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Abstract

We present a simple yet effective unsu-
pervised domain adaptation method that
can be generally applied for different NLP
tasks. Our method uses unlabeled tar-
get domain instances to induce a set of
instance similarity features. These fea-
tures are then combined with the origi-
nal features to represent labeled source do-
main instances. Using three NLP tasks,
we show that our method consistently out-
performs a few baselines, including SCL,
an existing general unsupervised domain
adaptation method widely used in NLP.
More importantly, our method is very easy
to implement and incurs much less com-
putational cost than SCL.

1 Introduction

Domain adaptation aims to use labeled data from
a source domain to help build a system for a target
domain, possibly with a small amount of labeled
data from the target domain. The problem arises
when the target domain has a different data distri-
bution from the source domain, which is often the
case. In NLP, domain adaptation has been well
studied in recent years. Existing work has pro-
posed both techniques designed for specific NLP
tasks (Chan and Ng, 2007; Daume III and Ja-
garlamudi, 2011; Yang et al., 2012; Plank and
Moschitti, 2013; Hu et al., 2014; Nguyen et al.,
2014; Nguyen and Grishman, 2014) and general
approaches applicable to different tasks (Blitzer
et al., 2006; Daumé III, 2007; Jiang and Zhai,
2007; Dredze and Crammer, 2008; Titov, 2011).
With the recent trend of applying deep learn-
ing in NLP, deep learning-based domain adap-
tation methods (Glorot et al., 2011; Chen et
al., 2012; Yang and Eisenstein, 2014) have also
been adopted for NLP tasks (Yang and Eisenstein,
2015).
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There are generally two settings of domain
adaptation. We use supervised domain adaptation
to refer to the setting when a small amount of la-
beled target data is available, and when no such
data is available during training we call it unsu-
pervised domain adaptation.

Although many domain adaptation methods
have been proposed, for practitioners who wish
to avoid implementing or tuning sophisticated or
computationally expensive methods due to either
lack of enough machine learning background or
limited resources, simple approaches are often
more attractive. A notable example is the frus-
tratingly easy domain adaptation method proposed
by Daumé III (2007), which simply augments
the feature space by duplicating features in a
clever way. However, this method is only suit-
able for supervised domain adaptation. A later
semi-supervised version of this easy adaptation
method uses unlabeled data from the target do-
main (Daumé III et al., 2010), but it still requires
some labeled data from the target domain. In this
paper, we propose a general unsupervised domain
adaptation method that is almost equally hassle-
free but does not use any labeled target data.

Our method uses a set of unlabeled target in-
stances to induce a new feature space, which is
then combined with the original feature space. We
explain analytically why the new feature space
may help domain adaptation. Using a few dif-
ferent NLP tasks, we then empirically show that
our method can indeed learn a better classifier for
the target domain than a few baselines. In partic-
ular, our method performs consistently better than
or competitively with Structural Correspondence
Learning (SCL) (Blitzer et al., 2006), a well-
known unsupervised domain adaptation method in
NLP. Furthermore, compared with SCL and other
advanced methods such as the marginalized struc-
tured dropout method (Yang and Eisenstein, 2014)
and a recent feature embedding method (Yang and
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Eisenstein, 2015), our method is much easier to
implement.

In summary, our main contribution is a simple,
effective and theoretically justifiable unsupervised
domain adaptation method for NLP problems.

2 Adaptation with Similarity Features

We first introduce the necessary notation needed
for presenting our method. Without loss of gen-
erality, we assume a binary classification problem
where each input is represented as a feature vec-
tor  from an input vector space X and the out-
put is a label y € {0,1}. This assumption is
general because many NLP tasks such as text cat-
egorization, NER and relation extraction can be
cast into classification problems and our discus-
sion below can be easily extended to multi-class
settings. We further assume that we have a set of
labeled instances from a source domain, denoted
by D* = {(z$,y)},. We also have a set of un-
labeled instances from a target domain, denoted
by D' = {x} jj‘/il. We assume a general setting
of learning a linear classifier, which is essentially
a weight vector w such that x is labeled as 1 if
w'x >0.!

A naive method is to simply learn a classifier
from D*. The goal of unsupervised domain adap-
tation is to make use of both D® and D' to learn a
good w for the target domain. It has to be assumed
that the source and the target domains are similar
enough such that adaptation is possible.

