Low-Rank Tensors for Verbs in Compositional Distributional Semantics

Daniel Fried, Tamara Polajnar, and Stephen Clark
University of Cambridge
Computer Laboratory
{df345,tp366,sc609}@cam.ac.uk

Abstract

Several compositional distributional se-
mantic methods use tensors to model
multi-way interactions between vectors.
Unfortunately, the size of the tensors can
make their use impractical in large-scale
implementations. In this paper, we inves-
tigate whether we can match the perfor-
mance of full tensors with low-rank ap-
proximations that use a fraction of the
original number of parameters. We in-
vestigate the effect of low-rank tensors on
the transitive verb construction where the
verb is a third-order tensor. The results
show that, while the low-rank tensors re-
quire about two orders of magnitude fewer
parameters per verb, they achieve perfor-
mance comparable to, and occasionally
surpassing, the unconstrained-rank tensors
on sentence similarity and verb disam-
biguation tasks.

1 Introduction

Distributional semantic methods represent word
meanings by their contextual distributions, for ex-
ample by computing word-context co-ocurrence
statistics (Schiitze, 1998; Turney and Pantel, 2010)
or by learning vector representations for words
as part of a context prediction model (Bengio et
al., 2003; Collobert et al., 2011; Mikolov et al.,
2013). Recent research has also focused on com-
positional distributional semantics (CDS): com-
bining the distributional representations for words,
often in a syntax-driven fashion, to produce distri-
butional representations of phrases and sentences
(Mitchell and Lapata, 2008; Baroni and Zam-
parelli, 2010; Socher et al., 2012; Zanzotto and
Dell’ Arciprete, 2012).

One method for CDS is the Categorial frame-
work (Coecke et al., 2011; Baroni et al., 2014),
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where each word is represented by a tensor whose
order is determined by the Categorial Grammar
type of the word. For example, nouns are an
atomic type represented by a vector, and adjec-
tives are matrices that act as functions transform-
ing a noun vector into another noun vector (Baroni
and Zamparelli, 2010). A transitive verb is a third-
order tensor that takes the noun vectors represent-
ing the subject and object and returns a vector in
the sentence space (Polajnar et al., 2014).

However, a concrete implementation of the Cat-
egorial framework requires setting and storing the
values, or parameters, defining these matrices and
tensors. These parameters can be quite numerous
for even low-dimensional sentence spaces. For ex-
ample, a third-order tensor for a given transitive
verb, mapping two 100-dimensional noun spaces
to a 100-dimensional sentence space, would have
100% parameters in its full form. All of the
more complex types have corresponding tensors of
higher order, and therefore a barrier to the practi-
cal implementation of this framework is the large
number of parameters required to represent an ex-
tended vocabulary and a variety of grammatical
constructions.

We aim to reduce the size of the models by
demonstrating that reduced-rank tensors, which
can be represented in a form requiring fewer pa-
rameters, can capture the semantics of complex
types as well as the full-rank tensors do. We base
our experiments on the transitive verb construction
for which there are established tasks and datasets
(Grefenstette and Sadrzadeh, 2011; Kartsaklis and
Sadrzadeh, 2014).

Previous work on the transitive verb construc-
tion within the Categorial framework includes a
two-step linear-regression method for the con-
struction of the full verb tensors (Grefenstette et
al.,, 2013) and a multi-linear regression method
combined with a two-dimensional plausibility
space (Polajnar et al., 2014). Polajnar et al. (2014)
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also introduce several alternative ways of reducing
the number of tensor parameters by using matri-
ces. The best performing method uses two matri-
ces, one representing the subject-verb interactions
and the other the verb-object interactions. Some
interaction between the subject and the object is
re-introduced through a softmax layer. A similar
method is presented in Paperno et al. (2014). Mi-
lajevs et al. (2014) use vectors generated by a neu-
ral language model to construct verb matrices and
several different composition operators to generate
the composed subject-verb-object sentence repre-
sentation.

In this paper, we use tensor rank decomposi-
tion (Kolda and Bader, 2009) to represent each
verb’s tensor as a sum of tensor products of vec-
tors. We learn the component vectors and apply
the composition without ever constructing the full
tensors and thus we are able to improve on both
memory usage and efficiency. This approach fol-
lows recent work on using low-rank tensors to pa-
rameterize models for dependency parsing (Lei et
al., 2014) and semantic role labelling (Lei et al.,
2015). Our work applies the same tensor rank
decompositions, and similar optimization algo-
rithms, to the task of constructing a syntax-driven
model for CDS. Although we focus on the Cat-
egorial framework, the low-rank decomposition
methods are also applicable to other tensor-based
semantic models including Van de Cruys (2010),
Smolensky and Legendre (2006), and Blacoe et al.
(2013).

