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Abstract

Replicated Softmax model, a well-known
undirected topic model, is powerful in ex-
tracting semantic representations of docu-
ments. Traditional learning strategies such
as Contrastive Divergence are very inef-
ficient. This paper provides a novel esti-
mator to speed up the learning based on
Noise Contrastive Estimate, extended for
documents of variant lengths and weighted
inputs. Experiments on two benchmarks
show that the new estimator achieves great
learning efficiency and high accuracy on
document retrieval and classification.

1 Introduction

Topic models are powerful probabilistic graphical
approaches to analyze document semantics in dif-
ferent applications such as document categoriza-
tion and information retrieval. They are mainly
constructed by directed structure like pLSA (Hof-
mann, 2000) and LDA (Blei et al., 2003). Accom-
panied by the vast developments in deep learn-
ing, several undirected topic models, such as
(Salakhutdinov and Hinton, 2009; Srivastava et
al., 2013), have recently been reported to achieve
great improvements in efficiency and accuracy.

Replicated Softmax model (RSM) (Hinton and
Salakhutdinov, 2009), a kind of typical undirected
topic model, is composed of a family of Restricted
Boltzmann Machines (RBMs). Commonly, RSM
is learned like standard RBMs using approximate
methods like Contrastive Divergence (CD). How-
ever, CD is not really designed for RSM. Different
from RBMs with binary input, RSM adopts soft-
max units to represent words, resulting in great in-
efficiency with sampling inside CD, especially for
a large vocabulary. Yet, NLP systems usually re-
quire vocabulary sizes of tens to hundreds of thou-
sands, thus seriously limiting its application.

Dealing with the large vocabulary size of the in-
puts is a serious problem in deep-learning-based
NLP systems. Bengio et al. (2003) pointed this
problem out when normalizing the softmax proba-
bility in the neural language model (NNLM), and
Morin and Bengio (2005) solved it based on a hi-
erarchical binary tree. A similar architecture was
used in word representations like (Mnih and Hin-
ton, 2009; Mikolov et al., 2013a). Directed tree
structures cannot be applied to undirected mod-
els like RSM, but stochastic approaches can work
well. For instance, Dahl et al. (2012) found that
several Metropolis Hastings sampling (MH) ap-
proaches approximate the softmax distribution in
CD well, although MH requires additional com-
plexity in computation. Hyvärinen (2007) pro-
posed Ratio Matching (RM) to train unnormal-
ized models, and Dauphin and Bengio (2013)
added stochastic approaches in RM to accommo-
date high-dimensional inputs. Recently, a new es-
timator Noise Contrastive Estimate (NCE) (Gut-
mann and Hyvärinen, 2010) is proposed for un-
normalized models, and shows great efficiency in
learning word representations such as in (Mnih
and Teh, 2012; Mikolov et al., 2013b).

In this paper, we propose an efficient learning
strategy for RSM named α-NCE, applying NCE as
the basic estimator. Different from most related ef-
forts that use NCE for predicting single word, our
method extends NCE to generate noise for doc-
uments in variant lengths. It also enables RSM to
use weighted inputs to improve the modelling abil-
ity. As RSM is usually used as the first layer in
many deeper undirected models like Deep Boltz-
mann Machines (Srivastava et al., 2013), α-NCE
can be readily extended to learn them efficiently.

2 Replicated Softmax Model

RSM is a typical undirected topic model, which is
based on bag-of-words (BoW) to represent docu-
ments. In general, it consists of a series of RBMs,
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each of which contains variant softmax visible
units but the same binary hidden units.

Suppose K is the vocabulary size. For a docu-
ment with D words, if the ith word in the docu-
ment equals the kth word of the dictionary, a vec-
tor vi ∈ {0, 1}K is assigned, only with the kth

element vik = 1. An RBM is formed by assign-
ing a hidden state h ∈ {0, 1}H to this document
V = {v1, ...,vD}, where the energy function is:

Eθ(V ,h) = −hTWv̂ − bT v̂ −D · aTh (1)

where θ = {W , b,a} are parameters shared by
all the RBMs, and v̂ =

∑D
i=1 vi is commonly re-

ferred to as the word count vector of a document.
The probability for the document V is given by:

Pθ(V ) =
1
ZD

e−Fθ(V ), ZD =
∑

V
e−Fθ(V )

Fθ(V ) = log
∑

h
e−Eθ(V ,h)

(2)

where Fθ(V ) is the “free energy”, which can be
analytically integrated easily, and ZD is the “par-
tition function” for normalization, only associated
with the document length D. As the hidden state
and document are conditionally independent, the
conditional distributions are derived:

Pθ (vik = 1|h) =
exp

(
W T

k h+ bk
)∑K

k=1 exp
(
W T

k h+ bk
) (3)

Pθ (hj = 1|V ) = σ (Wj v̂ +D · aj) (4)

where σ(x) = 1
1+e−x . Equation (3) is the soft-

max units describing the multinomial distribution
of the words, and Equation (4) serves as an effi-
cient inference from words to semantic meanings,
where we adopt the probabilities of each hidden
unit “activated” as the topic features.

