On the Importance of Ezafe Construction in Persian Parsing

Alireza Nourian*, Mohammad Sadegh Rasooli¢, Mohsen Imany*, and Heshaam Faili®

*Department of Computer Engineering, Iran University of Science and Technlogy, Tehran, Iran
{nourian,m_ imany}@comp.iust.ac.ir
CDepartment of Computer Science, Columbia University, New York, NY, USA
rasooli@cs.columbia.edu
BSchool of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
hfaili@ut.ac.ir

Abstract

Ezafe construction is an idiosyncratic phe-
nomenon in the Persian language. It is a
good indicator for phrase boundaries and
dependency relations but mostly does not
appear in the text. In this paper, we show
that adding information about Ezafe con-
struction can give 4.6% relative improve-
ment in dependency parsing and 9% rela-
tive improvement in shallow parsing. For
evaluation purposes, Ezafe tags are man-
ually annotated in the Persian dependency
treebank. Furthermore, to be able to con-
duct experiments on shallow parsing, we
develop a dependency to shallow phrase
structure convertor based on the Persian
dependencies.

1 Introduction

There have been many studies on improving syn-
tactic parsing methods for natural languages. Al-
though most of the parsing methods are language-
independent, we may still require some language
specific knowledge for improving performance.
Besides many studies on parsing morphologically
rich languages (Seddah et al., 2013; Seeker and
Kuhn, 2013), syntactic parsing for the Persian lan-
guage is not yet noticeably explored. Concretely
speaking, there are some recent work on depen-
dency parsing for Persian (Seraji et al., 2012;
Ghayoomi, 2012; Khallash et al., 2013) and very
few studies on shallow parsing (Kian et al., 2009).

The main focus of this paper is on the usefulness
of Ezafe construction in Persian syntactic process-
ing. Ezafe is an unstressed vowel -e that occurs at
the end of some words (-ye in some specific occa-
sions) that links together elements belonging to a

877

single constituent (Ghomeshi, 1997). It often ap-
proximately corresponds in usage to the English
preposition “of” (Abrahams, 2004). In the follow-
ing example, the first word has an Ezafe vowel:

{

This is an idiosyncratic construction that ap-
pears in the Persian language with Perso-Arabic
script. This construction is similar to Idafa con-
struction in Arabic and construct state in Hebrew
(Habash, 2010). It is mostly used for showing a
possessive marker, adjective of a noun or connect-
ing parts of a name (i.e. first and last name) or ti-
tle. As a general statement, Ezafe occurs between
any two items that have some sort of connection
(Ghomeshi, 1997). Ezafe vowel is attached to
the head noun and to the modifiers that follow
it: attributive nouns, adjectival and prepositional
phrases (Samvelian, 2006). As depicted in Figure
1, this construction is very useful for disambiguat-
ing syntactic structures. The main issue here is
that Ezafe rarely appears in the written text. This
relies on the fact that Persian is written in Perso-
Arabic script and vowels are mostly not written.

There are few studies (Noferesti and Shamsfard,
2014; Asghari et al., 2014) on automatically find-
ing Ezafe construction. In this work, we modify
the part of speech tagset for the Persian words.
This is done by adding an indicator of Ezafe to
each part of speech (POS) tag and then train a su-
pervised tagger on the modified tags. We show
that having this modified tagset can both improve
dependency parsing and shallow parsing (chunk-
ing). We achieve 12.8% and 4.6% relative error re-
duction in dependency parsing with gold and auto-

Ab

Watingg.qfe water

montazere o
waiting for water

Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing (Short Papers), pages 877-882,
Beijing, China, July 26-31, 2015. (©2015 Association for Computational Linguistics

root

posdep

npostmod
punc

I
[] [=] [ob

2]

is black table+Ezafe on+Ezafe book

(a) First reading: The book is on the black table.

(3] [@W] root

root

npostmod

punc posdep

(—\ .
][l k] P s

root

S

black table on+Ezafe book+Ezafe

is

(b) Second reading: The book on the table is black.

