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Abstract

In this paper, we propose the new fixed-
size ordinally-forgetting encoding (FOFE)
method, which can almost uniquely en-
code any variable-length sequence of
words into a fixed-size representation.
FOFE can model the word order in a se-
quence using a simple ordinally-forgetting
mechanism according to the positions of
words. In this work, we have applied
FOFE to feedforward neural network lan-
guage models (FNN-LMs). Experimental
results have shown that without using any
recurrent feedbacks, FOFE based FNN-
LMs can significantly outperform not only
the standard fixed-input FNN-LMs but
also the popular recurrent neural network
(RNN) LMs.

1 Introduction

Language models play an important role in many
applications like speech recognition, machine
translation, information retrieval and nature lan-
guage understanding. Traditionally, the back-off
n-gram models (Katz, 1987; Kneser, 1995) are
the standard approach to language modeling. Re-
cently, neural networks have been successfully ap-
plied to language modeling, yielding the state-
of-the-art performance in many tasks. In neural
network language models (NNLM), the feedfor-
ward neural networks (FNN) and recurrent neu-
ral networks (RNN) (Elman, 1990) are two pop-
ular architectures. The basic idea of NNLMs is
to use a projection layer to project discrete words
into a continuous space and estimate word con-
ditional probabilities in this space, which may be
smoother to better generalize to unseen contexts.
FNN language models (FNN-LM) (Bengio and
Ducharme, 2001; Bengio, 2003) usually use a lim-
ited history within a fixed-size context window

to predict the next word. RNN language mod-
els (RNN-LM) (Mikolov, 2010; Mikolov, 2012)
adopt a time-delayed recursive architecture for the
hidden layers to memorize the long-term depen-
dency in language. Therefore, it is widely re-
ported that RNN-LMs usually outperform FNN-
LMs in language modeling. While RNNs are the-
oretically powerful, the learning of RNNs needs to
use the so-called back-propagation through time
(BPTT) (Werbos, 1990) due to the internal recur-
rent feedback cycles. The BPTT significantly in-
creases the computational complexity of the learn-
ing algorithms and it may cause many problems
in learning, such as gradient vanishing and ex-
ploding (Bengio, 1994). More recently, some
new architectures have been proposed to solve
these problems. For example, the long short
term memory (LSTM) RNN (Hochreiter, 1997) is
an enhanced architecture to implement the recur-
rent feedbacks using various learnable gates, and
it has obtained promising results on handwriting
recognition (Graves, 2009) and sequence model-
ing (Graves, 2013).

Comparing with RNN-LMs, FNN-LMs can be
learned in a simpler and more efficient way. How-
ever, FNN-LMs can not model the long-term de-
pendency in language due to the fixed-size input
window. In this paper, we propose a novel encod-
ing method for discrete sequences, named fixed-
size ordinally-forgetting encoding (FOFE), which
can almost uniquely encode any variable-length
word sequence into a fixed-size code. Relying
on a constant forgetting factor, FOFE can model
the word order in a sequence based on a sim-
ple ordinally-forgetting mechanism, which uses
the position of each word in the sequence. Both
the theoretical analysis and the experimental sim-
ulation have shown that FOFE can provide al-
most unique codes for variable-length word se-
quences as long as the forgetting factor is prop-
erly selected. In this work, we apply FOFE to

495



neural network language models, where the fixed-
size FOFE codes are fed to FNNs as input to
predict next word, enabling FNN-LMs to model
long-term dependency in language. Experiments
on two benchmark tasks, Penn Treebank Corpus
(PTB) and Large Text Compression Benchmark
(LTCB), have shown that FOFE-based FNN-LMs
can not only significantly outperform the stan-
dard fixed-input FNN-LMs but also achieve better
performance than the popular RNN-LMs with or
without using LSTM. Moreover, our implementa-
tion also shows that FOFE based FNN-LMs can
be learned very efficiently on GPUs without the
complex BPTT procedure.

2 Our Approach: FOFE

Assume vocabulary size is K, NNLMs adopt the
1-of-K encoding vectors as input. In this case,
each word in vocabulary is represented as a one-
hot vector e ∈ RK . The 1-of-K representation is a
context independent encoding method. When the
1-of-K representation is used to model a word in a
sequence, it can not model its history or context.

