feature pattern or a learned
semantic concept (either a slot or a behavior). Fig-
ure 1(b) illustrates an example of the matrix. Then
given a testing utterance, we can convert it into
a vector based on the observed patterns, and fill
in the missing values of the semantic concepts.
In the first example utterance of the figure, al-
though semantic slot food is not observed, the ut-

can i have a cheap restaurant

Frame: exgensiveness
FT LU: cheap
Frame: locale_by_use
FT/FE LU: restaurant
Figure 2: An example of probabilistic frame-
semantic parsing on ASR output. FT: frame target.
FE: frame element. LU: lexical unit.

Frame: capability
FT LU: can FE Filler: i

terance implies the meaning facet food. The MF
approach is able to learn the latent feature vec-
tors for utterances and semantic concepts, infer-
ring implicit semantics to improve the decoding
process—namely, by filling the matrix with prob-
abilities (lower part of the matrix in Figure 1(b)).

The feature model is built on the observed fea-
ture patterns and the learned concepts, where the
concepts are obtained from the knowledge acqui-
sition process (Chen et al., 2013; Chen et al.,
2015b). Section 5.1 explains the detail of the
feature model. In order to consider the addi-
tional structure information, we propose a rela-
tion propagation model based on the learned struc-
ture, which includes a feature relation model (blue
block) and a concept relation model (pink block)
described in Section 5.2.

Finally we train an SLU model by learn-
ing latent feature vectors for utterances and
slots/behaviors through MF techniques. Combin-
ing with a relation propagation model, the trained
SLU model is able to estimate the probability that
each concept occurs in the testing utterance, and
how likely each concept is domain-specific simul-
taneously. In other words, the SLU model is
able to transform testing utterances into domain-
specific semantic representations or predicted be-
haviors without human involvement.

4 Knowledge Acquisition

Given unlabeled conversations and available
knowledge resources, we plan to extract organized
knowledge that can be used for domain-specific
SDSs. The ontology induction and structure learn-
ing are proposed to automate an ontology building
process.

4.1 Ontology Induction

Chen et al. (2013; 2014b) proposed to automat-
ically induce semantic slots for SDSs by frame-
semantic parsing, where all ASR-decoded utter-
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Figure 3: A simplified example of the automati-
cally derived knowledge graph.

ances are parsed using SEMAFOR!, a state-of-
the-art frame-semantic parser (Das et al., 2010;
Das et al., 2013), and then all frames from parsed
results are extracted as slot candidates (Dinarelli
et al., 2009). For example, Figure 2 shows an ex-
ample of an ASR-decoded text output parsed by
SEMAFOR. There are three frames (capability,
expensiveness, and locale_by_use) in the utter-
ance, which we consider as slot candidates.

Since SEMAFOR was trained on FrameNet
annotation, which has a more generic frame-
semantic context, not all the frames from the pars-
ing results can be used as the actual slots in the
domain-specific dialogue systems. For instance, in
Figure 2, “expensiveness” and “locale_by_use”
frames are essentially the key slots for the pur-
pose of understanding in the restaurant query do-
main, whereas the “capability” frame does not
convey particularly valuable information for the
domain-specific SDS. In order to fix this is-
sue, Chen et al. (2014b) proved that integrating
continuous-valued word embeddings with a prob-
abilistic frame-semantic parser is able to identify
key semantic slots in an unsupervised fashion, re-
ducing the cost of designing task-oriented SDSs.

4.2 Structure Learning

A key challenge of designing a coherent seman-
tic ontology for SLU is to consider the struc-
ture and relations between semantic concepts. In
practice, however, it is difficult for domain ex-
perts and professional annotators to define a co-
herent slot set, while considering various lexical,
syntactic, and semantic dependencies. The pre-
vious work exploited the typed syntactic depen-
dency theory for unsupervised induction and or-
ganization of semantic slots in SDSs (Chen et
al., 2015b). More specifically, two knowledge
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graphs, a slot-based semantic knowledge graph
and a word-based lexical knowledge graph, are au-
tomatically constructed. To jointly consider the
word-to-word, word-to-slot, and slot-to-slot rela-
tions, we use a random walk inference algorithm
to combine these two knowledge graphs, guided
by dependency grammars. Figure 3 is a simpli-
fied example of the automatically built semantic
knowledge graph corresponding to the restaurant
domain. The experiments showed that considering
inter-slot relations is crucial for generating a more
coherent and compete slot set, resulting in a better
SLU model, while enhancing the interpretability
of semantic slots.

5 SLU Modeling by Matrix Factorization

For two aspects of SLU modeling: semantic de-
coding and behavior prediction, we plan to apply
MF to both tasks by treating learned concepts as
semantic slots and human behaviors respectively.

Considering the benefits brought by MF tech-
niques, including 1) modeling the noisy data, 2)
modeling hidden information, and 3) modeling
the dependency between observations, the disser-
tation applies an MF approach to SLU modeling
for SDSs. In our model, we use U to denote the
set of input utterances, F' as the set of observed
feature patterns, and S as the set of semantic con-
cepts we would like to predict (slots or human be-
haviors). The pair of an utterance v € U and a
feature/concept z € { F+ S}, (u, x), is a fact. The
input to our model is a set of observed facts O, and
the observed facts for a given utterance is denoted
by {(u,z) € O}. The goal of our model is to es-
timate, for a given utterance w and a given feature
pattern/concept z, the probability, p(M, , = 1),
where M, ;, is a binary random variable that is
true if and only if z is the feature pattern/domain-
specific concept in the utterance u. We introduce a
series of exponential family models that estimate
the probability using a natural parameter ¢,, , and
the logistic sigmoid function:

p(Mu,:c =1 ‘ eu,z) = U(Gu,z) (1)
1

1+exp(—Ouz)

We construct a matrix My« (|r|+|s)) as observed
facts for MF by integrating a feature model and a
relation propagation model below.