Figure 1: This figure shows two different readings for the same sentence with different Ezafe construc-
tions. As shown in the trees, Ezafe affects both phrase boundaries and dependency relations.

matic POS tags. We also achieve 31% and 9% rel-
ative error reduction in shallow parsing with gold
and automatic POS tags.

Our work is not only restricted to the effect of
Ezafe in parsing, but as a byproduct, we create an
open-source rule-based dependency to chunk con-
verter for the Persian language. We have also man-
ually tagged all words in the Persian dependency
treebank (Rasooli et al., 2013) with 99.6% anno-
tator agreement. This dataset is available for re-
search purposes.!

The main contributions of this paper are: 1)
showing the usefulness of Ezafe construction on
dependency parsing and chunking, 2) developing
a statistical chunker for the Persian language, 3)
enriching the Persian treebank with manual Ezafe
tags. The remainder of this paper is organized as
the following: we describe our approach and data
preparation in §2 and then conduct experiments in
§3. Error analysis and conclusion are made in §4
and §5.

2 Data Preparation

We define a simple procedure to include the in-
formation about Ezafe construction in our data.
Concretely, we attach the Ezafe indicator to the
tags and train a POS tagger on the new tagset.
This idea is very similar to that of (Asghari et al.,
2014). Thanks to the presence of Ezafe feature in
the Peykare corpus (Bijankhan et al., 2011), we
can easily train a POS tagger on the new tagset.
We use the developed tagger to tag the dependency
treebank. Peykare corpus has approximately ten
million tokens and can give us a very accurate POS
tagger even with the finer-grained Ezafe tags. We
try this idea on two different tasks: dependency
parsing and shallow parsing.

"http://dadegan.ir/catalog/ezafe

878

2.1 Chunking Data Preparation

Unfortunately there is no standard chunking data
for the Persian language. To compensate for this,
we define the following rules to convert a depen-
dency tree (based on Dadegan treebank dependen-
cies (Rasooli et al., 2013)) to a shallow phrase
structure:

We initialize every node (word) as a separate
chunk; e.g. verb creates a VP.

If a node has a head or dependent belonging
to a chunk (without any gap), attach that node
to the same chunk.

If a node is a preposition/postposition, attach
it to its next/previous dependent and create a
PP.

A node with a dependency relation “non-
verbal element”, “verb particle”, or “enclitic

non-verbal element” belongs to the same VP
as its head.

If a node is a particle, subordinating clause,
coordinating conjunction, or punctuation, we
should not create an independent chunk for
it.

If a node is a “noun post modifier” or “Ezafe
dependent”, attach it to its parent chunk.

If a node is a “conjunction of a noun” or
“conjunction of an adjective” and has a sib-
ling with either “Ezafe dependent” or “noun
post-modifier” dependency relation, it should
have the same chunk as its parent.

If a node with pseudo-sentence POS has an
adverbial dependency with its parent, it cre-
ates an ADVP and otherwise a VP.

Implementation of the above rules is available
in the Hazm toolkit.> There are some minor excep-
tions in the above rules that are handled manually
in the toolkit.

3 Experiments

In this section we describe our experiments on
Ezafe tagging, parsing and also adding manual
Ezafe tags to the Persian dependency treebank.

3.1 Automatic Ezafe Tagging

As mentioned in §2, we attach Ezafe feature in-
dicator to the tags and train a POS tagger on the
new tagset. We use Wapiti tagger (Lavergne et al.,
2010) to train a standard trigram CRF sequence
tagger model with standard transition features and
the following emission features: word form of the
current, previous and next word, combination of
the current word and next word, combination of
the current word and previous word, prefixes and
suffixes up to length 3, indicator of punctuation
and number (digit) for the current, previous and
next word. The tagger has an accuracy of 98.71%
with the original tagset and 97.33% with the mod-
ified tagset.

3.2 Gold Standard Ezafe Tags

The Persian dependency treebank does not provide
gold Ezafe tags. In order to evaluate the effect of
gold Ezafe tags, we try to manually annotate Ezafe
in the treebank. This is done by six annotators
where all of them are native speakers and linguists.
The inter-annotator agreement of a small portion
of the data (one thousand sentences) is 99.6%. Our
manual investigation shows that almost half of the
disagreements was because of the mistakes and
not because of the complicated structure. Table
1 shows the statistics about the presence of Ezafe
tag for each specific POS.