2.1 Fixed-size Ordinally Forgetting Encoding
We propose a simple context-dependent encoding
method for any sequence consisting of discrete
symbols, namely fixed-size ordinally-forgetting
encoding (FOFE). Given a sequence of words (or
any discrete symbols), S = {w1, w2, · · · , wT },
each word wt is first represented by a 1-of-K rep-
resentation et, from the first word t = 1 to the end
of the sequence t = T , FOFE encodes each par-
tial sequence (history) based on a simple recursive
formula (with z0 = 0) as:

zt = α · zt−1 + et (1 ≤ t ≤ T ) (1)

where zt denotes the FOFE code for the partial
sequence up to wt, and α (0 < α < 1) is a con-
stant forgetting factor to control the influence of
the history on the current position. Let’s take a
simple example here, assume we have three sym-
bols in vocabulary, e.g., A, B, C, whose 1-of-
K codes are [1, 0, 0], [0, 1, 0] and [0, 0, 1] respec-
tively. In this case, the FOFE code for the se-
quence {ABC} is [α2, α, 1], and that of {ABCBC}
is [α4, α+ α3, 1 + α2].

Obviously, FOFE can encode any variable-
length discrete sequence into a fixed-size code.
Moreover, it is a recursive context dependent en-
coding method that smartly models the order in-

Figure 1: The FOFE-based FNN language model.

formation by various powers of the forgetting fac-
tor. Furthermore, FOFE has an appealing property
in modeling natural languages that the far-away
context will be gradually forgotten due to α < 1
and the nearby contexts play much larger role in
the resultant FOFE codes.

2.2 Uniqueness of FOFE codes

Given the vocabulary (of K symbols), for any se-
quence S with a length of T , based on the FOFE
code zT computed as above, if we can always de-
code the original sequence S unambiguously (per-
fectly recovering S from zT ), we say FOFE is
unique.

Theorem 1 If the forgetting factor α satisfies 0 <
α ≤ 0.5, FOFE is unique for any K and T .

The proof is simple because if the FOFE code
has a value αt in its i-th element, we may de-
termine the word wi occurs in the position t of
S without ambiguity since no matter how many
times wi occurs in the far-away contexts (< t),
they do not sum to αt (due to α ≤ 0.5). If wi ap-
pears in any closer context (> t), the i-th element
must be larger than αt.

Theorem 2 For 0.5 < α < 1, given any finite
values of K and T , FOFE is almost unique every-
where for α ∈ (0.5, 1.0), except only a finite set of
countable choices of α.

Refer to (Zhang et. al., 2015a) for the complete
proof. Based on Theorem 2, FOFE is unique al-
most everywhere between (0.5, 1.0) only except a
countable set of isolated choices of α. In practice,
the chance to exactly choose these isolated values
between (0.5, 1.0) is extremely slim, realistically
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Figure 2: Numbers of collisions in simulation.

almost impossible due to quantization errors in the
system. To verify this, we have run simulation ex-
periments for all possible sequences up to T = 20
symbols to count the number of collisions. Each
collision is defined as the maximum element-wise
difference between two FOFE codes (generated
from two different sequences) is less than a small
threshold ε. In Figure 2, we have shown the num-
ber of collisions (out of the total 220 tested cases)
for various α values when ε = 0.01, 0.001 and
0.0001.1 The simulation experiments have shown
that the chance of collision is extremely small even
when we allow a word to appear any times in the
context. Obviously, in a natural language, a word
normally does not appear repeatedly within a near
context. Moreover, we have run the simulation to
examine whether collisions actually occur in two
real text corpora, namely PTB (1M words) and
LTCB (160M words), using ε = 0.01, we have
not observed a single collision for nine different α
values between [0.55, 1.0] (incremental 0.05).

2.3 Implement FOFE for FNN-LMs

The architecture of a FOFE based neural network
language model (FOFE-FNNLM) is shown in Fig-
ure 1. It is similar to regular bigram FNN-LMs ex-
cept that it uses a FOFE code to feed into neural
network LM at each time. Moreover, the FOFE
can be easily scaled to higher orders like n-gram
NNLMs. For example, Figure 3 is an illustration
of a second order FOFE-based neural network lan-
guage model.

FOFE is a simple recursive encoding method
but a direct sequential implementation may not be

1When we use a bigger value for α, the magnitudes of the
resultant FOFE codes become much larger. As a result, the
number of collisions (as measured by a fixed absolute thresh-
old ε) becomes smaller.

