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Abstract

Expert finding on social media benefits
both individuals and commercial services.
In this paper, we exploit a 5-level tree rep-
resentation to model the posts on social
media and cast the expert finding prob-
lem to the matching problem between the
learned user tree and domain tree. We
enhance the traditional approximate tree
matching algorithm and incorporate word
embeddings to improve the matching re-
sult. The experiments conducted on Sina
Microblog demonstrate the effectiveness
of our work.

1 Introduction

Expert finding has been arousing great interests
among social media researchers after its success-
ful applications on traditional media like academic
publications. As already observed, social media
users tend to follow others for professional inter-
ests and knowledge (Ramage et al, 2010). This
builds the basis for mining expertise and find-
ing experts on social media, which facilitates the
services of user recommendation and question-
answering, etc.

Despite the demand to access expertise, the
challenges of identifying domain experts on social
media exist. Social media often contains plenty of
noises such as the tags with which users describe
themselves. Noises impose the inherent drawback
on the feature-based learning methods (Krishna-
murthy et al, 2008). Data imbalance and sparse-
ness also limits the performance of the promis-
ing latent semantic analysis methods such as the
LDA-like topic models (Blei et al, 2003; Ram-
age et al, 2009). When some topics co-occur
more frequently than others, the strict assump-
tion of these topic models cannot be met and con-
sequently many nonsensical topics will be gen-
erated (Zhao and Jiang, 2011; Pal et al, 2011;

Quercia et al, 2012). Furthermore, not as simple
as celebrities, the definition of experts introduces
additional difficulties. Experts cannot be simply
judged by the number of followers. The knowl-
edge conveyed in what they say is essential. This
leads to the failures of the network-based meth-
ods (Java et al, 2007; Weng et al, 2010; Pal et al,
2011).

The challenges mentioned above inherently
come from insufficient representations. They mo-
tivate us to propose a more flexible domain expert
finding framework to explore effective representa-
tions that are able to tackle the complexity lies in
the social media data. The basic idea is as follows.
Experts talk about the professional knowledge in
their posts and these posts are supposed to contain
more domain knowledge than the posts from the
other ordinary users. We determine whether or not
users are experts on specific domains by matching
their professional knowledge and domain knowl-
edge. The key is how to capture such information
for both users and domains with the appropriate
representation, which is, in our view, the reason
why most of previous work fails.

To go beyond the feature-based classification
methods and the vector representation inference in
expert finding, a potential solution is to incorpo-
rate the semantic information for knowledge mod-
eling. We achieve this goal by representing user
posts using a hierarchical tree structure to capture
correlations among words and topics. To tackle
the data sparseness problem, we apply word em-
beddings to tree-nodes to further enhance seman-
tic representation and to support semantic match-
ing. Expert finding is then cast to the problem of
determining the edit distance between the user tree
and the domain tree, which is computed with an
approximate tree matching algorithm.

The main contribution of this work is to inte-
grate the hierarchical tree representation and struc-
ture matching together to profile users’ and do-
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mains’ knowledge. Using such trees allows us to
flexibly incorporate more information into the data
representation, such as the relations between la-
tent topics and the semantic similarities between
words. The experiments conducted on Sina Mi-
croblog demonstrate the effectiveness of the pro-
posed framework and the corresponding methods.

2 Knowledge Representation
with Hierarchical Tree

To capture correlations between topics, Pachinko
Allocation Model (PAM) (Li and McCallum,
2006) uses a directed acyclic graph (DAG) with
leaves representing individual words in the vocab-
ulary and each interior node representing a corre-
lation among its children. In particular, multi-level
PAM is capable of revealing interconnection be-
tween sub-level nodes by inferencing correspond-
ing super-level nodes. It is a desired property that
enables us to capture hierarchical relations among
both inner-level and inter-level nodes and thereby
enhance the representation of users’ posts. More
important, the inter-level hierarchy benefits to dis-
tribute words from super-level generic topics to
sub-level specific topics.

In this work, we exploit a 5-level PAM to learn
the hierarchical knowledge representation for each
individual user and domain. As shown in Figure 1,
the 5-level hierarchy consists of one root topic r, I
topics at the second level X = {x1, x2, . . . , xI},
J topics at the third level Y = {y1, y2, . . . , yJ},
K topics at the fourth level Z = {z1, z2, . . . , zK}
and words at the bottom. The whole hierarchy is
fully connected.
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Figure 1: 5-level PAM

Each topic in 5-level PAM is associated with
a distribution g(·) over its children. In general,
g(·) can be any distribution over discrete vari-
ables. Here, we use a set of Dirichlet com-

pound multinomial distributions associated with
the root, the second-level and the third-level top-
ics. These distributions are {gr(α)}, {gi(γi)}I

i=1

and {gi(δj)}J
j=1. They are used to sample the

multinomial distributions θx, θy and θz over the
corresponding sub-level topics. As to the fourth-
level topics, we use a fixed multinomial distribu-
tion {ϕzk

