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Abstract

Dialog state tracking is a key component
of many modern dialog systems, most of
which are designed with a single, well-
defined domain in mind. This paper shows
that dialog data drawn from different dia-
log domains can be used to train a general
belief tracking model which can operate
across all of these domains, exhibiting su-
perior performance to each of the domain-
specific models. We propose a training pro-
cedure which uses out-of-domain data to
initialise belief tracking models for entirely
new domains. This procedure leads to im-
provements in belief tracking performance
regardless of the amount of in-domain data
available for training the model.

1 Introduction

Spoken dialog systems allow users to interact with
computer applications through a conversational in-
terface. Modern dialog systems are typically de-
signed with a well-defined domain in mind, e.g.,
restaurant search, travel reservations or shopping
for a new laptop. The goal of building open-domain
dialog systems capable of conversing about any
topic remains far off. In this work, we move to-
wards this goal by showing how to build dialog
state tracking models which can operate across
entirely different domains. The state tracking com-
ponent of a dialog system is responsible for inter-
preting the users’ utterances and thus updating the
system’s belief state: a probability distribution over
all possible states of the dialog. This belief state is
used by the system to decide what to do next.
Recurrent Neural Networks (RNNs) are well
suited to dialog state tracking, as their ability to cap-
ture contextual information allows them to model
and label complex dynamic sequences (Graves,
2012). In recent shared tasks, approaches based on
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these models have shown competitive performance
(Henderson et al., 2014d; Henderson et al., 2014c¢).
This approach is particularly well suited to our goal
of building open-domain dialog systems, as it does
not require handcrafted domain-specific resources
for semantic interpretation.

We propose a method for training multi-domain
RNN dialog state tracking models. Our hierarchical
training procedure first uses all the data available
to train a very general belief tracking model. This
model learns the most frequent and general dialog
features present across the various domains. The
general model is then specialised for each domain,
learning domain-specific behaviour while retaining
the cross-domain dialog patterns learned during the
initial training stages. These models show robust
performance across all the domains investigated,
typically outperforming trackers trained on target-
domain data alone. The procedure can also be used
to initialise dialog systems for entirely new do-
mains. In the evaluation, we show that such initiali-
sation always improves performance, regardless of
the amount of the in-domain training data available.
We believe that this work is the first to address the
question of multi-domain belief tracking.

2 Related Work

Traditional rule-based approaches to understanding
in dialog systems (e.g. Goddeau et al. (1996)) have
been superseded by data-driven systems that are
more robust and can provide the probabilistic dia-
log state distributions that are needed by POMDP-
based dialog managers. The recent Dialog State
Tracking Challenge (DSTC) shared tasks (Williams
et al., 2013; Henderson et al., 2014a; Henderson
et al., 2014b) saw a variety of novel approaches,
including robust sets of hand-crafted rules (Wang
and Lemon, 2013), conditional random fields (Lee
and Eskenazi, 2013; Lee, 2013; Ren et al., 2013),
maximum entropy models (Williams, 2013) and
web-style ranking (Williams, 2014).
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Henderson et al. (2013; 2014d; 2014c¢) proposed
a belief tracker based on recurrent neural networks.
This approach maps directly from the ASR (au-
tomatic speech recognition) output to the belief
state update, avoiding the use of complex semantic
decoders while still attaining state-of-the-art per-
formance. We adopt this RNN framework as the
starting point for the work described here.

It is well-known in machine learning that a sys-
tem trained on data from one domain may not per-
form as well when deployed in a different domain.
Researchers have investigated methods for mitigat-
ing this problem, with NLP applications in parsing
(McClosky et al., 2006; McClosky et al., 2010),
sentiment analysis (Blitzer et al., 2007; Glorot et
al., 2011) and many other tasks. There has been a
small amount of previous work on domain adapta-
tion for dialog systems. Tur et al. (2007) and Mar-
golis et al. (2010) investigated domain adaptation
for dialog act tagging. Walker et al. (2007) trained
a sentence planner/generator that adapts to differ-
ent individuals and domains. In the third DSTC
shared task (Henderson et al., 2014b), participants
deployed belief trackers trained on a restaurant do-
main in an expanded version of the same domain,
with a richer output space but essentially the same
topic. To the best of our knowledge, our work is
the first attempt to build a belief tracker capable of
operating across disjoint dialog domains.

