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Abstract
Community Question Answering (cQA) is
a new application of QA in social contexts
(e.g., fora). It presents new interesting
challenges and research directions, e.g.,
exploiting the dependencies between the
different comments of a thread to select
the best answer for a given question. In
this paper, we explored two ways of mod-
eling such dependencies: (i) by designing
specific features looking globally at the
thread; and (ii) by applying structure pre-
diction models. We trained and evaluated
our models on data from SemEval-2015
Task 3 on Answer Selection in cQA. Our
experiments show that: (i) the thread-level
features consistently improve the perfor-
mance for a variety of machine learning
models, yielding state-of-the-art results;
and (ii) sequential dependencies between
the answer labels captured by structured
prediction models are not enough to im-
prove the results, indicating that more in-
formation is needed in the joint model.

1 Introduction

Community Question Answering (cQA) is an evo-
lution of a typical QA setting put in a Web forum
context, where user interaction is enabled, without
much restrictions on who can post and who can
answer a question. This is a powerful mechanism,
which allows users to freely ask questions and ex-
pect some good, honest answers.

Unfortunately, a user has to go through all pos-
sible answers and to make sense of them. It is of-
ten the case that many answers are only loosely re-
lated to the actual question, and some even change
the topic. This is especially common for long
threads where, as the thread progresses, users start
talking to each other, instead of trying to answer
the initial question.

This is a real problem, as a question can have
hundreds of answers, the vast majority of which
would not satisfy the users’ information needs.
Thus, finding the desired information in a long list
of answers might be very time-consuming.

The problem of selecting the relevant text pas-
sages (i.e., those containing good answers) has
been tackled in QA research, either for non-factoid
QA or for passage reranking. Usually, automatic
classifiers are applied to the answer passages re-
trieved by a search engine to derive a relative or-
der; see (Radlinski and Joachims, 2005; Jeon et
al., 2005; Shen and Lapata, 2007; Moschitti et
al., 2007; Surdeanu et al., 2008; Heilman and
Smith, 2010; Wang and Manning, 2010; Severyn
and Moschitti, 2012; Yao et al., 2013; Severyn et
al., 2013; Severyn and Moschitti, 2013) for detail.

To the best of our knowledge, there is no
QA work that effectively identifies good answers
based on the selection of the other answers re-
trieved for a question. This is mainly due to the
loose dependencies between the different answer
passages in standard QA. In contrast, we postulate
that in a cQA setting, the answers from different
users in a common thread are strongly intercon-
nected and, thus, a joint answer selection model
should be adopted to achieve higher accuracy.

To test our hypothesis about the usefulness of
thread-level information, we used a publicly avail-
able dataset, recently developed for the SemEval-
2015 Task 3 (Nakov et al., 2015). Subtask A in
that challenge asks to identify the posts in the an-
swer thread that answer the question well vs. those
that can be potentially useful to the user vs. those
that are just bad or useless.

We model the thread-level dependencies in two
different ways: (i) by designing specific features
that are able to capture the dependencies between
the answers in the same thread; and (ii) by exploit-
ing the sequential organization of the output labels
for the complete thread.
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Q: Can I obtain Driving License my QID is written Em-
ployee

A1 the word employee is a general term that refers to all the
staff in your company either the manager, secretary up
to the lowest position or whatever positions they have.
you are all considered employees of your company.

A2 your qid should specify what is the actual profession you
have. i think for me, your chances to have a drivers
license is low.

A3 dear richard, his asking if he can obtain. means he have
the driver license

A4 Slim chance . . .

Figure 1: Simplified example from SemEval-2015
Task 3, English subtask A.

For the latter, we used the usual extensions
of Logistic Regression and SVM to linear-chain
models such as CRF and SVMhmm.

The results clearly show that the thread-level
features are important, providing consistent im-
provement for all our learning models. In contrast,
the linear-chain models fail to exploit the sequen-
tial dependencies between nearby answer labels to
improve the results significantly: although the la-
bels from the neighboring answers can affect the
label of the current answer, this dependency is too
loose to have impact on the selection accuracy. In
other words, labels should be used together with
answers’ content to account for stronger and more
effective dependencies.