2.1 The Method

Our method works as follows. We first randomly
select a subset of target instances from D' and
normalize them. We refer to the resulting vectors
as exemplar vectors, denoted by £ = {e® 15 .
Next, we transform each source instance & into
a new feature vector by computing its similarity
with each e(*), as defined below:

g(x) = [s(x,eM), ... s(x TN (1)
where T indicates transpose and s(x, ') is a sim-
ilarity function between x and «’. In our work
we use dot product as s.> Once each labeled

'A bias feature that is always set to be 1 can be added to
allow a non-zero threshold.

>We find that normalizing the exemplar vectors results in
better performance empirically. On the other hand, if we nor-
malize both the exemplar vectors and each instance «, i.e. if
we use cosine similarity as s, the performance is similar to
not normalizing .
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source domain instance is transformed into a K-
dimensional vector by Equation 1, we can ap-
pend this vector to the original feature vector of
the source instance and use the combined feature
vectors of all labeled source instances to train a
classifier. To apply this classifier to the target do-
main, each target instance also needs to add this
K -dimensional induced feature vector.

It is worth noting that the exemplar vectors
are randomly chosen from the available target in-
stances and no special trick is needed. Overall,
the method is fairly easy to implement, and yet
as we will see in Section 3, it performs surpris-
ingly well. We also want to point out that our in-
stance similarity features bear strong similarity to
what was proposed by Sun and Lam (2013), but
their work addresses a completely different prob-
lem and we developed our method independently
of their work.

2.2  Justification

In this section, we provide some intuitive justifica-
tion for our method without any theoretical proof.

Learning in the Target Subspace

Blitzer et al. (2011) pointed out that the hope
of unsupervised domain adaptation is to “couple”
the learning of weights for target-specific features
with that of common features. We show our in-
duced feature representation is exactly doing this.

First, we review the claim by Blitzer et al.
(2011). We note that although the input vector
space X is typically high-dimensional for NLP
tasks, the actual space where input vectors lie can
have a lower dimension because of the strong fea-
ture dependence we observe with NLP tasks. For
example, binary features defined from the same
feature template such as the previous word are
mutually exclusive. Furthermore, the actual low-
dimensional spaces for the source and the target
domains are usually different because of domain-
specific features and distributional difference be-
tween the domains. Borrowing the notation used
by Blitzer et al. (2011), define subspace X to be
the (lowest dimensional) subspace of X’ spanned
by all source domain input vectors. Similarly,
a subspace A; can be defined. Define &, =
X [ AL, the shared subspace between the two do-
mains. Define X; | to be the subspace that is or-
thogonal to X but together with A spans Aj,
that is, X | + X, = X,. Similarly we can define
X . Essentially X, X | and X' ( are the shared



subspace and the domain-specific subspaces, and
they are mutually orthogonal.

We can project any input vector x into the three
subspaces defined above as follows:

T=Tst+ X5 1 + Ty

Similarly, any linear classifier w can be decom-
posed into wy ¢, ws | and w |, and

w'e=w @, +w z +w] @,

For a naive method that simply learns w from D?,
the learned component w | ( will be 0, because the
component x| ; of any source instance is 0, and
therefore the training error would not be reduced
by any non-zero w ;. Moreover, any non-zero
wy | learned from D* would not be useful for the
target domain because for all target instances we
have z; | = 0. So for a w learned from D?®, only
its component wy ; is useful for domain transfer.

Blitzer et al. (2011) argues that with unlabeled
target instances, we can hope to “couple” the
learning of w | ; with that of w;. We show that
if we use only our induced feature representation
without appending it to the original feature vec-
tor, we can achieve this. We first define a ma-
trix Mg whose column vectors are the exemplar
vectors from £. Then g(x) can be rewritten as
M g x. Let w’ denote a linear classifier learned
from the transformed labeled data. w’ makes pre-
diction based on w’" M, gT x, which is the same as
(Mgw') "a. This shows that the learned classifier
w’ for the induced features is equivalent to a linear
classifier w = Mgw' for the original features.

It is not hard to see that Mcw' is essentially
S whe) ie. a linear combination of vectors
in €. Because e*) comes from X;, we can write

elk) = eg‘;) + e(f’)t. Therefore we have
_ 1 (k) (k)
w = Z W€y + Z wie i
k k
Ws t w

s

There are two things to note from the formula
above. (1) The learned classifier w does not have
any component in the subspace X |, which is
good because such a component would not be use-
ful for the target domain. (2) The learned w | ; will
unlikely be zero because its learning is “coupled”
with the learning of Wy, through w'. In effect, we
pick up target specific features that correlate with
useful common features.
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In practice, however, we need to append the in-
duced features to the original features to achieve
good adaptation results. One may find this
counter-intuitive because this results in an ex-
panded instead of restricted hypothesis space. Our
explanation is that because of the typical Lo regu-
larizer used during training, there is an incentive to
shift the weight mass to the additional induced fea-
tures. The need to combine the induced features
with original features was also reported in previ-
ous domain adaptation work such as SCL (Blitzer
et al., 2006) and marginalized denoising autoen-
coders (Chen et al., 2012).

