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Abstract

We study the event detection problem us-
ing convolutional neural networks (CNNs)
that overcome the two fundamental limi-
tations of the traditional feature-based ap-
proaches to this task: complicated feature
engineering for rich feature sets and er-
ror propagation from the preceding stages
which generate these features. The experi-
mental results show that the CNNs outper-
form the best reported feature-based sys-
tems in the general setting as well as the
domain adaptation setting without resort-
ing to extensive external resources.

1 Introduction

We address the problem of event detection (ED):
identifying instances of specified types of events
in text. Associated with each event mention is a
phrase, the event trigger (most often a single verb
or nominalization), which evokes that event. Our
task, more precisely stated, involves identifying
event triggers and classifying them into specific
types. For instance, according to the ACE 2005
annotation guideline1, in the sentence “A police
officer was killed in New Jersey today”, an event
detection system should be able to recognize the
word “killed” as a trigger for the event “Die”. This
task is quite challenging, as the same event might
appear in the form of various trigger expressions
and an expression might represent different events
in different contexts. ED is a crucial component
in the overall task of event extraction, which also
involves event argument discovery.

Recent systems for event extraction have em-
ployed either a pipeline architecture with separate
classifiers for trigger and argument labeling (Ji and
Grishman, 2008; Gupta and Ji, 2009; Patwardhan

1
https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/

english-events-guidelines-v5.4.3.pdf

and Rilof, 2009; Liao and Grishman, 2011; Mc-
Closky et al., 2011; Huang and Riloff, 2012; Li
et al., 2013a) or a joint inference architecture that
performs the two subtasks at the same time to ben-
efit from their inter-dependencies (Riedel and Mc-
Callum, 2011a; Riedel and McCallum, 2011b; Li
et al., 2013b; Venugopal et al., 2014). Both ap-
proaches have coped with the ED task by elabo-
rately hand-designing a large set of features (fea-
ture engineering) and utilizing the existing super-
vised natural language processing (NLP) toolkits
and resources (i.e name tagger, parsers, gazetteers
etc) to extract these features to be fed into sta-
tistical classifiers. Although this approach has
achieved the top performance (Hong et al., 2011;
Li et al., 2013b), it suffers from at least two issues:

(i) The choice of features is a manual process
and requires linguistic intuition as well as domain
expertise, implying additional studies for new ap-
plication domains and limiting the capacity to
quickly adapt to these new domains.

(ii) The supervised NLP toolkits and resources
for feature extraction might involve errors (either
due to the imperfect nature or the performance
loss of the toolkits on new domains (Blitzer et al.,
2006; Daumé III, 2007; McClosky et al., 2010)),
probably propagated to the final event detector.

This paper presents a convolutional neural net-
work (LeCun et al., 1988; Kalchbrenner et al.,
2014) for the ED task that automatically learns
features from sentences, and minimizes the depen-
dence on supervised toolkits and resources for fea-
tures, thus alleviating the error propagation and
improving the performance for this task. Due
to the emerging interest of the NLP community
in deep learning recently, CNNs have been stud-
ied extensively and applied effectively in vari-
ous tasks: semantic parsing (Yih et al., 2014),
search query retrieval (Shen et al., 2014), seman-
tic matching (Hu et al., 2014), sentence modeling
and classification (Kalchbrenner et al., 2014; Kim,
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Figure 1: Convolutional Neural Network for Event Detection.

2014), name tagging and semantic role labeling
(Collobert et al., 2011), relation classification and
extraction (Zeng et al., 2014; Nguyen and Grish-
man, 2015). However, to the best of our knowl-
edge, this is the first work on event detection via
CNNs so far.

First, we evaluate CNNs for ED in the general
setting and show that CNNs, though not requir-
ing complicated feature engineering, can still out-
perform the state-of-the-art feature-based meth-
ods extensively relying on the other supervised
modules and manual resources for features. Sec-
ond, we investigate CNNs in a domain adaptation
(DA) setting for ED. We demonstrate that CNNs
significantly outperform the traditional feature-
based methods with respect to generalization per-
formance across domains due to: (i) their capac-
ity to mitigate the error propagation from the pre-
processing modules for features, and (ii) the use
of word embeddings to induce a more general rep-
resentation for trigger candidates. We believe that
this is also the first research on domain adaptation
using CNNs.