2 The Task
We use the CQA-QL corpus, which was used for
Subtask A of SemEval-2015 Task 3 on Answer Se-
lection in cQA. The corpus contains data from
the Qatar Living forum,1 and is publicly avail-
able on the task’s website.2 The dataset consists of
questions and a list of the answers for each ques-
tion, i.e., the question-answer thread. Each ques-
tion, and also each answer, consists of a short title
and a more detailed description. Moreover, there
is some meta information associated with both,
e.g., ID of the user asking/answering the question,
timestamp, question category, etc.

The task asks to determine for each answer in
the thread whether it is good, bad, or potentially
useful. A simplified example is shown in Fig-
ure 1,3 where answers 2 and 4 are good, answer
1 is potentially useful, and answer 3 is bad.

1http://www.qatarliving.com/forum
2http://alt.qcri.org/semeval2015/task3/
3http://www.qatarliving.com/moving-qatar/posts/can-i-

obtain-driving-license-my-qid-written-employee

Below, we start with the original definition of
Subtask A, as described above. Then, we switch
to a binary classification setting (i.e., identifying
good vs. bad answers), which is much closer to a
real cQA application (see Section 4.3).

3 Basic and Thread-Level Features

Subsection 3.1 summarizes the basic features we
used to implement the baseline systems. More im-
portantly, Section 3.2 describes the set of thread-
level features we designed in order to test our
working hypothesis. Below we use the following
notation: q is a question posted by user uq, c is a
comment, and C is the comment thread.

3.1 Baseline Features
We measure lexical and syntactic similarity be-
tween q and c. We compute the similarity between
word n-grams (n = [1, . . . , 4]), after stopword
removal, using greedy string tiling (Wise, 1996),
longest common subsequences (Allison and Dix,
1986), Jaccard coefficient (Jaccard, 1901), word
containment (Lyon et al., 2001), and cosine sim-
ilarity. We also apply partial tree kernels (Mos-
chitti, 2006) on shallow syntactic trees.

We designed a set of heuristic features that
might suggest whether c is good or not. Forty-four
Boolean features express whether c (i) includes
URLs or emails (2 feats.); (ii) contains the word
“yes”, “sure”, “no”, “can”, “neither”, “okay”, and
“sorry”, as well as symbols ‘?’ and ‘@’ (9 feats.);
(iii) starts with “yes” (1 feat.); (iv) includes a se-
quence of three or more repeated characters or
a word longer than fifteen characters (2 feats.);
(v) belongs to one of the categories of the forum
(Socialising, Life in Qatar, etc.) (26 feats.); and
(vi) has been posted by the same uq, such a com-
ment can include a question (i.e., contain a ques-
tion mark), and acknowledgement (e.g., contain
thank*, acknowl*), or none of them (4 feats.). An
extra feature captures the length of c (as longer —
good— comments usually contain detailed infor-
mation to answer a question).

3.2 Thread-Level Global Features
Comments are organized sequentially according to
the time line of the comment thread.4 Our first
four features indicate whether c appears in the
proximity of a comment by uq.

4The task organizers report that some comments in the
threads were discarded due to disagreement in the annotation
process. The extent of discarded comments is unknown.
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Pca Rca F1,ca A
Baseline Features
SVM 52.96 53.14 52.87 67.61
OrdReg 53.33 51.54 51.87 65.38
Baseline+Thread-level Features
SVM 56.31 56.46 56.33 72.27
OrdReg 57.68 57.04 57.20 72.47
SemEval top three
JAIST 57.31 57.20 57.19 72.52
HITSZ 57.83 56.82 56.41 68.67
QCRI 54.34 53.57 53.74 70.50

Table 1: Macro-averaged precision, recall, F1-
measure, and accuracy on the multi-class (good,
bad, potential) setting on the official SemEval-
2015 Task 3 test set. The top-2 systems are in-
cluded for comparison. QCRI refers to our official
results, using an older version of our system.