3 Dialog State Tracking using RNNs

Belief tracking models capture users’ goals given
their utterances. Goals are represented as sets of
constraints expressed by slot-value mappings such
as [food: chinese] or [wifi: available]. The set of
slots S and the set of values V; for each slot make
up the ontology for an application domain.

Our starting point is the RNN framework for
belief tracking that was introduced by Henderson
et al. (2014d; 2014c). This is a single-hidden-layer
recurrent neural network that outputs a distribution
over all goal slot-value pairs for each user utterance
in a dialog. It also maintains a memory vector
that stores internal information about the dialog
context. The input for each user utterance consists
of the ASR hypotheses, the last system action, the
current memory vector and the previous belief state.
Rather than using a spoken language understanding
(SLU) decoder to convert this input into a meaning
representation, the system uses the turn input to
extract a large number of word n-gram features.

795

These features capture some of the dialog dynamics
but are not ideal for sharing information across
different slots and domains.

Delexicalised n-gram features overcome this
problem by replacing all references to slot names
and values with generic symbols. Lexical n-grams
such as [want cheap price] and [want Chinese
food] map to the same delexicalised feature, rep-
resented by [want tagged-slot-value tagged-slot-
name]. Such features facilitate transfer learning
between slots and allow the system to operate on
unseen values or entirely new slots. As an example,
[want available internet] would be delexicalised to
[want tagged-slot-value tagged-slot-name] as well,
a useful feature even if there is no training data
available for the internet slot. The delexicalised
model learns the belief state update corresponding
to this feature from its occurrences across the other
slots and domains. Subsequently, it can apply the
learned behaviour to slots in entirely new domains.

The system maintains a separate belief state for
each slot s, represented by the distribution ps over
all possible slot values v € V;. The model input
at turn ¢, x?, consists of the previous belief state
p’~1, the previous memory state m‘~!, as well as
the vectors f; and f; of lexical and delexicalised
features extracted from the turn input!. The belief
state of each slot s is updated for each of its slot
values v € V5. The RNN memory layer is updated
as well. The updates are as follows?:

f=fefiom™ o' ep!
g = wi-o (WSXZ + bg) + 0]
exp(gy)
—exp(gf) + X pev expgh)
m' = o (W}, x,+ W, m'™")

where @ denotes vector concatenation and p% is the
probability that the user has expressed no constraint
up to turn ¢. Matrices W§, W7, - W7 and the

mo?
vector wi are the RNN weights, ;nd bo and b; are
the hidden and output layer RNN bias terms.

For training, the model is unrolled across turns
and trained using backpropagation through time
and stochastic gradient descent (Graves, 2012).

"Henderson et al.’s work distinguished between three types
of features: the delexicalised feature sets fs and f, are sub-
sumed by our delexicalised feature vector f;, and the turn
input f corresponds to our lexical feature vector f;.

The original RNN architecture had a second component
which learned mappings from lexical n-grams to specific slot
values. In order to move towards domain-independence, we
do not use this part of the network.



4 Hierarchical Model Training

Delexicalised features allow transfer learning be-
tween slots. We extend this approach to achieve
transfer learning between domains: a model trained
to talk about hotels should have some success talk-
ing about restaurants, or even laptops. If we can
incorporate features learned from different domains
into a single model, this model should be able to
track belief state across all of these domains.

The training procedure starts by performing
shared initialisation: the RNN parameters of all
the slots are tied and all the slot value occurrences
are replaced with a single generic tag. These slot-
agnostic delexicalised dialogs are then used to train
the parameters of the shared RNN model.

Extending shared initialisation to training across
multiple domains is straightforward. We first delex-
icalise all slot value occurrences for all slots across
the different domains in the training data. This
combined (delexicalised) dataset is then used to
train the multi-domain shared model.

The shared RNN model is trained with the pur-
pose of extracting a very rich set of lexical and
delexicalised features which capture general dialog
dynamics. While the features are general, the RNN
parameters are not, since not all of the features
are equally relevant for different slots. For exam-
ple, [eat tagged-slot-value food] and [near tagged-
slot-value] are clearly features related to food and
area slots respectively. To ensure that the model
learns the relative importance of different features
for each of the slots, we train slot specific mod-
els for each slot across all the available domains.
To train these slot-specialised models, the shared
RNN’s parameters are replicated for each slot and
specialised further by performing additional runs
of stochastic gradient descent using only the slot-
specific (delexicalised) training data.