Figure 3: Diagram of 2nd-order FOFE FNN-LM.

efficient for the parallel computation platform like
GPUs. Here, we will show that the FOFE compu-
tation can be efficiently implemented as sentence-
by-sentence matrix multiplications, which are
suitable for the mini-batch based stochastic gra-
dient descent (SGD) method running on GPUs.

Given a sentence, S = {w1, w2, · · · , wT },
where each word is represented by a 1-of-K code
as et (1 ≤ t ≤ T ). The FOFE codes for all par-
tial sequences in S can be computed based on the
following matrix multiplication:

S =



1
α 1

α2 α 1
...

. . . 1

αT−1 · · · α 1





e1

e2

e3

...

eT


= MV

where V is a matrix arranging all 1-of-K codes
of the words in the sentence row by row, and M
is a T -th order lower triangular matrix. Each row
vector of S represents a FOFE code of the partial
sequence up to each position in the sentence.

This matrix formulation can be easily extended
to a mini-batch consisting of several sentences.
Assume that a mini-batch is composed of N se-
quences, L = {S1 S2 · · ·SN}, we can compute
the FOFE codes for all sentences in the mini-batch
as follows:

S̄ =


M1

M2

. . .

MN




V1

V2

...

VN

 = M̄V̄.
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When feeding the FOFE codes to FNN as
shown in Figure 1, we can compute the activation
signals (assume f is the activation function) in the
first hidden layer for all histories in S as follows:

H = f
(
(M̄V̄)UW+b

)
= f

(
M̄(V̄U)W+b

)
where U denotes the word embedding matrix that
projects the word indices onto a continuous low-
dimensional continuous space. As above, V̄U
can be done efficiently by looking up the embed-
ding matrix. Therefore, for the computational ef-
ficiency purpose, we may apply FOFE to the word
embedding vectors instead of the original high-
dimensional one-hot vectors. In the backward
pass, we can calculate the gradients with the stan-
dard back-propagation (BP) algorithm rather than
BPTT. As a result, FOFE based FNN-LMs are the
same as the standard FNN-LMs in terms of com-
putational complexity in training, which is much
more efficient than RNN-LMs.

3 Experiments

We have evaluated the FOFE method for NNLMs
on two benchmark tasks: i) the Penn Treebank
(PTB) corpus of about 1M words, following the
same setup as (Mikolov, 2011). The vocabu-
lary size is limited to 10k. The preprocess-
ing method and the way to split data into train-
ing/validation/test sets are the same as (Mikolov,
2011). ii) The Large Text Compression Bench-
mark (LTCB) (Mahoney, 2011). In LTCB, we use
the enwik9 dataset, which is composed of the first
109 bytes of enwiki-20060303-pages-articles.xml.
We split it into three parts: training (153M), val-
idation (8.9M) and test (8.9M) sets. We limit the
vocabulary size to 80k for LTCB and replace all
out-of-vocabulary words by <UNK>. 2

3.1 Experimental results on PTB
We have first evaluated the performance of the
traditional FNN-LMs, taking the previous several
words as input, denoted as n-gram FNN-LMs here.
We have trained neural networks with a linear pro-
jection layer (of 200 hidden nodes) and two hid-
den layers (of 400 nodes per layer). All hidden
units in networks use the rectified linear activation
function, i.e., f(x) = max(0, x). The nets are
initialized based on the normalized initialization

2Matlab codes are available at https://wiki.eecs.
yorku.ca/lab/MLL/projects:fofe:start for
readers to reproduce all results reported in this paper.

Figure 4: Perplexities of FOFE FNNLMs as a
function of the forgetting factor.

in (Glorot, 2010), without using any pre-training.
We use SGD with a mini-batch size of 200 and an
initial learning rate of 0.4. The learning rate is kept
fixed as long as the perplexity on the validation set
decreases by at least 1. After that, we continue six
more epochs of training, where the learning rate
is halved after each epoch. The performance (in
perplexity) of several n-gram FNN-LMs (from bi-
gram to 6-gram) is shown in Table 1.