Reduction of Domain Divergence

Another theory on domain adaptation developed
by Ben-David et al. (2010) essentially states that
we should use a hypothesis space that can achieve
low error on the source domain while at the same
time making it hard to separate source and tar-
get instances. If we use only our induced fea-
tures, then A§ | is excluded from the hypothesis
space. This is likely to make it harder to distin-
guish source and target instances. To verify this,
in Table 1 we show the following errors based
on three feature representations: (1) The training
error on the source domain (£5). (2) The classi-
fication error when we train a classifier to sepa-
rate source and target instances. (3) The error on
the target domain using the classifier trained from
the source domain (é¢). ISF- means only our in-
duced instance similarity features are used while
ISF uses combined feature vectors. The results
show that ISF achieves relatively low £ and in-
creases the domain separation error. These two
factors lead to a reduction in &;.

features Es domain separation error &t

Original  0.000 0.011 0.283
ISF- 0.120 0.129 0.315
ISF 0.006 0.062 0.254

Table 1: Three errors of different feature representations on
a spam filtering task. K is 200 for ISF- and ISF. We expect a
low £ when &; is low and domain separation error is high.

Difference from EA++

The easy domain adaptation method EA proposed
by Daumé III (2007) has later been extended to a
semi-supervised version EA++ (Daumé III et al.,
2010), where unlabeled data from the target do-
main is also used. Theoretical justifications for
both EA and EA++ are given by Kumar et al.



(2010). Here we briefly discuss how our method
is different from EA++ in terms of using unla-
beled data. In both EA and EA++, since labeled
target data is available, the algorithms still learn
two classifiers, one for each domain. In our al-
gorithm, we only learn a single classifier using
labeled data from the source domain. In EA++,
unlabeled target data is used to construct a reg-
ularizer that brings the two classifiers of the two
domains closer. Specifically, the regularizer de-
fines a penalty if the source classifier and the tar-
get classifier make different predictions on an un-
labeled target instance. However, with this regu-
larizer, EA++ does not strictly restrict either the
source classifier or the target classifier to lie in
the target subspace A&;. In contrast, as we have
pointed out above, when only the induced features
are used, our method leverages the unlabeled tar-
get instances to force the learned classifier to lie in
X

3 Experiments

3.1 Tasks and Data Sets

We consider the following NLP tasks.
Personalized Spam Filtering (Spam): The data
set comes from ECML/PKDD 2006 discovery
challenge. The goal is to adapt a spam filter trained
on a common pool of 4000 labeled emails to three
individual users’ personal inboxes, each contain-
ing 2500 emails. We use bag-of-word features for
this task, and we report classification accuracy.
Gene Name Recognition (NER): The data set
comes from BioCreAtIVE Task 1B (Hirschman et
al., 2005). It contains three sets of Medline ab-
stracts with labeled gene names. Each set corre-
sponds to a single species (fly, mouse or yeast).
We consider domain adaptation from one species
to another. We use standard NER features includ-
ing words, POS tags, prefixes/suffixes and contex-
tual features. We report F1 scores for this task.
Relation Extraction (Relation): We use the
ACE2005 data where the annotated documents are
from several different sources such as broadcast
news and conversational telephone speech. We re-
port the F1 scores of identifying the 7 major rela-
tion types. We use standard features including en-
tity types, entity head words, contextual words and
other syntactic features derived from parse trees.

3.2 Methods for Comparison

Naive uses the original features.
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Common uses only features commonly seen in
both domains.

SCL is our implementation of Structural Corre-
spondence Learning (Blitzer et al., 2006). We set
the number of induced features to 50 based on pre-
liminary experiments. For pivot features, we fol-
low the setting used by Blitzer et al. (2006) and se-
lect the features with a term frequency more than
50 in both domains.

PCA uses principal component analysis on D' to
obtain K -dimensional induced feature vectors and
then appends them to the original feature vectors.

ISF is our method using instance similarity fea-
tures. We first transform each training instance to
a K-dimensional vector according to Equation 1
and then append the vector to the original vector.

