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Abstract

The task of event trigger labeling is typi-
cally addressed in the standard supervised
setting: triggers for each target event type
are annotated as training data, based on
annotation guidelines. We propose an al-
ternative approach, which takes the exam-
ple trigger terms mentioned in the guide-
lines as seeds, and then applies an event-
independent similarity-based classifier for
trigger labeling. This way we can skip
manual annotation for new event types,
while requiring only minimal annotated
training data for few example events at
system setup. Our method is evaluated on
the ACE-2005 dataset, achieving 5.7% F1

improvement over a state-of-the-art super-
vised system which uses the full training
data.

1 Introduction

Event trigger labeling is the task of identifying the
main word tokens that express mentions of pre-
specified event types in running text. For example,
in “20 people were wounded in Tuesday’s airport
blast”, “wounded” is a trigger of an Injure event
and “blast” is a trigger of an Attack. The task
both detects trigger tokens and classifies them to
appropriate event types. While this task is often
a component within the broader event extraction
task, labeling both triggers and arguments, this pa-
per focuses on trigger labeling.

Most state-of-the-art event trigger labeling ap-
proaches (Ji and Grishman, 2008; Liao and Grish-
man, 2010b; Hong et al., 2011; Li et al., 2013)
follow the standard supervised learning paradigm.
For each event type, experts first write annotation
guidelines. Then, annotators follow them to label
event triggers in a large dataset. Finally, a classi-
fier is trained over the annotated triggers to label
the target events.

The supervised paradigm requires major human
efforts both in producing high-quality guidelines
and in dataset annotation for each new event type.
Given the rich information embedded in the guide-
lines, we raise in this paper the following research
question: how well can we perform by leverag-
ing only the lexical knowledge already available
in quality guidelines for new event types, without
requiring annotated training data for them?

To address this question, we propose a seed-
based approach for the trigger labeling task (Sec-
tion 2). Given the description for a new event type,
which contains some examples of triggers, we first
collect these triggers into a list of seeds. Then,
at the labeling phase, we consider each text token
as a candidate for a trigger and assess its similar-
ity to the seed list. In the above example, given
seeds such as “explosion” and “fire” for the Attack
event type, we identify that the candidate token
“blast” is a hyponym of “explosion” and synonym
of “fire” and infer that “blast” is a likely Attack
trigger.

In our method, such similarity indicators are en-
coded as a small set of event-independent clas-
sification features, based on lexical matches and
external resources like WordNet. Using event-
independent features allows us to train the system
only once, at system setup phase, requiring anno-
tated triggers in a training set for just a few pre-
selected event types. Then, whenever a new event
type is introduced for labeling, we only need to
collect a seed list for it from its description, and
provide it as input to the system.

We developed a seed-based system (Section 3),
based on a state-of-the-art fully-supervised event
extraction system (Li et al., 2013). When evalu-
ated on the ACE-2005 dataset,1 our system outper-
forms the fully-supervised one (Section 4), even
though we don’t utilize any annotated triggers of
the test events during the labeling phase, and only

1http://projects.ldc.upenn.edu/ace
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Figure 1: Flow of the seed-based approach

use the seed triggers appearing in the ACE anno-
tation guidelines. This result contributes to the
broader line of research on avoiding or reducing
annotation cost in information extraction (Section
5). In particular, it suggests the potential utility of
the seed-based approach in scenarios where man-
ual annotation per each new event is too costly.

2 Seed-Based Problem Setup

This section describes our setup, as graphically il-
lustrated in Figure 1.

Similarly to the supervised setting, our ap-
proach assumes that whenever a new event type is
defined as target, an informative event description
should be written for it. As a prominent example,
we consider Section 5 of the ACE-2005 event an-
notation guidelines,2 which provides a description
for each event type. The description includes a
short verbal specification plus several illustrating
example sentences with marked triggers, spanning
on average less than a page per event type.

As event descriptions specify the intended event
scope, they inherently include representative ex-
amples for event triggers. For instance, the ACE-
2005 guidelines include: “MEET Events include
talks, summits, conferences, meetings, visits,. . . ”,
followed by an example: “Bush and Putin met this
week. . . ”. We thus collect triggers mentioned in
each event description into a seed list for the event
type, which is provided as input to our trigger la-
beling method. Triggers from the above quoted
sentences are hence included in the Meet seed list,
shown in Figure 1.

As mentioned in the Introduction, our method
(Section 3) is based on event-independent features

2https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/
files/english-events-guidelines-v5.4.3.pdf

that identify similarities between a candidate trig-
ger and a given seed list. To train such generic fea-
tures, our training requires several arbitrary train-
ing event types, with a small amount of annotated
triggers, from which it learns weights for the fea-
tures. In our evaluation (Section 4) we use 5 train-
ing event types, with a total of 30 annotated trig-
ger mentions (compared to roughly 5000 used by
the baseline fully-supervised system). In this set-
ting, the training phase is required only once dur-
ing system setup, while no further training is re-
quired for each new target event type.