2 Model

Tensor Models for Verbs We model each tran-
sitive verb as a bilinear function mapping subject
and object noun vectors, each of dimensionality
N, to a single sentence vector of dimensionality .S
(Coecke et al., 2011; Maillard et al., 2014) repre-
senting the composed subject-verb-object (SVO)
triple. [Each transitive verb has its own third-
order tensor, which defines this bilinear function.
Consider a verb V' with associated tensor V €
RSXNXN “and vectors s € RN, o € RY for
subject and object nouns, respectively. Then the
compositional representation for the subject, verb,
and object is a vector V (s, 0) € R, produced by
applying tensor contraction (the higher-order ana-
logue of matrix multiplication) to the verb tensor
and two noun vectors. The I component of the
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vector for the SVO triple is given by

V(S, O)l = Z VljkOij (1)
3k

We aim to learn distributional vectors s and o
for subjects and objects, and tensors V for verbs,
such that the output vectors V(s,0) are distri-
butional representations of the entire SVO triple.
While there are several possible definitions of
the sentence space (Clark, 2013; Baroni et al.,
2014), we follow previous work (Grefenstette et
al., 2013) by using a contextual sentence space
consisting of content words that occur within the

same sentences as the SVO triple.

Low-Rank Tensor Representations Following
Lei et al. (2014), we represent each verb’s tensor
using a low-rank canonical polyadic (CP) decom-
position to reduce the numbers of parameters that
must be learned during training. As a higher-order
analogue to singular value decomposition for ma-
trices, CP decomposition factors a tensor into a
sum of R tensor products of vectors.! Given a
third-order tensor V € RS*N*N 'the CP decom-
position of V is:

R
V=> P,2Q oR, )
r=1

where P € RF*S Q € REXN R e RE*N are
parameter matrices, P, gives the rth row of matrix
P, and ® is the tensor product.

The smallest R that allows the tensor to be ex-
pressed as this sum of outer products is the rank
of the tensor (Kolda and Bader, 2009). By fixing a
value for R that is sufficiently small compared to
S and N (forcing the verb tensor to have rank of
at most ), and directly learning the parameters of
the low-rank approximation using gradient-based
optimization, we learn a low-rank tensor requiring
fewer parameters without ever having to store the
full tensor.

In addition to reducing the number of parame-
ters, representing tensors in this form allows us to
formulate the verb tensor’s action on noun vectors
as matrix multiplication. For a tensor in the form
of Eq. (2), the output SVO vector is given by

V(s,0) =P'(Qs ® Ro) 3)
where © is the elementwise vector product.
"However, unlike matrix singular value decomposition,

the component vectors in the CP decomposition are not nec-
essarily orthonormal.



3 Training

We train the compositional model for verbs in
three steps: extracting transitive verbs and their
subject and object nouns from corpus data, pro-
ducing distributional vectors for the nouns and the
SVO triples, and then learning parameters of the
verb functions, which map the nouns to the SVO
triple vectors.

Corpus Data We extract SVO triples from an
October 2013 download of Wikipedia, tokenized
using Stanford CoreNLP (Manning et al., 2014),
lemmatized with the Morpha lemmatizer (Minnen
et al., 2001), and parsed using the C&C parser
(Curran et al., 2007). We filter the SVO triples
to a set containing 345 distinct verbs: the verbs
from our test datasets, along with some additional
high-frequency verbs included to produce more
representative sentence spaces. For each verb, we
selected up to 600 triples which occurred more
than once and contained subject and object nouns
that occurred at least 100 times (to allow suffi-
cient context to produce a distributional represen-
tation for the triple). This resulted in approxi-
mately 150,000 SVO triples overall.

Distributional Vectors We produce two types
of distributional vectors for nouns and SVO triples
using the Wikipedia corpus. Since these methods
for producing distributional vectors for the SVO
triples require that the triples occur in a corpus of
text, the methods are not a replacement for a com-
positional framework that can produce representa-
tions for previously unseen expressions. However,
they can be used to generate data to train such a
model, as we will describe.