2 Model

We formalize the event detection problem as a
multi-class classification problem. Given a sen-
tence, for every token in that sentence, we want to
predict if the current token is an event trigger: i.e,
does it express some event in the pre-defined event
set or not (Li et al., 2013b)? The current token

along with its context in the sentence constitute
an event trigger candidate or an example in multi-
class classification terms. In order to prepare for
the CNNs, we limit the context to a fixed window
size by trimming longer sentences and padding
shorter sentences with a special token when nec-
essary. Let 2w + 1 be the fixed window size,
and x = [x−w, x−w+1, . . . , x0, . . . , xw−1, xw] be
some trigger candidate where the current token is
positioned in the middle of the window (token x0).
Before entering the CNNs, each token xi is trans-
formed into a real-valued vector by looking up the
following embedding tables to capture different
characteristics of the token:

- Word Embedding Table (initialized by some
pre-trained word embeddings): to capture the hid-
den semantic and syntactic properties of the tokens
(Collobert and Weston, 2008; Turian et al., 2010).

- Position Embedding Table: to embed the rel-
ative distance i of the token xi to the current token
x0. In practice, we initialize this table randomly.

- Entity Type Embedding Table: If we further
know the entity mentions and their entity types2

in the sentence, we can also capture this informa-
tion for each token by looking up the entity type
embedding table (initialized randomly) using the
entity type associated with each token. We em-
ploy the BIO annotation scheme to assign entity
type labels to each token in the trigger candidate

2For convenience, when mentioning entities in this paper,
we always include ACE timex and values.
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using the heads of the entity mentions.
For each token xi, the vectors obtained from the

three look-ups above are concatenated into a sin-
gle vector xi to represent the token. As a result,
the original event trigger x is transformed into a
matrix x = [x−w,x−w+1, . . . ,x0, . . . ,xw−1,xw]
of size mt× (2w+1) (mt is the dimensionality of
the concatenated vectors of the tokens).

The matrix representation x is then passed
through a convolution layer, a max pooling layer
and a softmax at the end to perform classifica-
tion (like (Kim, 2014; Kalchbrenner et al., 2014)).
In the convolution layer, we have a set of feature
maps (filters) {f1, f2, . . . , fn} for the convolution
operation. Each feature map fi corresponds to
some window size k and can be essentially seen
as a weight matrix of size mt × k. Figure 1 illus-
trates the proposed CNN.

The gradients are computed using back-
propagation; regularization is implemented by a
dropout (Kim, 2014; Hinton et al., 2012), and
training is done via stochastic gradient descent
with shuffled mini-batches and the AdaDelta up-
date rule (Zeiler, 2012; Kim, 2014). During the
training, we also optimize the weights of the three
embedding tables at the same time to reach an ef-
fective state (Kim, 2014).

3 Experiments

3.1 Dataset, Hyperparameters and Resources

As the benefit of multiple window sizes in the con-
volution layer has been demonstrated in the previ-
ous work on sentence modeling (Kalchbrenner et
al., 2014; Kim, 2014), in the experiments below,
we use window sizes in the set {2, 3, 4, 5} to gen-
erate feature maps. We utilize 150 feature maps
for each window size in this set. The window size
for triggers is set to 31 while the dimensionality of
the position embeddings and entity type embed-
dings is 503.We inherit the values for the other pa-
rameters from Kim (2014), i.e, the dropout rate
ρ = 0.5, the mini-batch size = 50, the hyperpa-
rameter for the l2 norms = 3. Finally, we em-
ploy the pre-trained word embeddings word2vec
with 300 dimensions from Mikolov et al. (2013)
for initialization.

We evaluate the presented CNN over the ACE
2005 corpus. For comparison purposes, we uti-
lize the same test set with 40 newswire articles

3These values are chosen for their best performance on
the development data.

(672 sentences), the same development set with
30 other documents (836 sentences) and the same
training set with the remaning 529 documents
(14,849 sentences) as the previous studies on this
dataset (Ji and Grishman, 2008; Liao and Grish-
man, 2010; Li et al., 2013b). The ACE 2005 cor-
pus has 33 event subtypes that, along with one
class “None” for the non-trigger tokens, consti-
tutes a 34-class classification problem.

In order to evaluate the effectiveness of the posi-
tion embeddings and the entity type embeddings,
Table 1 reports the performance of the proposed
CNN on the development set when these embed-
dings are either included or excluded from the sys-
tems. With the large margins of performance, it is
very clear from the table that the position embed-
dings are crucial while the entity embeddings are
also very useful for CNNs on ED.

Systems P R F
-Entity Types -Position 16.8 12.0 14.0

+Position 75.0 63.0 68.5
+Entity Types -Position 17.0 15.0 15.9

+Position 75.6 66.4 70.7

Table 1: Performance on the Development Set.