The assumption is that an acknowledgment or
further questions by uq in the thread could sig-
nal a good answer. More specifically, they test
if among the comments following c there is one
by uq (i) containing an acknowledgment, (ii) not
containing an acknowledgment, (iii) containing a
question, and, (iv) if among the comments preced-
ing c there is one by uq containing a question. The
value of these four features —a propagation of the
information captured by some of the heuristics de-
scribed in Section 3.1— depends on the distance
k, in terms of the number of comments, between c
and the closest comment by uq:

f(c) =
{

max (0, 1.1− (k · 0.1))
0 if no comments by uq exist,

(1)

that is, the closer the comment to cq, the higher the
value assigned to this feature.

We try to model potential dialogues, which at
the end represent bad comments, by identifying
interlacing comments between two users. Our dia-
logue features are identifying conversation chains:
ui → . . . → uj → . . . → ui → . . . → [uj ].
Comments by other users can appear in between
the nodes of this “pseudo-conversation” chain. We
consider three features: whether a comment is at
the beginning, in the middle, or at the end of such
a chain. Three more features exist in those cases
in which uq is one of the participants of these
pseudo-conversations.

Another Boolean feature for cui is set to true if
ui wrote more than one comment in the current
thread. Three more features identify the first, the
middle and the last comments by ui. One extra
feature counts the total number of comments writ-
ten by ui in the thread up to that moment.

P R F1 A F1,ta Ata

Baseline Features
SVM 70.58 84.45 76.89 74.39 66.52 76.13
SVMhmm 72.57 85.46 78.49 76.37 68.55 77.58
LogReg 65.05 91.27 75.96 70.85 68.84 74.79
CRFmap 72.48 86.66 78.94 76.67 67.17 76.55
CRFmpm 71.55 84.25 77.38 75.15 66.54 75.42
Baseline+Thread-level Features
SVM 75.29 85.26 79.96 78.44 67.65 76.02
SVMhmm 74.84 83.25 78.82 77.43 66.61 77.06
LogReg 73.32 86.56 79.39 77.33 68.10 75.57
CRFmap 73.77 85.76 79.31 77.43 66.37 76.08
CRFmpm 74.35 85.46 79.51 77.78 67.36 76.63

Table 2: Performance of the binary (good vs. bad )
classifiers on the official SemEval-2015 Task 3 test
dataset. Precision, recall, F1-measure and accu-
racy are calculated at the comment level, while
F1,ta and Ata are averaged at the thread level.

Moreover, we empirically observed that the
likelihood of some comment being good decreases
with its position in the thread. Therefore,
we also included another real-valued feature:
max(20, i)/20, where i represents the position of
the comment in the thread.

Finally, we perform a pseudo-ranking of the
comments. The relevance of c is computed as its
similarity to q (using word n-grams), normalized
by the maximum similarity among all the com-
ments in the thread. The resulting relative scores
are mapped into three binary features depending
on the range they fall at: [0, 0.2], (0.2, 0.8), or
[0.8, 1] (intervals resemble the three-class setting
and were empirically set on the training data).

4 Experiments

Below we first describe the data we used, then we
introduce the experimental setup, and finally we
present and discuss the results of our experiments.

4.1 Data

The original CQA-QL corpus (Nakov et al., 2015)
consists of 3,229 questions: 2,600 for training,
300 for development, and 329 for testing. The
total number of comments is 20,162, with an
average of 6.24 comments per question. The
class labels for the comments are distributed
as follows: 9,941 good (49.31%), 2,013 poten-
tial (9.98%), and 8,208 bad (40.71%) comments.