3.3 Chunking

We use Wapiti tagger (Lavergne et al., 2010) to
train a standard CRF tagger with IOB tags for
phrase chunking. The features include third or-
der transition features and emission features of
word form and POS for the current word, previ-
ous word and the word before it, the next word and
the word after it. As shown in Table 2 and 3, our
intuition holds for both gold and automatic tags.
We observe that using Ezafe on gold tags, gives

https://github.com/sobhe/hazm

879

Tag Freq. Relative Freq. Ezafe %
N 190048 39.24% 34.22%
PREP 56376 11.64% 12.04%
ADJ 35902 7.41% 17.45%
PRENUM| 6018 1.24% 1.21%

IDEN 835 0.17% 5.03%

POSNUM| 560 0.12% 30.71%
other 194572 40.18% 00.10%

Table 1: Statistics about Ezafe for each POS tag in
the Persian dependency treebank.

us better performance compared to using coarse-
grained POS tags and also fine-grained POS tags
(FPOS) provided by the dependency treebank an-
notators. The tagset in Peykare corpus is very dif-
ferent from the treebank. Because of this incon-
sistency, we could not reproduce the results with
automatic FPOS tags trained on Peykare corpus.
Our experiments on training solely on the tree-
bank FPOS tags do not give us a reliable FPOS
tagger and this leads to very low parsing accuracy.
Therefore we do not conduct experiments with au-
tomatic FPOS tags. Table 3 shows the results with
automatic tags. As shown in the table, using the
the Ezafe tagset improves the chunking accuracy.

Tagset | Precision Recall = F-Measure
POS 91.98% 90.37% 91.17%
FPOS | 92.37% 90.92% 91.64%
POSe | 93.88% 93.97% 93.92%

Table 2: Chunking results on the Persian de-
pendency treebank test data with gold POS tags.
FPOS refers to the fine-grained POS tags in the
Persian dependency treebank and POSe is the
modified Ezafe-enriched tagset.

Tagset | Tag Acc. | Precision Recall F-Measure
POS | 98.71% | 89.44% 88.02% 88.72%
POSe | 97.33% | 90.42% 89.13% 89.77%

Table 3: Chunking results on the Persian depen-
dency treebank test data with automatic POS tags.

3.4 Dependency Parsing

Similar to the chunking experiments, we provide
two sets of experiments to validate our hypothesis
about the importance of Ezafe construction. We

Tagset MaltParser YaraParser TurboParser
LAS UAS LAS UAS LAS UAS
POS 88.13% | 90.69% | 88.60% | 91.17% | 89.88% | 92.25%
FPOS | 88.46% | 91.01% | 89.02% | 91.56% | 89.98% | 92.30%
POSe | 89.12% | 91.64% | 89.91% | 92.42% | 90.85% | 93.24%

Table 4: Dependency Parsing results on the test data with different gold standard tagsets. UAS is the
unlabeled attachment score and LAS is the labeled attachment score.

Tagset Tag acc. MaltParser YaraParser TurboParser
LAS UAS LAS UAS LAS UAS

POS tagger | 98.71% | 85.34% | 88.80% | 85.90% | 89.43% | 87.28% | 90.59%

POSe tagger | 97.33% | 85.74% | 89.24% | 86.35% | 89.86% | 87.73% | 91.02%

Table 5: Dependency Parsing results on the test data with different automatic tagsets.

use three different off-the-shelf parsers: 1) Malt
parser v1.8 (Nivre et al., 2007), 2) Yara parser
v0.2 (Rasooli and Tetreault, 2015), and 3) Turbo
parser v2.2 (Martins et al., 2013). We train Malt
with Covington non-projective algorithm (Cov-
ington, 1990) after optimizing it with Malt opti-
mizer (Ballesteros and Nivre, 2012), Yara with the
default settings (64 beam) and 10 training epochs
and Turbo with its default settings. The main rea-
son for picking these three parsers is that we want
to see the effect of Ezafe construction on a greedy
parser (Malt), beam parser (Yara), and a graph-
based parser (Turbo). As shown in Table 4 and
5, the parsing accuracy is improved across all dif-
ferent parsers by using the Ezafe tagset.