5 Dialog domains considered

We use the experimental setup of the Dialog State
Tracking Challenges. The key metric used to mea-
sure the success of belief tracking is goal accuracy,
which represents the ability of the system to cor-
rectly infer users’ constraints. We report the joint
goal accuracy, which represents the marginal test
accuracy across all slots in the domain.

We evaluate on data from six domains, varying
across topic and geographical location (Table 1).
The Cambridge Restaurants data is the data from
DSTC 2. The San Francisco Restaurants and Ho-

Dataset / Model Domain Train Test Slots

Cambridge Rest.  Restaurants 2118 1117 4
SF Restaurants Restaurants 1608 176 7
Michigan Rest. Restaurants 845 146 12

" All Restaurants  Restaurants 4398 - 23
Tourist Info. Tourist Info 2039 225 9
SF Hotels Hotels Info 1086 120 7

" R+T+HModel ~ Mixed 7523 - 39
Laptops Laptops 900 100 6
R+T+H+L Model Mixed 8423 - 45

Table 1: datasets used in our experiments

tels data was collected during the Parlance project
(Gasi¢ et al., 2014). The Tourist Information do-
main is the DSTC 3 dataset: it contains dialogs
about hotels, restaurants, pubs and coffee shops.

The Michigan Restaurants and Laptops datasets
are collections of dialogs sourced using Amazon
Mechanical Turk. The Laptops domain contains
conversations with users instructed to find laptops
with certain characteristics. This domain is sub-
stantially different from the other ones, making it
particularly useful for assessing the quality of the
multi-domain models trained.

We introduce three combined datasets used to
train increasingly general belief tracking models:

1. All Restaurants model: trained using the com-
bined data of all three restaurant domains;

2. R+T+H model: trained on all dialogs related
to restaurants, hotels, pubs and coffee shops;

3. R+T+H+L model: the most general model,
trained using all the available dialog data.

6 Results

As part of the evaluation, we use the three com-
binations of our dialog domains to build increas-
ingly general belief tracking models. The domain-
specific models trained using only data from each
of the six dialog domains provide the baseline per-
formance for the three general models.

6.1 Training General Models

Training the shared RNN models is the first step of
the training procedure. Table 2 shows the perfor-
mance of shared models trained using dialogs from
the six individual and the three combined domains.
The joint accuracies are not comparable between
the domains as each of them contains a different
number of slots. The geometric mean of the six ac-
curacies is calculated to determine how well these
models operate across different dialog domains.
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Model / Domain Cam Rest SF Rest Mich Rest Tourist SF Hotels Laptops | Geo. Mean

Cambridge Restaurants 75.0 26.2 33.1 48.7 5.5 54.1 31.3
San Francisco Restaurants 66.8 51.6 31.5 38.2 17.5 474 38.8
Michigan Restaurants 57.9 22.3 64.2 32.6 10.2 454 32.8

S All Restaurants | 755 496 674 482 198 537 | 485
Tourist Information 71.7 27.1 31.5 62.9 10.1 55.7 36.0
San Francisco Hotels 26.2 28.7 27.1 27.9 57.1 25.3 30.6

" Rest U Tourist U Hotels (R+T+H) | 768 512 687 650 588 481 | 607
Laptops 66.9 26.1 32.0 46.2 4.6 74.7 31.0

"~ AllDomains (R+T+H+L) | 768 508 644 636 5718 767 | 643

Table 2: Goal accuracy of shared models trained using different dialog domains (ensembles of 12 models)

The parameters of the three multi-domain mod-
els are not slot or even domain specific. Nonethe-
less, all of them improve over the domain-specific
model for all but one of their constituent domains.
The R+T+H model outperforms the R+T+H+L
model across four domains, showing that the use
of laptops-related dialogs decreases performance
slightly across other more closely related domains.
However, the latter model is much better at balanc-
ing its performance across all six domains, achiev-
ing the highest geometric mean and still improving
over all but one of the domain-specific models.

6.2 Slot-specialising the General Models

Slot specialising the shared model allows the train-
ing procedure to learn the relative importance of
different delexicalised features for each slot in a
given domain. Table 3 shows the effect of slot-
specialising shared models across the six dialog
domains. Moving down in these tables corresponds
to adding more out-of-domain training data and
moving right corresponds to slot-specialising the
shared model for each slot in the current domain.
Slot-specialisation improved performance in the
vast majority of the experiments. All three slot-
specialised general models outperformed the RNN
model’s performance reported in DSTC 2.