In summary, our setup requires: (1) a seed list
per target event type; (2) a small number of anno-
tated triggers for few training event types, along
with their seed lists (at system setup).

3 Method

This section describes the method we designed
to implement the seed-based approach. To as-
sess our approach, we compare it (Section 4) with
the common fully-supervised approach, which re-
quires annotated triggers for each target event
type. Therefore, we implemented our system by
adapting the state-of-the-art fully-supervised event
extraction system of Li et al. (2013), modifying
mechanisms relevant for features and for trigger
labels, as described below. Hence the systems are
comparable with respect to using the same pre-
processing and machine learning infrastructure.

3.1 The Fully-Supervised System

The event extraction system of Li et al. (2013) la-
bels triggers and their arguments for a set of target
event types L, for which annotated training docu-
ments are provided. The system utilizes a struc-
tured perceptron with beam search (Collins and
Roark, 2004; Huang et al., 2012). To label trig-
gers, the system scans each sentence x, and cre-
ates candidate assignments y, that for each token
xi assign each possible label yi ∈ L ∪ {⊥} (⊥
meaning xi is not a trigger at all). The score of an
assignment (xi, yi) is calculated as w · f , where f
is the binary feature vector calculated for (xi, yi),
and w is the learned feature weight vector.

The classifier’s features capture various proper-
ties of xi and its context, such as its unigram and
its containing bigrams. These features are highly
lexicalized, resulting in a very large feature space.
Additionally, each feature is replicated and paired
with each label yi, allowing the system to learn
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Feature Description
Same
Lemma

Do the candidate token and a seed share the
same lemma?

Synonym Is a seed a WN synonym of the candidate token?
Hypernym Is a seed a WN hypernym or instance-hypernym

of the candidate token?
Similarity
Relations

Does one of these WN relations hold between a
seed and a candidate token? Synonym, Hyper-
nym, Instance Hypernym, Part Holonym, Mem-
ber Holonym, Substance Meronym, Entailment

Table 1: Similarity features using WordNet (WN).
For the last two features we allow up to 2 levels
of transitivity (e.g. hypernym of hypernym), and
consider also derivations of candidate tokens.

different weights for different labels, e.g., feature
(Unigram:“visited”, Meet) will have a different
weight than (Unigram:“visited”, Attack).

3.2 The Seed-Based System

To implement the seed-based approach for trigger
labeling, we adapt only the trigger classification
part in the Li et al. (2013) fully-supervised sys-
tem, ignoring arguments. Given a set of new target
event types T we classify every test sentence once
for each event type t ∈ T . Hence, when classi-
fying a sentence for t, the labeling of each token
xi is binary, where yi ∈ {>,⊥} marks whether
xi is a trigger of type t (>) or not (⊥). For in-
stance xi=“visited” labeled as > when classifying
for t=Meet, means xi is labeled as a Meet trigger.
To score the binary label assignment (xi, yi), we
use a small set of features that assess the similar-
ity between xi and t’s given seed list.

We implement our approach with a basic set
of binary features (Table 1), which are turned on
if similarity is found for at least one seed in the
list. We use a single knowledge resource (Word-
Net (Fellbaum, 1998)) for expansion.3 As in the
fully-supervised system, each feature is replicated
for each label in {>,⊥}, learning separately how
well a feature can predict a trigger (>) and a
non-trigger (⊥). As labels are event-independent,
features are event-independent as well, and their
weights can be learned generically (Figure 1).

Since we label each token independently for
each event type t, multiple labels may be assigned
to the same token. If a single-label setting is re-
quired, standard techniques can be applied, such
as choosing a single random label, or the highest
scoring one.

3This could be potentially extended, e.g. with paraphrase
databases, like (Ganitkevitch et al., 2013).

4 Evaluation

4.1 Setting
We evaluate our seed-based approach (Section 2)
in comparison to the fully-supervised approach
implemented by Li et al. (2013) (Section 3). To
maintain comparability, we use the ACE-2005
documents with the same split as in (Ji and Grish-
man, 2008; Liao and Grishman, 2010b; Li et al.,
2013) to 40 test documents and 559 training doc-
uments. However, some evaluation settings dif-
fer: Li et al. (2013) train a multi-class model for
all 33 ACE-2005 event types, and classify all to-
kens in the test documents into these event types.
Our approach, on the other hand, trains an event-
independent binary classifier, while testing on new
event types that are different from those utilized
for training. We next describe how this setup is
addressed in our evaluation.

Per-Event Classification To label the test doc-
uments to all 33 event types, we classify each to-
ken in the test documents once for each test event
type.4

Training Event Types When we label for a test
event type t, we use a model that was trained on
different pre-selected training event types. Since
we need to label for all event types, we cannot use
the same model for testing them all, since then the
event types used to train this model could not be
tested. Thus, for each t we use a model trained
on 5 randomly chosen training event types, differ-
ent than t.5 Additionally, to avoid a bias caused
by a particular random choice, we build 10 differ-
ent models, each time choosing a different set of 5
training event types. Then, we label the test docu-
ments for t 10 times, once by each model. When
measuring performance we compute the average
of these 10 runs for each t, as well as the variance
within these runs.