For the experiments below, we examine the
CNNs in two scenarios: excluding the entity type
embeddings (CNN1) and including the entity type
embeddings (CNN2). We always use position em-
beddings in these two scenarios.

3.2 Performance Comparison

The state-of-the-art systems for event detection on
the ACE 2005 dataset have followed the traditional
feature-based approach with rich hand-designed
feature sets, and statistical classifiers such as Max-
Ent and perceptron for structured prediction in a
joint architecture (Hong et al., 2011; Li et al.,
2013b). In this section, we compare the proposed
CNNs with these state-of-the-art systems on the
blind test set. Table 2 presents the overall per-
formance of the systems with gold-standard entity
mention and type information4.

As we can see from the table, considering the
systems that only use sentence level information,
CNN1 significantly outperforms the MaxEnt clas-
sifier as well as the joint beam search with local
features from Li et al. (2013b) (an improvement
of 1.6% in F1 score), and performs comparably

4Entity mentions and types are used to introduce more
features into the systems.
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Methods P R F
Sentence-level in Hong et al
(2011) 67.6 53.5 59.7

MaxEnt with local features in
Li et al. (2013b) 74.5 59.1 65.9

Joint beam search with local
features in Li et al. (2013b) 73.7 59.3 65.7

Joint beam search with local
and global features in Li et al.
(2013b)

73.7 62.3 67.5

Cross-entity in Hong et al.
(2011) † 72.9 64.3 68.3

CNN1: CNN without any
external features 71.9 63.8 67.6

CNN2: CNN augmented with
entity types 71.8 66.4 69.0

Table 2: Performance with Gold-Standard Entity Mentions
and Types. † beyond sentence level.

with the joint beam search approach using both lo-
cal and global features (Li et al., 2013b). This is
remarkable since CNN1 does not require any ex-
ternal features5, in contrast to the other feature-
based systems that extensively rely on such exter-
nal features to perform well. More interestingly,
when the entity type information is incorporated
into CNN1, we obtain CNN2 that still only needs
sentence level information but achieves the state-
of-the-art performance for this task (an improve-
ment of 1.5% over the best system with only sen-
tence level information (Li et al., 2013b)).

Except for CNN1, all the systems reported in
Table 2 employ the gold-standard (perfect) entities
mentions and types from manual annotation which
might not be available in reality. Table 3 compares
the performance of CNN1 and the feature-based
systems in a more realistic setting, where entity
mentions and types are acquired from an auto-
matic high-performing name tagger and informa-
tion extraction system (Li et al., 2013b). Note that
CNN1 is eligible for this comparison as it does not
utilize any external features, thus avoiding usage
of the name tagger and the information extraction
system to identify entity mentions and types.

3.3 Domain Adaptation Experiment
In this section, we aim to further compare the pro-
posed CNNs with the feature-based systems under
the domain adaptation setting for event detection.

The ultimate goal of domain adaptation re-
search is to develop techniques taking training

5External features are the features generated from the su-
pervised NLP modules and manual resources such as parsers,
name tagger, entity mention extractors (either automatic or
manual), gazetteers etc.

Methods F
Sentence level in Ji and Grishman (2008) 59.7
MaxEnt with local features in Li et al. (2013b) 64.7
Joint beam search with local features in Li et
al. (2013b) 63.7

Joint beam search with local and global
features in Li et al. (2013b) 65.6

CNN1: CNN without any external features 67.6

Table 3: Performance with Predicted Entity Mentions and
Types.

data in some source domain and learning models
that can work well on target domains. The target
domains are supposed to be so dissimilar from the
source domain that the learning techniques would
suffer from a significant performance loss when
trained on the source domain and applied to the
target domains. To make it clear, we address the
unsupervised DA problem in this section, i.e no
training data in the target domains (Blitzer et al.,
2006; Plank and Moschitti, 2013). The fundamen-
tal reason for the performance loss of the feature-
based systems on the target domains is twofold:

(i) The behavioral changes of features across
domains: As domains differ, some features might
be informative in the source domain but become
less relevant in the target domains and vice versa.

(ii) The propagated errors of the pre-processing
toolkits for lower-level tasks (POS tagging, name
tagging, parsing etc) to extract features: These
pre-processing toolkits are also known to degrade
when shifted to target domains (Blitzer et al.,
2006; Daumé III, 2007; McClosky et al., 2010),
introducing noisy features into the systems for
higher-level tasks in the target domains and even-
tually impairing the performance of these higher-
level systems on the target domains.