1) Count vectors (SVD): we count the num-
ber of times each noun or SVO triple co-occurs
with each of the 10,000 most frequent words (ex-
cluding stopwords) in the Wikipedia corpus, using
sentences as context boundaries. If the verb in the
SVO triple is itself a content word, we do not in-
clude it as context for the triple. This produces one
set of context vectors for nouns and another for
SVO triples. We weight entries in these vectors
using the t-test weighting scheme (Curran, 2004;
Polajnar and Clark, 2014), and then reduce the
vectors to 100 dimensions via singular value de-
composition (SVD), decomposing the noun vec-
tors and SVO vectors separately.

2) Prediction vectors (PV): we train vector
embeddings for nouns and SVO triples by adapt-
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ing the Paragraph Vector distributed bag of words
method of Le and Mikolov (2014), an extension of
the skip-gram model of Mikolov et al. (2013). In
our experiments, given an SVO triple, the model
must predict contextual words sampled from all
sentences containing that triple. In the process, the
model learns vector embeddings for both the SVO
triples and for the words in the sentences such that
SVO vectors have a high dot product with their
contextual word vectors. While previous work
(Milajevs et al., 2014) has used prediction-based
vectors for words in a tensor-based CDS model,
ours uses prediction-based vectors for both words
and phrases to train a tensor regression model.

We learn 100-dimensional vectors for nouns
and SVO triples with a modified version of
word2vec,? using the hierarchical sampling
method with the default hyperparameters and 20
iterations through the training data.

Training Methods We learn the tensor ) of pa-
rameters for a given verb V' using multi-linear re-
gression, treating the noun vectors s and o as in-
put and the composed SVO triple vector V (s, 0)
as the regression output. Let My be the num-
ber of training instances for V', where the i in-
stance is a triple of vectors (s(i), o), t(i)), which
are the distributional vectors for the subject noun,
object noun, and the SVO triple, respectively. We
aim to learn a verb tensor V (either in full or in
decomposed, low-rank form) that minimizes the
mean of the squared residuals between the pre-
dicted SVO vectors V (s(?),0()) and those vec-
tors obtained distributionally from the corpus, £,
Specifically, we attempt to minimize the following
loss function:

M
1 \4

= LN vs®, o) — 02 @
iy 2o Vo) =l @

L(V)

V (s, 0) is given by Eq. (1) for full tensors, and by
Eq. (3) for tensors represented in low-rank form.
In both the low-rank and full-rank tensor learn-
ing, we use mini-batch ADADELTA optimization
(Zeiler, 2012) up to a maximum of 500 iterations
through the training data, which we found to be
sufficient for convergence for every verb. Rather
than placing a regularization penalty on the ten-
sor parameters, we use early stopping if the loss

https://groups.google.com/d/
msg/word2vec—toolkit/Q49FIrNOQRo/
J6KG8mUJj45sJ



increases on a validation set consisting of 10% of
the available SVO triples for each verb.

For low-rank tensors, we compare seven differ-
ent maximal ranks: R=1, 5, 10, 20, 30, 40 and 50.
To learn the parameters of the low-rank tensors,
we use an alternating optimization method (Kolda
and Bader, 2009; Lei et al., 2014): performing gra-
dient descent on one of the parameter matrices (for
example P) to minimize the loss function while
holding the other two fixed (Q and R), then re-
peating for the other parameter matrices in turn.
The parameter matrices are randomly initialized.>?

4 Evaluation

We compare the performance of the low-rank ten-
sors against full tensors on two tasks. Both tasks
require the model to rank pairs of sentences each
consisting of a subject, transitive verb, and object
by the semantic similarity of the sentences in the
pair. The gold standard ranking is given by sim-
ilarity scores provided by human evaluators and
the scores are not averaged among the annotators.
The model ranking is evaluated against the rank-
ing from the gold standard similarity judgements
using Spearman’s p.

The verb disambiguation task (GS11) (Grefen-
stette and Sadrzadeh, 2011) involves distinguish-
ing between senses of an ambiguous verb, given
subject and object nouns as context. The dataset
consists of 200 sentence pairs, where the two sen-
tences in each pair have the same subject and ob-
ject but differ in the verb. Each of these pairs was
ranked by human evaluators on a 1-7 similarity
scale so that properly disambiguated pairs (e.g. au-
thor write book — author publish book) have higher
similarity scores than improperly disambiguated
pairs (e.g. author write book — author spell book).