Annotated Triggers Training event types re-
quire annotated triggers from the training docu-
ments. To maintain consistency between differ-
ent sets of training event types, we use a fixed to-
tal of 30 annotated trigger tokens for each set of

4To maintain comparability with the single-label classifi-
cation results of Li et al. (2013), we randomly choose a sin-
gle label for our classification in the few (7) cases where it
yielded two labels for the same token.

5Li et al. (2013) internally split the training documents to
“train” and “dev”. Accordingly, our training event types are
split to 3 “train” events and 2 “dev” events (with annotations
taken from the “train” and “dev” documents respectively).
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Micro-Avg. (%) Var
Prec Rec F1 Avg

Seed-Based 80.6 67.1 73.2 0.04
Li et al. (2013) 73.7 62.3 67.5 -

Ji and Grishman (2008) 67.6 53.5 59.7 -

Table 2: Seed-based performance compared to
fully-supervised systems, plus average F1 vari-
ance (%) over the 10 test runs per test event type.

training event types. The amounts of 5 training
event types and 30 annotated triggers were chosen
to demonstrate that such small amounts, requiring
little manual effort at system setup, yield high per-
formance (larger training didn’t improve results,
possibly due to the small number of features).

Seed Lists To build the seed lists for all event
types, we manually extracted all triggers men-
tioned in Section 5 of the ACE-2005 guidelines,
as described in Section 2.6 This resulted in lists of
4.2 seeds per event type on average, which is fairly
small. For comparison, each event type has an av-
erage of 46 distinct trigger terms in the training
corpus used by the fully-supervised method.

4.2 Results

Table 2 shows our system’s precision, recall and
F1,7 and the average variance of F1 within the 10
runs of each test event type. The very low variance
indicates that the system’s performance does not
depend much on the choice of training event types.

We compare our system’s performance to the
published trigger classification results of the base-
line system of (Li et al., 2013) (its globally op-
timized run, when labeling both triggers and ar-
guments). We also compare to the sentence-level
system in (Ji and Grishman, 2008) which uses the
same dataset split. Our system outperforms the
fully-supervised baseline by 5.7% F1, which is
statistically significant (two-tailed Wilcoxon test,
p < 0.05). This shows that there is no per-
formance hit for the seed-based method on this
dataset, even though it does not require any anno-
tated data for new tested events, thus saving costly
annotation efforts.

6Our seed lists are publicly available for download at:
https://goo.gl/sErDW9

7We report micro-average as typical for this task. Macro-
average results are a few points lower for our system and for
the system of Li et al. (2013), maintaining similar relative
difference.

5 Related Work

Our work contributes to the broader research di-
rection of reducing annotation for information ex-
traction. One such IE paradigm, including Pre-
emptive IE (Shinyama and Sekine, 2006), On-
demand IE (Sekine, 2006; Sekine and Oda, 2007)
and Open IE (Etzioni et al., 2005; Banko et
al., 2007; Banko et al., 2008), focuses on un-
supervised relation and event discovery. We, on
the other hand, follow the same goal as fully-
supervised systems in targeting pre-specified event
types, but aim at minimal annotation cost.

Bootstrapping methods (such as (Yangarber et
al., 2000; Agichtein and Gravano, 2000; Riloff,
1996; Greenwood and Stevenson, 2006; Liao
and Grishman, 2010a; Stevenson and Greenwood,
2005; Huang and Riloff, 2012)) have been widely
applied in IE. Most work started from a small
set of seed patterns, and repeatedly expanded
them from unlabeled corpora. Relying on unla-
beled data, bootstrapping methods are scalable but
tend to produce worse results (Liao and Grish-
man, 2010a) than supervised models due to se-
mantic drift (Curran et al., 2007). Our method can
be seen complementary to bootstrapping frame-
works, since we exploit manually crafted linguis-
tic resources which are more accurate but may not
cover all domains and languages.

Our approach is perhaps closest to (Roth et al.,
2009). They addressed a different IE task – re-
lation extraction, by recognizing entailment be-
tween candidate relation mentions and seed pat-
terns. While they exploited a supervised recogniz-
ing textual entailment (RTE) system, we show that
using only simple WordNet-based similarity fea-
tures and minimal training yields relatively high
performance in event trigger labeling.

6 Conclusions and Future Work

In this paper we show that by utilizing the in-
formation embedded in annotation guidelines and
lexical resources, we can skip manual annotation
for new event types. As we match performance of
a state-of-the-art fully-supervised system over the
ACE-2005 benchmark (and even surpass it), we
offer our approach as an appealing way of reduc-
ing annotation effort while preserving result qual-
ity. Future research may explore additional fea-
tures and knowledge resources, investigate alter-
native approaches for creating effective seed lists,
and extend our approach to argument labeling.
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