Since a typical answer selection setting only
considers correct and incorrect answers, we also
experiment with potential labelled as bad.
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P R F1 A F1,ta Ata

Baseline Features
SVM 68.86±1.42 82.34±1.04 74.98±0.73 72.90±1.00 64.56±0.97 75.32±0.40
SVMhmm 70.34±1.57 81.00±1.98 75.28±1.05 73.75±1.56 65.25±1.16 74.68±1.05
LogReg 64.20±1.33 88.54±0.81 74.42±0.80 69.99±0.94 66.00±1.33 73.04±0.96
CRFmap 69.11±1.41 80.63±1.76 74.42±1.29 72.66±1.75 63.90±1.71 73.51±0.73
CRFmpm 69.60±1.65 81.17±1.28 74.93±1.19 73.20±1.77 64.53±1.37 74.32±0.92

Baseline+Thread-level Features
SVM 72.55±0.96 83.39±1.36 77.59±0.95 76.23±1.37 66.41±1.30 76.23±0.45
SVMhmm 73.24±1.66 81.66±1.21 77.21±1.18 76.20±1.81 65.33±1.12 76.43±0.92
LogReg 71.15±0.96 84.44±1.50 77.22±1.07 75.43±1.47 66.57±1.49 75.05±0.70
CRFmap 71.27±1.20 83.15±1.81 76.75±1.28 75.14±1.72 65.36±1.45 75.61±0.63
CRFmpm 71.56±1.31 83.34±1.84 77.00±1.35 75.43±1.84 65.57±1.54 75.71±0.71

Table 3: Precision, Recall, F1, Accuracy computed at the comment level; F1,ta and Ata are averaged at
the thread level. Precision, Recall, F1, F1,ta are computed with respect to the good classifier on 5-fold
cross-validation (mean±stand. dev.).

4.2 Experimental Setup

Our local classifiers are support vector machines
(SVM) with C = 1 (Joachims, 1999), logistic
regression with a Gaussian prior with variance 10,
and logistic ordinal regression (McCullagh, 1980).
In order to capture long-range sequential depen-
dencies, we use a second-order SVMhmm (Yu
and Joachims, 2008) (with C = 500 and
epsilon = 0.01) and a second-order linear-chain
CRF, which considers dependencies between
three neighboring labels in a sequence (Lafferty et
al., 2001; Cuong et al., 2014). In CRF, we perform
two kinds of inference to find the most probable
labels for the comments in a sequence. (i) We
compute the maximum a posterior (MAP) or the
(jointly) most probable sequence of labels using
the Viterbi algorithm. Specifically, it computes
y∗ = argmaxy1:T

P (y1:T |x1:T ), where T is the
number of comments in the thread. (ii) We use
the forward–backward algorithm to find the labels
by maximizing (individual) posterior marginals
(MPM). More formally, we compute ŷ =(
argmaxy1P (y1|x1:T ), · · · , argmaxyTP (yT |x1:T )

)
.

While MAP yields a globally consistent sequence
of labels, MPM can be more robust in many cases;
see (Murphy, 2012, p. 613) for details. CRF also
uses a Gaussian prior with variance 10.5

4.3 Experiment results

In order to compare the quality of our features to
the existing state of the art, we performed a first
experiment aligned to the multi-class setting of the
SemEval 2015 Task 3 competition. Table 1 shows
our results on the official test dataset.

5Varying regularization strength (variance of the prior)
did not make much difference.

As in the competition, the results are macro-
averaged at class level. The results of the top 3
systems are reported for comparison: JAIST (Tran
et al., 2015), HITSZ (Hou et al., 2015) and
QCRI (Nicosia et al., 2015), where the latter refers
to our old system that we used for the competition.
The two main observations are (i) using thread-
level features helps significantly; and (ii) the ordi-
nal regression model, which captures the idea that
potential lies between good and bad, achieves at
least as good results as the top system at SemEval,
namely JAIST.

For the remaining experiments, we reduce the
multi-class problem to a binary one (cf. Section 2).
Table 2 shows the results obtained on the official
test dataset. Note that ordinal regression is not ap-
plicable in this binary setting. The F1 values for
the baseline features suggest that using the labels
in the thread sequence yields better performance
with SVMhmm and CRF. When thread-level fea-
tures are used, the models using sequence labels
do not outperform SVM and logistic regression
anymore. Regarding the two variations of CRF,
the posterior marginals maximization is slightly
better: maximizing on each comment pays more
than on the entire thread.