The transitive sentence similarity dataset (Kart-
saklis and Sadrzadeh, 2014) consists of 72 subject-
verb-object sentences arranged into 108 sentence
pairs. As in GS11, each pair has a gold standard
semantic similarity score on a 1-7 scale. For ex-
ample, the pair medication achieve result — drug
produce effect has a high similarity rating, while
author write book — delegate buy land has a low
rating. In this dataset, however, the two sentences
in each pair have no lexical overlap: neither sub-
jects, objects, nor verbs are shared.

3Since the low-rank tensor loss is non-convex, we suspect
that parameter initialization may produce better results.
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GS11 KS14 # tensor

SVD PV | SVD PV | params.

Add. | 0.13 0.14 | 0.55 0.56 -
Mult. | 0.13 0.14 | 0.09 0.27 -
R=1 0.10 0.05 | 0.18 0.30 300
R=5 0.26 0.30 | 0.28 0.40 1.5K
R=10| 029 0.32 | 0.26 0.45 3K
R=20 | 0.31 0.34 | 039 044 6K
R=30 | 0.28 0.33 | 0.32 0.46 9K
R=40 | 0.32 0.30 | 0.31 0.52 12K
R=50 | 0.34 0.32 | 042 0.1 15K
Full 029 036 | 041 0.52 M

Table 1: Model performance on the verb disam-
biguation (GS11) and sentence similarity (KS14)
tasks, given by Spearman’s p, and the number of
parameters needed to represent each verb’s tensor.
We show the highest tensor result for each task and
vector set in bold (and also bold the baseline when
it outperforms the tensor method).

5 Results

Table 1 displays correlations between the systems’
scores and human SVO similarity judgements on
the verb disambiguation (GS11) and sentence sim-
ilarity (KS14) tasks, for both the count (SVD) and
prediction vectors (PV). We also give results for
simple composition of word vectors using elemen-
twise addition and multiplication (Mitchell and
Lapata, 2008) (using verb vectors produced in the
same manner as for nouns). As is consistent with
prior work, the tensor-based models are surpassed
by vector addition on the KS14 dataset (Milajevs
et al., 2014), but perform better than both addition
and multiplication on the GS11 dataset.*
Unsurprisingly, the rank-1 tensor has lowest
performance for both tasks and vector sets, and
performance generally increases as we increase
the maximal rank R. The full tensor achieves
the best, or tied for the best, performance on both
tasks when using the PV vectors. However, for the
SVD vectors, low-rank tensors surpass the perfor-
mance of the full-rank tensor for R=40 and R=50

“The results in this table are not directly comparable with
Milajevs et al. (2014), who compare against averaged annota-
tor scores. Comparing against averaged annotator scores, our
best result on GS11 is 0.47 for the full-rank tensor with PV
vectors, and our best non-addition result on KS14 is 0.68 for
the K=40 tensor with PV vectors (the best result is addition
with PV vectors, which achieves 0.71). These results exceed
the scores reported for tensor-based models by Milajevs et al.
(2014).



on GS11, and R=50 on KS14.

On GS11, the SVD and PV vectors have vary-
ing but mostly comparable performance, with PV
having higher performance on 5 out of 8 models.
However, on KS14, the PV vectors have better per-
formance than the SVD vectors for every model
by at least 0.05 points, which is consistent with
prior work comparing count and predict vectors on
these datasets (Milajevs et al., 2014).

The low-rank tensor models are also at least
twice as fast to train as the full tensors: on a single
core, training a rank-1 tensor takes about 5 sec-
onds for each verb on average, ranks 5-50 each
take between 1 and 2 minutes, and the full tensors
each take about 4 minutes. Since a separate tensor
is trained for each verb, this allows a substantial
amount of time to be saved even when using the
constrained vocabulary of 345 verbs.

6 Conclusion

We find that low-rank tensors for verbs achieve
comparable or better performance than full-rank
tensors on both verb disambiguation and sentence
similarity tasks, while reducing the number of pa-
rameters that must be learned and stored for each
verb by at least two orders of magnitude, and cut-
ting training time in half.

While in our experiments the prediction-based
vectors outperform the count-based vectors on
both tasks for most models, Levy et al. (2015) in-
dicate that tuning hyperparameters of the count-
based vectors may be able to produce compara-
ble performance. Regardless, we show that the
low-rank tensors are able to achieve performance
comparable to the full rank for both types of vec-
tors. This is important for extending the model
to many more grammatical types (including those
with corresponding tensors of higher order than in-
vestigated here) to build a wide-coverage tensor-
based semantic system using, for example, the
CCG parser of Curran et al. (2007).
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