4 Error Analysis

In this section we provide some error analysis for
showing the effectiveness of our approach.

Effect on the common POS tags Our investiga-
tion on the development data shows that the depen-
dency attachment accuracy is improved by 6.5%
for adjectives and 6.2% for nouns. This is consis-
tent with our intuition because Ezafe construction
mostly occurs in nouns and adjectives. It is worth
noting that for some tags such as determiners the
Ezafe construction does not help.

Ezafe indicator as a feature We try to use
Ezafe as an independent feature in Malt parser.
This is done by adding the indicator in the fea-
ture column in CoNLL dependency format. We
then use Malt optimizer (Ballesteros and Nivre,
2012) to find the optimized feature setting. We see
that adding this feature gives us the same accuracy

880

improvement as having the modified tagset. This
shows that we do not really need to have a parser
that uses extra features to add Ezafe information.

Manual data investigation We randomly
picked some sentences from the development data
and observed the same effect as we could expect
from adding Ezafe to the tagset: the main gain is
on those sentences where the presence/absence of
Ezafe construction is crucial for making correct
decisions by the parser. For example, in the
following sub-sentence, the word (> means
“China” but the dependency parser. without
knowing Ezafe tag, confused it with the other
meaning: “ruffle” and created a ‘non-verbal
element” (light verb) dependency with the verb,
instead of making it an Ezafe dependent to the

previous word (_jo-!g).

moz

posdep

"D posdep

VYR
Jo o &

has China beaches+Ezafe from denfense

>J\> U= J-‘

Effect on the training data size For investigat-
ing the benefit of Ezafe construction, we train Malt
parser on different data sizes starting from 50% of
the original size. This trend is depicted in Figure 2.
The interesting fact is that we can leverage Ezafe
construction and use only 70% of the training data
while reaching the accuracy of the original part of
speech tagset trained on the whole data.

Parsing LAS

89% | 8
88% - / N
7% | 8
-=— POS
—eo— POSe
86% [| | | | | |]
50% 60% T70% 80% 90% 100%

Training Data precentage

Figure 2: Trend on the data size and accuracy. As
shown by the horizontal dashed line, Ezafe tags
can improve over standard tags while having ap-
proximately 70% of the data.

5 Conclusion

In this paper we showed the effectiveness of Ezafe
construction as a robust feature for syntactic pars-
ing in Persian. One interesting direction for fur-
ther research would be to show the effect of this
feature in other natural language processing tasks.

Acknowledgement

We thank Computer Research Center of Is-
lamic Sciences (CRCIS) for supporting us on
corpus annotation. We thank Parinaz Dadras,
Saeedeh Ghadrdoost-Nakhchi, Manouchehr
Kouhestani, Mostafa Mahdavi, Azadeh Mirzaei,
Neda Poormorteza-Khameneh, Morteza Rezaei-
Sharifabadi and Salimeh Zamani for helping us
on annotation and the three anonymous reviewers
for their helpful comments.

References

Simin Abrahams. 2004. Modern Persian: a course-
book. Routledge.

Habibollah Asghari, Jalal Maleki, and Heshaam Faili.
2014. A probabilistic approach to persian ezafe
recognition. In Proceedings of the 14th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 138—142, Gothenburg,
Sweden, April. Association for Computational Lin-
guistics.

Miguel Ballesteros and Joakim Nivre. 2012. Mal-
toptimizer: A system for maltparser optimization.

881

In Proceedings of the Eighth International Confer-
ence on Language Resources and Evaluation, pages
2757-2763, Istanbul, Turkey, May. European Lan-
guage Resources Association (ELRA).

Mahmood Bijankhan, Javad Sheykhzadegan, Moham-
mad Bahrani, and Masood Ghayoomi. 2011.
Lessons from building a Persian written corpus:

Peykare. Language Resources and Evaluation,
45:143-164.