For all the three NLP tasks and the methods
above that we compare, we employ the logistic re-
gression (a.k.a. maximum entropy) classification
algorithm with Lo regularization to train a clas-
sifier, which means the loss function is the cross
entropy error. We use the L-BFGS optimization
algorithm to optimize our objective function.

3.3 Results

In Table 2, we show the comparison between our
method and Naive, Common and SCL. For ISF,
the parameter K is set to 100 for Spam, 50 for
NER and 500 for Relation after tuning. As we
can see from the table, Common, which removes
source domain specific features during training,
can sometimes improve the classification perfor-
mance, but this is not consistent and the improve-
ment is small. SCL can improve the performance
in most settings for all three tasks, which confirms
the general effectiveness of this method. For our
method ISF, we can see that on average it outper-
forms both Naive and SCL significantly. When
we zoom into the different source-target domain
pairs of the three tasks, we can see that ISF out-
performs SCL in most of the cases. This shows
that our method is competitive despite its simplic-
ity. It is also worth pointing out that SCL incurs
much more computational cost than ISF.

We next compare ISF with PCA. Because PCA
is also expensive, we only managed to run it on
the Spam task. Table 3 shows that ISF also out-
performs PCA significantly.



Method Spam NER Relation
u00 u01 u02 average f—y f—m m—y m—f y—f y—m average average
Naive 0.678 0.710  0.816 0.735 0396  0.379 0.526 0222 0.050 0.339 0.319 0.398
Common | 0.697 0.732  0.781 0.737 0.409  0.388 0.559 0.208  0.059 0.344 0.328 0.401
SCL 0.699 0.717 0.824 0.747 0.405 0.380  0.525 0.239  0.063 0.35 0.327 0.403
ISF 0720 0.769 0.884  0.791** 0415  0.395 0.566 0212 0.079 0.360 0.338™~ 0.416™
Method Relation
bc—bn bc—cts bc—nw bc—un bc—wl bn—bc bn—cts bn—nw bn—un bn—wl
Naive 0.455 0.400 0.445 0.376 0.397 0.528 0.430 0.482 0.469 0.454
Common 0.484 0.408 0.446 0.373 0.400 0.536 0.452 0.478 0.465 0.444
SCL 0.467 0.395 0.453 0.391 0.415 0.531 0.434 0.484 0.461 0.461
ISF 0.474 0.434 0.455 0.446 0.405 0.537 0.454 0.484 0.504 0.460
cts—be cts—bn cts—nw cts—un cts—wl nw2bc nw—bn nw—-cts nw—un nw—wl
Naive 0.358 0.355 0.307 0.446 0.358 0.476 0.433 0.360 0.394 0.420
Common 0.345 0.336 0.292 0.432 0.339 0.475 0.441 0.363 0.399 0.429
SCL 0.361 0.359 0.314 0.448 0.357 0.480 0.439 0.354 0.405 0.426
ISF 0.387 0.377 0.333 0.449 0.361 0.488 0.439 0.342 0.401 0.431
un—bc un—bn un—-cts un—nw un—wl wl—bc wl—bn wl—cts wl—nw wl—un
Naive 0.373 0.394 0.423 0.357 0.375 0.355 0.338 0.282 0.373 0.316
Common 0.399 0.409 0.416 0.370 0.370 0.351 0.364 0.298 0.379 0.335
SCL 0.379 0.399 0.423 0.356 0.377 0.361 0.355 0.288 0.381 0.330
ISF 0.442 0.404 0.436 0.381 0.380 0.389 0.368 0.298 0.395 0.329

Table 2: Comparison of performance on three NLP tasks. For each source-target pair of each task, the performance shown
is the average of 5-fold cross validation. We also report the overall average performance for each task. We tested statistical
significance only for the overall average performance and found that ISF was significantly better than both Naive and SCL with
p < 0.05 (indicated by **) based on the Wilcoxon signed-rank test.

Method Spam
u00 u01 u02 average
Naive 0.678  0.710  0.816 0.735
PCA 0.700 0.718 0.818 0.745
ISF 0.720 0.769 0.884  0.791""

Table 3: Comparison between ISF and PCA.

4 Conclusions

We presented a hassle-free unsupervised domain
adaptation method. The method is simple to im-
plement, fast to run and yet effective for a few
NLP tasks, outperforming SCL, a widely-used un-
supervised domain adaptation method. We believe
the proposed method can benefit a large number of
practitioners who prefer simple methods than so-
phisticated domain adaptation methods.
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