6.3 Out of Domain Initialisation

The hierarchical training procedure can exploit the
available out-of-domain dialogs to initialise im-
proved shared models for new dialog domains.

In our experiments, we choose one of the do-
mains to act as the new domain, and we use a subset
of the remaining ones as out-of-domain data. The
number of in-domain dialogs available for train-
ing is increased at each stage of the experiment
and used to train and compare the performance of
two slot-specialised models. These models slot-
specialise from two different shared models. One
is trained using in-domain data only, and the other
is trained on all the out-of-domain data as well.

The two experiments vary in the degree of sim-
ilarity between the in-domain and out-of-domain
dialogs. In the first experiment, Michigan Restau-
rants act as the new domain and the remaining
R+T+H dialogs are used as out-of-domain data. In
the second experiment, Laptops dialogs are the in-
domain data and the remaining dialog domains are
used to initialise the more general shared model.

Figure 1 shows how the performance of the
two differently initialised models improves as ad-
ditional in-domain dialogs are introduced. In both
experiments, the use of out-of-domain data helps to

Model Cambridge Restaurants SF Restaurants Michigan Restaurants
Shared Model  Slot-specialised | Shared Model — Slot-specialised | Shared Model — Slot-specialised
Domain Specific 75.0 75.4 51.6 56.5 64.2 65.6
All Restaurants 75.5 71.3 49.6 53.6 67.4 65.9
R+T+H 76.8 77.4 51.2 54.6 68.7 65.8
R+T+H+L 76.8 77.0 50.8 54.1 64.4 66.9
Tourist Information SF Hotels Laptops
Shared Model  Slot-specialised | Shared Model  Slot-specialised | Shared Model  Slot-specialised
Domain Specific 62.9 65.1 57.1 57.4 74.7 78.4
R+T+H 65.0 67.1 58.8 60.7 - -
R+T+H+L 63.6 65.5 57.8 61.6 76.7 78.9

Table 3: Impact of slot specialisation on performance across the six domains (ensembles of 12 models)
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Figure 1: Joint goal accuracy on Michigan Restaurants (left) and the Laptops domain (right) as a function
of the number of in-domain training dialogs available to the training procedure (ensembles of four models)

initialise the model to a much better starting point
when the in-domain training data set is small. The
out-of-domain initialisation consistently improves
performance: the joint goal accuracy is improved
even when the entire in-domain dataset becomes
available to the training procedure.

These results are not surprising in the case of
the system trained to talk about Michigan Restau-
rants. Dialog systems trained to help users find
restaurants or hotels should have no trouble find-
ing restaurants in alternative geographies. In line
with these expectations, the use of a shared model
initialised using R+T+H dialogs results in a model
with strong starting performance. As additional
restaurants dialogs are revealed to the training pro-
cedure, this model shows relatively minor perfor-
mance gains over the domain-specific one.

The results of the Laptops experiment are even
more compelling, as the difference in performance
between the differently initialised models becomes
larger and more consistent. There are two factors at
play here: exposing the training procedure to sub-
stantially different out-of-domain dialogs allows
it to learn delexicalised features not present in the
in-domain training data. These features are appli-
cable to the Laptops domain, as evidenced by the
very strong starting performance. As additional
in-domain dialogs are introduced, the delexicalised
features not present in the out-of-domain data are
learned as well, leading to consistent improvements
in belief tracking performance.

In the context of these results, it is clear that

the out-of-domain training data has the potential to
be even more beneficial to tracking performance
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than data from relatively similar domains. This is
especially the case when the available in-domain
training datasets are too small to allow the proce-
dure to learn appropriate delexicalised features.

7 Conclusion

We have shown that it is possible to train general be-
lief tracking models capable of talking about many
different topics at once. The most general model
exhibits robust performance across all domains,
outperforming most domain-specific models. This
shows that training using diverse dialog domains
allows the model to better capture general dialog
dynamics applicable to different domains at once.
The proposed hierarchical training procedure
can also be used to adapt the general model to new
dialog domains, with very small in-domain data
sets required for adaptation. This procedure im-
proves tracking performance even when substantial
amounts of in-domain data become available.

7.1 Further Work

The suggested domain adaptation procedure re-
quires a small collection of annotated in-domain
dialogs to adapt the general model to a new domain.
In our future work, we intend to focus on initialis-
ing good belief tracking models when no annotated
dialogs are available for the new dialog domain.
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