For ED, we postulate that CNNs are more use-
ful than the feature-based approach for DA for two
reasons. First, rather than relying on the symbolic
and concrete forms (i.e words, types etc) to con-
struct features as the traditional feature-based sys-
tems (Ji and Grishman, 2008; Li et al., 2013b)
do, CNNs automatically induce their features from
word embeddings, the general distributed repre-
sentation of words that is shared across domains.
This helps CNNs mitigate the lexical sparsity,
learn more general and effective feature represen-
tation for trigger candidates, and thus bridge the
gap between domains. Second, as CNNs mini-
mize the reliance on the supervised pre-processing
toolkits for features, they can alleviate the error
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System In-domain(bn+nw) bc cts wl
P R F P R F P R F P R F

MaxEnt 74.5 59.4 66.0 70.1 54.5 61.3 66.4 49.9 56.9 59.4 34.9 43.9
Joint beam search in Li et al. (2013b)
Joint+Local 73.5 62.7 67.7 70.3 57.2 63.1 64.9 50.8 57.0 59.5 38.4 46.7
Joint+Local+Global 72.9 63.2 67.7 68.8 57.5 62.6 64.5 52.3 57.7 56.4 38.5 45.7
CNN1 70.9 64.0 67.3 71.0 61.9 66.1† 64.0 55.0 59.1 53.2 38.4 44.6
CNN2 69.2 67.0 68.0 70.2 65.2 67.6† 68.3 58.2 62.8† 54.8 42.0 47.5

Table 4: In-domain (first column) and Out-of-domain Performance (columns two to four). Cells marked with †designate
CNN models that significantly outperform (p < 0.05) all the reported feature-based methods on the specified domain.

propagation and be more robust to domain shifts.

3.3.1 Dataset
We also do the experiments in this part over the
ACE 2005 dataset but focus more on the difference
between domains. The ACE 2005 corpus comes
with 6 different domains: broadcast conversation
(bc), broadcast news (bn), telephone conversation
(cts), newswire (nw), usenet (un) and webblogs
(wl). Following the common practice of domain
adaptation research on this dataset (Plank and
Moschitti, 2013; Nguyen and Grishman, 2014),
we use news (the union of bn and nw) as the
source domain and bc, cts, wl as three different
target domains. We take half of bc as the devel-
opment set and use the remaining data for testing.
We note that the distribution of event subtypes and
the vocabularies of the source and target domains
are quite different (Plank and Moschitti, 2013).

3.3.2 Domain Adaptation Results
Table 4 presents the performance of five systems:
the MaxEnt classifier with the local features from
Li et al. (2013b) (called MaxEnt); the state-of-the-
art joint beam search systems with: (i) only local
features (called Joint+Local); and (ii) both local
and global features (called Joint+Local+Global)
in Li et al. (2013b) (the baseline systems); CNN1
and CNN2 via 5-fold cross validation. For each
system, we train a model on the training set of the
source domain and report the performance of this
model on the test set of the source domain (in-
domain performance) as well as the performance
of the model on the three target domains bc, cts
and wl (out-of-domain performance)6.

The main conclusions from the table include:
(i) The baseline systems MaxEnt, Joint+Local,
Joint+Local+Global achieve high performance on
the source domain, but degrade dramatically on

6The performance of the feature-based systems MaxEnt,
Joint+Local and Joint+Local+Global are obtained from the
actual systems in Li et al. (2013b).

the target domains due to the domain shifts. (ii)
Comparing CNN1 and the baseline systems, we
see that CNN1 performs comparably with the
baseline systems on the source domain (in-domain
performance) (as expected), substantially outper-
form the baseline systems on two of the three tar-
get domains (i.e, bc and cts), and is only less ef-
fective than the joint beam search approach on
the wl domain; (iii) Finally and most importantly,
we consistently achieve the best adaptation perfor-
mance across all the target domains with CNN2
by only introducing entity type information into
CNN1. In fact, CNN2 significantly outperforms
the feature-based systems with p < 0.05 and large
margins of about 5.0% on the domains bc and cts,
clearly confirming our argument in Section 3.3 and
testifying to the benefits of CNNs on DA for ED.

4 Conclusion

We present a CNN for event detection that auto-
matically learns effective feature representations
from pre-trained word embeddings, position em-
beddings as well as entity type embeddings and
reduces the error propagation. We conducted ex-
periments to compare the proposed CNN with the
state-of-the-art feature-based systems in both the
general setting and the domain adaptation setting.
The experimental results demonstrate the effec-
tiveness as well as the robustness across domains
of the CNN. In the future, our plans include: (i)
to explore the joint approaches for event extrac-
tion with CNNs; (ii) and to investigate other neural
network architectures for information extraction.
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