}K
k=1 sampled once for the whole data

from a single Dirichlet distribution g(β). Figure 2
illustrates the plate notation of this 5-level PAM.
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Figure 2: Plate Notation of 5-level PAM

By integrating out the sampled multinomial dis-
tributions θx, θy, θz , ϕ and summing over x,y, z,
we obtain the Gibbs sampling distribution for
word w = wm in document d as:

P (xw=xi, yw=yj , zw=zk|D,x−w,y−w, z−w, α, γ, δ, β)

∝P (w, xw, yw, zw|D−w,x−w,y−w, z−w, α, γ, δ, β)

=
P (D,x,y, z|α, γ, δ, β)

P (D−w,x−w,y−w, z−w|α, γ, δ, β)

=
n

(d)
i + αi

n
(d)
r +

∑K
i′=1 αi′

× n
(d)
ij + γij

n
(d)
i +

∑L
j′=1 γij′

× n
(d)
jk + δjk

n
(d)
j +

∑J
k′=1 δjk′

× n
(d)
km + βm

nk +
∑n

m′=1 βm′

where n
(d)
r is the number of occurrences of the

root r in document d, which is equivalent to the
number of tokens in the document. n

(d)
i , n

(d)
ij and

n
(d)
jk are respectively the number of occurrences of

xi, yj and zk sampled from their upper-level top-
ics. nk is the number of occurrences of the fourth-
level topics zk in the whole dataset and nkm is the
number of occurrences of word wm in zk. −w

617



indicates all observations or topic assignments ex-
cept word w.

With the fixed Dirichlet parameter α for the root
and β as the prior, what’s left is to estimate (learn
from data) γ and δ to capture the different corre-
lations among topics. To avoid the use of iterative
methods which are often computationally exten-
sive, instead we approximate these two Dirichlet
parameters using the moment matching algorithm,
the same as (Minka, 2000; Casella and Berger,
2001; Shafiei and Milios, 2006). With smoothing
techniques, in each iteration of Gibbs sampling we
update:

meanij =
1

Ni + 1
×
(∑

d

n
(d)
ij

n
(d)
i

+
1

L

)

varij =
1

Ni + 1
×
(∑

d

(
n

(d)
ij

n
(d)
i

−meanij)
2

+ (
1

L
−meanij)

2

)
mij =

meanij × (1−meanij)

varij
− 1

γij =
meanij

exp
(∑

j log(mij)

L−1

)
where Ni is the number of documents with non-
zero counts of super-level topic xi. Parameter es-
timation of δ is the same as γ.

3 Expert Finding
with Approximate Tree Matching

Once the hierarchical representations of users and
domains have been generated, we can determine
whether or not a user is an expert on a domain
based on their matching degree, which is a prob-
lem analogous to tree-to-tree correction using edit
distance (Selkow, 1977; Shasha and Zhang, 1990;
Wagner, 1975; Wagner and Fischer, 1974; Zhang
and Shasha, 1989). Given two trees T1 and T2,
a typical edit distance-based correction approach
is to transform T1 to T2 with a sequence of edit-
ing operations S =< s1, s2, . . . , sk > such that
sk (sk−1 (. . . (s1 (T1)) . . .)) = T2. Each operation
is assigned a cost σ(si) that represents the diffi-
culty of making that operation. By summing up
the costs of all necessary operations, the total cost
σ(S) =

∑k
i=1 σ(si) defines the matching degree

of T1 and T2.
We assume that an expert could only master a

part of professional domain knowledge rather than
the whole and thereby revise a traditional approxi-
mate tree matching algorithm (Zhang and Shasha,

1989) to calculate the matching degree. This as-
sumption especially makes sense when the domain
we are concerned with is quite general. Let Td and
Tu denote the learned domain knowledge tree and
the user knowledge tree, we match Td to the re-
maining trees resulting from cutting all possible
sets of disjoint sub-trees of Tu. We specifically
penalize no cost if some sub-trees are missing in
matching process. We define two types of oper-
ations. The substitution operations edit the dis-
similar words on tree-nodes, while the insertion
and deletion operations perform on tree-structures.
Expert finding is then to calculate the minimum
matching cost on Td and Tu. If the cost is smaller
than an empirically defined threshold λd, we iden-
tify user u as an expert on domain d.

To alleviate the sparseness problem caused by
direct letter-to-letter matching in tree-node map-
ping, we embed word embeddings (Bengio et al,
2003) into the substitution operation. We apply
the word2vec skip-gram model (Mikolov et al,
2013(a); Mikolov et al, 2013(b)) to encode each
word in our vocabulary with a probability vec-
tor and directly use the similarity generated by
word2vec as the tree-node similarity. The costs
of insertion and deletion operations will be ex-
plained in Section 4. Actually all these three costs
can be defined in accordance with applicant needs.
In brief, by combining both hierarchical represen-
tation of tree-structure and word embeddings of
tree-nodes, we achieve our goal to enhance seman-
tics.