5.1 Feature Model

First, we build a binary feature pattern matrix I
based on the observations, where each row refers
to an utterance and each column refers to a feature
pattern (a word or a phrase). In other words, F'y
carries the basic word/phrase vector for each utter-
ance, which is illustrated as the left part of the ma-
trix in Figure 1(b). Then we build a binary matrix
F; based on the induced semantic concepts from
Section 4.1, which also denotes the slot/behavior
features for all utterances (right part of the matrix
in Figure 1(b)).

For building the feature model M, we concate-
nate two matrices and obtain Mr = [ Fy Fy |,
which refers to the upper part of the matrix in Fig-
ure 1(b) for training utterances.

5.2 Relation Propagation Model

It is shown that the structure of semantic concepts
helps decide domain-specific slots and further im-
proves the SLU performance (Chen et al., 2015b).
With the learned structure from Section 4.2, we
can model the relations between semantic con-
cepts, such as inter-slot and inter-behavior rela-
tions. Also, the relations between feature patterns
can be modeled in the similar way. We construct
two knowledge graphs to model the structure:

o Feature knowledge graph is built as G =
(Vi,E¢f), where Vy = {f; € F}and B¢y =
{eij | fi, f5 € Vi)

e Semantic concept knowledge graph is built
as G5 = (Vg Ess), where Vs = {s; € S}
and F,, = {eij | 8i, 85 € Vs}

The structured graph can model the relation
between the connected node pair (x;,z;) as
r(x;,2;). Here we compute two matrices Ry =
[r(siysj)]is1x|s) and Ry = [r(fi, [1)]|7)x|F| tO
represent concept relations and feature relations
respectively. With the built relation models, we
combine them as a relation propagation matrix
MRZ .

Mp = | By 0 B

0 R, 2)

The goal of this matrix is to propagate scores be-
tween nodes according to different types of rela-
tions in the constructed knowledge graphs (Chen
and Metze, 2012).

>The values in the diagonal of Mg are 0 to model the
propagation from other entries.

5.3 Integrated Model

With a feature model My and a relation propaga-
tion model Mp, we integrate them into a single
matrix.

M = Mp-(Mg+1I) €))
_ FfRf—l-Ff 0
- 0 F,R,+ F,

where M is final matrix and I is the identity ma-
trix in order to remain the original values. The
matrix M is similar to M, but some weights are
enhanced through the relation propagation model.
The feature relations are built by F'y Ry, which is
the matrix with internal weight propagation on the
feature knowledge graph (the blue arrow in Fig-
ure 1(b)). Similarly, FsRs; models the semantic
concept correlations, and can be treated as the ma-
trix with internal weight propagation on the se-
mantic concept knowledge graph (the pink arrow
in Figure 1(b)). The propagation model can be
treated as running a random walk algorithm on the
graphs.

By integrating with the relation propagation
model, the relations can be propagated via the
knowledge graphs, and the hidden information
may be modeled based on the assumption that mu-
tual relations usually help inference (Chen et al.,
2015b). Hence, the structure information can be
automatically involved in the matrix. In conclu-
sion, for each utterance, the integrated model not
only predicts the probabilities that semantic con-
cepts occur but also considers whether they are
domain-specific.

5.4 Model Learning

The proposed model is parameterized through
weights and latent component vectors, where the
parameters are estimated by maximizing the log
likelihood of observed data (Collins et al., 2001).

0* = arg max H p(6 | M,) 4)
uelU
= arg mgxgp(Mu | 6)p(6)

- Inp(M, | 8) — Mg,
argmgxgnp( 16) — X

where M, is the vector corresponding to the utter-
ance u from M, ;, in (1), because we assume that
each utterance is independent of others.

To avoid treating unobserved facts as designed
negative facts, we consider our positive-only data



as implicit feedback. Bayesian Personalized Rank-
ing (BPR) is an optimization criterion that learns
from implicit feedback for MF, which uses a vari-
ant of the ranking: giving observed true facts
higher scores than unobserved (true or false)
facts (Rendle et al., 2009). Riedel et al. (2013)
also showed that BPR learns the implicit relations
and improves a relation extraction task.

To estimate the parameters in (4), we create a
dataset of ranked pairs from M in (3): for each
utterance u and each observed fact f+ = (u,2™),
where M, , > J, we choose each semantic con-
cept 2~ such that f~ = (u,z™), where M, , <
d, which refers to the semantic concept we have
not observed in utterance u. That is, we con-
struct the observed data O from M. Then for
each pair of facts f* and f~, we want to model
p(f*) > p(f~) and hence 6+ > ;- accord-
ing to (1). BPR maximizes the summation of each
ranked pair, where the objective is

e SLU modeling by matrix factorization

In this thesis proposal, ongoing work and future
plans have been presented towards an automati-
cally built domain-specific SDS. With increasing
semantic resources, such as Google’s Knowledge
Graph and Microsoft Satori, the dissertation shows
the feasibility that utilizing available knowledge
improves the generalization and the scalability of
dialogue system development for practical usage.
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