For the FOFE-FNNLMs, the net architecture
and the parameter setting are the same as above.
The mini-batch size is also 200 and each mini-
batch is composed of several sentences up to 200
words (the last sentence may be truncated). All
sentences in the corpus are randomly shuffled at
the beginning of each epoch. In this experiment,
we first investigate how the forgetting factor α
may affect the performance of LMs. We have
trained two FOFE-FNNLMs: i) 1st-order (using
zt as input to FNN for each time t; ii) 2nd-order
(using both zt and zt−1 as input for each time t,
with a forgetting factor varying between [0.0, 1.0].
Experimental results in Figure 4 have shown that
a good choice of α lies between [0.5, 0.8]. Us-
ing a too large or too small forgetting factor will
hurt the performance. A too small forgetting fac-
tor may limit the memory of the encoding while a
too large α may confuse LM with a far-away his-
tory. In the following experiments, we set α = 0.7
for the rest experiments in this paper.

In Table 1, we have summarized the perplexi-
ties on the PTB test set for various models. The
proposed FOFE-FNNLMs can significantly out-
perform the baseline FNN-LMs using the same
architecture. For example, the perplexity of the
baseline bigram FNNLM is 176, while the FOFE-
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Table 1: Perplexities on PTB for various LMs.
Model Test PPL

KN 5-gram (Mikolov, 2011) 141
FNNLM (Mikolov, 2012) 140
RNNLM (Mikolov, 2011) 123

LSTM (Graves, 2013) 117
bigram FNNLM 176
trigram FNNLM 131
4-gram FNNLM 118
5-gram FNNLM 114
6-gram FNNLM 113

1st-order FOFE-FNNLM 116
2nd-order FOFE-FNNLM 108

Table 2: Perplexities on LTCB for various lan-
guage models. [M*N] denotes the sizes of the in-
put context window and projection layer.

Model Architecture Test PPL
KN 3-gram - 156
KN 5-gram - 132

[1*200]-400-400-80k 241
[2*200]-400-400-80k 155

FNN-LM [2*200]-600-600-80k 150
[3*200]-400-400-80k 131
[4*200]-400-400-80k 125

RNN-LM [1*600]-80k 112
[1*200]-400-400-80k 120

FOFE [1*200]-600-600-80k 115
FNN-LM [2*200]-400-400-80k 112

[2*200]-600-600-80k 107

FNNLM can improve to 116. Moreover, the
FOFE-FNNLMs can even overtake a well-trained
RNNLM (400 hidden units) in (Mikolov, 2011)
and an LSTM in (Graves, 2013). It indicates
FOFE-FNNLMs can effectively model the long-
term dependency in language without using any
recurrent feedback. At last, the 2nd-order FOFE-
FNNLM can provide further improvement, yield-
ing the perplexity of 108 on PTB. It also outper-
forms all higher-order FNN-LMs (4-gram, 5-gram
and 6-gram), which are bigger in model size. To
our knowledge, this is one of the best reported re-
sults on PTB without model combination.

3.2 Experimental results on LTCB
We have further examined the FOFE based FNN-
LMs on a much larger text corpus, i.e. LTCB,
which contains articles from Wikipedia. We have
trained several baseline systems: i) two n-gram

LMs (3-gram and 5-gram) using the modified
Kneser-Ney smoothing without count cutoffs; ii)
several traditional FNN-LMs with different model
sizes and input context windows (bigram, trigram,
4-gram and 5-gram); iii) an RNN-LM with one
hidden layer of 600 nodes using the toolkit in
(Mikolov, 2010), in which we have further used
a spliced sentence bunch in (Chen et al. 2014)
to speed up the training on GPUs. Moreover, we
have examined four FOFE based FNN-LMs with
various model sizes and input window sizes (two
1st-order FOFE models and two 2nd-order ones).
For all NNLMs, we have used an output layer of
the full vocabulary (80k words). In these exper-
iments, we have used an initial learning rate of
0.01, and a bigger mini-batch of 500 for FNN-
LMMs and of 256 sentences for the RNN and
FOFE models. Experimental results in Table 2
have shown that the FOFE-based FNN-LMs can
significantly outperform the baseline FNN-LMs
(including some larger higher-order models) and
also slightly overtake the popular RNN-based LM,
yielding the best result (perplexity of 107) on the
test set.

4 Conclusions

In this paper, we propose the fixed-size ordinally-
forgetting encoding (FOFE) method to almost
uniquely encode any variable-length sequence into
a fixed-size code. In this work, FOFE has been
successfully applied to neural network language
modeling. Next, FOFE may be combined with
neural networks (Zhang and Jiang, 2015; Zhang
et. al., 2015b) for other NLP tasks, such as sen-
tence modeling/matching, paraphrase detection,
machine translation, question and answer and etc.
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