4 Experiments

The experiments are conducted on 5 domains (i.e.,
Beauty Blogger, Beauty Doctor, Parenting, E-
Commerce, and Data Science) in Sina Microblog,
a Twitter-like microblog in China. To learn PAM,
we manually select 40 users in each domain
from the official expert lists released by Sina Mi-
croblog1, and crawl all of their posts. In average,
there are 113,924 posts in each domain. Notice
that the expert lists are not of high quality. We
have to do manual verification to filter out noises.
For evaluation, we select another 80 users in each
domain from the expert list, with 40 verified as ex-
perts and the other 40 as non-experts.

Since there is no state-of-art Chinese word em-
beddings publicly available, we use another Sina

1http://d.weibo.com/1087030002_558_3_
2014#
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Table 1: Classification Results

Approach
Precision Recall F-Score

Macro Micro Macro Micro Macro Micro
unigram 0.380 0.484 0.615 0.380 0.469 0.432

bigram 0.435 0.537 0.615 0.435 0.507 0.486
LDA 0.430 0.473 0.540 0.430 0.474 0.451

Twitter-LDA 0.675 0.763 0.680 0.430 0.675 0.451
PAM 0.720 0.818 0.720 0.720 0.714 0.769

Microblog dataset provided by pennyliang2,
which contains 25 million posts and nearly 100
million tokens in total, to learn the word embed-
dings of 50-dimension. We pre-process the data
with the Rwordseg segmentation package3 and
discard nonsensical words with the pullword
package4.

When learning 5-level PAM, we set fixed pa-
rameters α = 0.25, β = 0.25 and from top to down,
I = 10, J = 20, K = 20 for the number of second,
third and fourth levels of topics, respectively. And
we initialize γ and δ with 0.25. For tree match-
ing, we define the cost of tree-node substitution
operation between word a and b as Eq (1). The
costs of insertion and deletion operations for tree-
structure matching are MAX VALUE. Here we set
MAX VALUE as 100 experimentally. The thresh-
old λd used to determine the expert is set to be 12
times of MAX VALUE.

σ(a→b)=


0, a = b

sim (a, b) , sim(a, b) >0.55
MAX VALUE, otherwise

(1)

We compare PAM with n-gram (unigram and
bigram), LDA (Blei et al, 2003) and Twitter-
LDA (Zhao and Jiang, 2011). We set β in LDA
and Twitter-LDA to 0.01, γ in Twiitter-LDA to 20.
For α, we adopt the commonly used 50/T heuris-
tics where the number of topics T = 50. To be fair,
we all use the tokens after pullword preprocessing
as the input to extract features for classification.
Following Zhao and Jiang (2011), we train four
ℓ2-regularized logistic regression classifiers using
the LIBLINEAR package (Fan et al, 2008) on the
top 200 unigrams and bigrams ranked according to
Chi-squared and 100-dimensional topic vectors in-
duced by LDA and Twitter-LDA, respectively. We

2http://chuansong.me/account/pennyjob
3http://jliblog.com/app/rwordseg
4http://pullword.com/

also compare our model with/without word em-
beddings to demonstrate the effectiveness of this
semantic enhancement. The results are presented
in Table 1.

In general, LDA, Twitter-LDA and PAM
outperform unigram and bigram, showing the
strength of latent semantic modeling. Within the
first two models, Twitter-LDA yields better preci-
sions than LDA because of its ability to overcome
the difficulty of modeling short posts on social me-
dia. It designs an additional background word dis-
tribution to remove the noisy words and assumes
that a single post can belong to several topics.

Our 5-level PAM gains observed improvement
over Twitter-LDA. We attribute this to the ad-
vantages of tree representations over vector fea-
ture representations, the effective approximate tree
matching algorithm and the complementary word
embeddings. As mentioned in Section 1, LDA
and other topic models like Twitter-LDA share the
same assumption that each topic should be inde-
pendent with each other. This assumption however
is too strict for the real world data. Our tree-like 5-
level PAM relaxes such assumption with two addi-
tional layers of super-topics modeled with Dirich-
let compound multinomial distributions, which is
the key to capture topic correlations. Furthermore,
by allowing partial matching and incorporating
word embeddings, we successfully overcome the
sparseness problem.

While macro-averages give equal weight to
each domain, micro-averages give equal weight
to each user. The significant difference between
the macro- and micro- scores in Table 1 is caused
by the different nature of 5 domains. In fact, the
posts of experts on the domain E-Commerce are
to some extent noisy and contain lots of words
irrelevant to the domain knowledge. Meanwhile,
the posts of experts on the domain Data Science
are less distinguishable. The higher micro-recalls
of PAM demonstrate its generalization ability over
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LDA and Twitter-LDA.

5 Conclusion

In this paper, we formulate the expert finding task
as a tree matching problem with the hierarchical
knowledge representation. The experimental re-
sults demonstrate the advantage of using 5-level
PAM and semantic enhancement against n-gram
models and LDA-like models. To further improve
the work, we will incorporate more information to
enrich the hierarchical representation in the future.
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