Michael A Covington. 1990. Parsing discontinu-
ous constituents in dependency grammar. Compu-
tational Linguistics, 16(4):234-236.

Masood Ghayoomi. 2012. Word clustering for Per-
sian statistical parsing. In Advances in Natural Lan-
guage Processing, pages 126—137. Springer.

Jila Ghomeshi. 1997. Non-projecting nouns and the
ezafe: Construction in Persian. Natural Language
& Linguistic Theory, 15(4):729-788.

Nizar Y Habash. 2010. Introduction to Arabic natural
language processing. Synthesis Lectures on Human
Language Technologies, 3(1):1-187.

Mojtaba Khallash, Ali Hadian, and Behrouz Minaei-
Bidgoli. 2013. An empirical study on the effect of
morphological and lexical features in Persian depen-
dency parsing. In Proceedings of the Fourth Work-
shop on Statistical Parsing of Morphologically-
Rich Languages, pages 97-107, Seattle, Washing-
ton, USA, October. Association for Computational
Linguistics.

Soheila Kian, Tara Akhavan, and Mehrnoush Shams-
fard. 2009. Developing a Persian chunker using a
hybrid approach. In International Multiconference

on Computer Science and Information Technology,
2009. IMCSIT 09, pages 227-234. IEEE.

Thomas Lavergne, Olivier Cappé, and Frangois Yvon.
2010. Practical very large scale CRFs. In Proceed-
ings the 48th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 504-513.
Association for Computational Linguistics, July.

André F. T. Martins, Miguel Almeida, and Noah A.
Smith. 2013. Turning on the turbo: Fast third-order
non-projective turbo parsers. pages 617-622.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas
Chanev, Giilsen Eryigit, Sandra Kiibler, Svetoslav
Marinov, and Erwin Marsi. 2007. Maltparser:
A language-independent system for data-driven de-
pendency parsing. Natural Language Engineering,
13(02):95-135.

Samira Noferesti and Mehrnoush Shamsfard. 2014.
A hybrid algorithm for recognizing the position of
ezafe constructions in Persian texts. International

Journal of Interactive Multimedia and Artificial In-
telligence, 2(6):17-25.

Mohammad Sadegh Rasooli and Joel Tetreault. 2015.
Yara parser: A fast and accurate dependency parser.
arXiv preprint arXiv:1503.06733.

Mohammad Sadegh Rasooli, Manouchehr Kouhestani,
and Amirsaeid Moloodi. 2013. Development of
a Persian syntactic dependency treebank. In Pro-
ceedings of the 2013 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
306-314.

Pollet Samvelian. 2006. When morphology does bet-
ter than syntax: the Ezafe construction in Persian.
Ms., Université de Paris, (1997):1-54.

Djamé Seddah, Reut Tsarfaty, Sandra Kiibler, Marie
Candito, Jinho D. Choi, Richard Farkas, Jen-
nifer Foster, lakes Goenaga, Koldo Gojenola, Yoav
Goldberg, Spence Green, Nizar Habash, Marco
Kuhlmann, Wolfgang Maier, Joakim Nivre, Adam
Przepiorkowski, Ryan Roth, Wolfgang Seeker, Yan-
nick Versley, Veronika Vincze, Marcin Wolinski,
Alina Wroblewska, and Eric Villemonte de la Clerg-
erie. 2013. Overview of the SPMRL 2013 shared
task : Cross-framework evaluation of parsing mor-
phologically rich languages. Proceedings of the
Fourth Workshop on Statistical Parsing of Morpho-
logically Rich Languages, (October):146-182.

Wolfgang Seeker and Jonas Kuhn. 2013. Morphologi-
cal and syntactic case in statistical dependency pars-
ing. Computational Linguistics, 39(1):23-55.

Mojgan Seraji, Bedta Megyesi, and Joakim Nivre.
2012. Dependency parsers for Persian. In Pro-
ceedings of the 10th Workshop on Asian Language
Resources, pages 35-44, Mumbai, India, December.
The COLING 2012 Organizing Committee.

882