Since the task consists in identifying good an-
swers for a given question, further figures at the
question level are necessary, i.e., we compute the
target performance measure for all comments of
each question and then we average the results over
all threads (ta). Table 2 shows such the result using
two measures: F1 and accuracy, i.e., F1,ta and Ata,
for which long threads have less impact on the fi-
nal outcome. The impact of the thread features is
not-so-high in terms of these measures, sometimes
even negatively affecting some of the models.
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Qu1 : Gymnastic world cup.
Does anyone know what time the competition
starts today?
Thanks

c1,u2 : sorry - is this being held here in
Doha? If so, I’d love to go.
Expat Sueo
P.S. Is that a labradoodle in your
avatar?

Bad→Bad

c2,u1 : No actually a Cockapoo!
Yes the comp. runs from today until
Wednesday at Aspire.

Bad→Bad

c3,u2 : Thanks for the info - maybe I’ll turn
up after the TableTop Sale is done
and dusted!
ES
P.S. Cute pup!

Good→Bad

Qu4 : Good Scissor.
Dears, anyone have an idea where to find a good
scissor for hair and beard trimming please???

c1,u5 : Visit Family food center Bad→Good

c2,u6 : Al rawnaq airport road...U’ll find all
types of scissors there...

Bad→Good

c3,u4 : Thank you all . . . I will try that. Bad→Bad

Figure 2: Two real question–comments threads
(simplified; ID in CQA-QL: Q770 and Q752). The
sub-indexes stand for the position in the thread and
the author of the comment. The class label corre-
sponds to the prediction before and after consider-
ing thread-level information. The right-hand label
matches with the gold one in all the cases.

Cross validation. In order to better understand
the mixed results obtained on the single official
test set, we performed 5-fold cross validation over
the entire dataset. The results are shown in Ta-
ble 3. When looking at the performance of the
different models with the same set of features, no
statistically significant differences are observed on
F1 or F1,ta (t-test with confidence level 95%). The
sequence of predicted labels in CRF or SVMhmm

does not impact the final result. In contrast, an im-
portant difference is observed when thread-level
features come into play: the performance of all the
models improves by approximately two F1 points
absolute, and statistically significant differences
are observed for SVM and logistic regression (t-
test, 95%). Moreover, while on the test dataset the
thread-level features do not always improve F1,ta

and Ata, on the 5-fold cross-validation using them
is always beneficial: for F1,ta statistically signifi-
cant difference is observed for SVM only (t-test,
90%).

Qualitative results. In order to get an intuition
about the effect of the thread-level features, we
show two example comment threads in Figure 2.
These comments are classified correctly when
thread features are used in the classifier, and in-
correctly when only basic features are used.

In the first case (Qu1), the third comment is clas-
sified as good by models that only use basic fea-
tures. In contrast, thanks to the thread-level fea-
tures, the classifier can consider that there is a di-
alogue between u1 and u2, causing all the com-
ments to be assigned to the correct class: bad.

In the second example (Qu4), the first two com-
ments are classified as bad when using the basic
features. However, the third comment —written
by the same user who asked Qu4— includes an
acknowledgment. The latter is propagated to the
previous comments in terms of a thread feature,
which indicates that such comments are more
likely to be good answers. This feature provides
the classifier with enough information to properly
label the first two comments as good.

5 Conclusions

We presented a study on using dependencies be-
tween the different answers in the same question
thread in the context of answer selection in cQA.
Our experiments with different classifiers, fea-
tures, and experimental conditions, reveal that an-
swer dependencies are helpful to improve results
on the task. Such dependencies are best exploited
by means of carefully designed thread-level fea-
tures, whereas sequence label information alone,
e.g., used in CRF or SVMhmm, is not effective.

In future work, we plan to (i) experiment with
more sophisticated thread-level features, as well
as with other features that model context in gen-
eral; (ii) try data from other cQA websites, e.g.,
where dialogue between users is marked explic-
itly; and finally, (iii) integrate sequence, prece-
dence, dependency information with global —
thread-level— features in a unified framework.
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