2.1 Learning Strategies for RSM
RSM is naturally learned by minimizing the nega-
tive log-likelihood function (ML) as follows:

L(θ) = −EV ∼Pdata [logPθ(V )] (5)

However, the gradient is intractable for the combi-
natorial normalization term ZD. Common strate-
gies to overcome this intractability are MCMC-
based approaches such as Contrastive Divergence
(CD) (Hinton, 2002) and Persistent CD (PCD)
(Tieleman, 2008), both of which require repeating
Gibbs steps of h(i) ∼ Pθ(h|V (i)) and V (i+1) ∼
Pθ(V |h(i)) to generate model samples to approx-
imate the gradient. Typically, the performance and

consistency improve when more steps are adopted.
Notwithstanding, even one Gibbs step is time con-
suming for RSM, since the multinomial sampling
normally requires linear time computations. The
“alias method” (Kronmal and Peterson Jr, 1979)
speeds up multinomial sampling to constant time
while linear time is required for processing the dis-
tribution. Since Pθ(V |h) changes at every itera-
tion in CD, such methods cannot be used.

3 Efficient Learning for RSM

Unlike (Dahl et al., 2012) that retains CD, we
adopted NCE as the basic learning strategy. Con-
sidering RSM is designed for documents, we fur-
ther modified NCE with two novel heuristics,
developing the approach “Partial Noise Uniform
Contrastive Estimate” (or α-NCE for short).

3.1 Noise Contrastive Estimate
Noise Contrastive Estimate (NCE), similar to CD,
is another estimator for training models with in-
tractable partition functions. NCE solves the in-
tractability through treating the partition function
ZD as an additional parameter Zc

D added to θ,
which makes the likelihood computable. Yet, the
model cannot be trained through ML as the likeli-
hood tends to be arbitrarily large by setting Zc

D to
huge numbers. Instead, NCE learns the model in a
proxy classification problem with noise samples.

Given a document collection (data) {Vd}Td
, and

another collection (noise) {Vn}Tn with Tn = kTd,
NCE distinguishes these (1+k)Td documents sim-
ply based on Bayes’ Theorem, where we assumed
data samples matched by our model, indicating
Pθ ' Pdata, and noise samples generated from an
artificial distribution Pn. Parameters are learned
by minimizing the cross-entropy function:

J(θ) = −EVd∼Pθ [log σk(X(Vd))]
−kEVn∼Pn [log σk−1(−X(Vn))]

(6)

and the gradient is derived as follows,

−∇θJ(θ) =EVd∼Pθ [σk−1(−X)∇θX(Vd)]
−kEVn∼Pn [σk(X)∇θX(Vn)]

(7)

where σk(x) = 1
1+ke−x , and the “log-ratio” is:

X(V ) = log [Pθ(V )/Pn(V )] (8)

J(θ) can be optimized efficiently with stochastic
gradient descent (SGD). Gutmann and Hyvärinen
(2010) showed that the NCE gradient∇θJ(θ) will
reach the ML gradient when k → ∞. In practice,
a larger k tends to train the model better.
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3.2 Partial Noise Sampling
Different from (Mnih and Teh, 2012), which gen-
erates noise per word, RSM requires the estimator
to sample the noise at the document level. An in-
tuitive approach is to sample from the empirical
distribution p̃ forD times, where the log probabil-
ity is computed: logPn(V ) =

∑
v∈V

[
vT log p̃

]
.

For a fixed k, Gutmann and Hyvärinen (2010)
suggested choosing the noise close to the data for
a sufficient learning result, indicating full noise
might not be satisfactory. We proposed an alter-
native “Partial Noise Sampling (PNS)” to gener-
ate noise by replacing part of the data with sam-
pled words. See Algorithm 1, where we fixed the

Algorithm 1 Partial Noise Sampling
1: Initialize: k, α ∈ (0, 1)
2: for each Vd = {v}D ∈ {Vd}Td

do
3: Set: Dr = dα ·De
4: Draw: Vr = {vr}Dr ⊆ V uniformly
5: for j = 1, ..., k do
6: Draw: V (j)

n = {v(j)
n }D−Dr ∼ p̃

7: V
(j)

n = V
(j)

n ∪ Vr

8: end for
9: Bind: (Vd,Vr), (V (1)

n ,Vr), ..., (V (k)
n ,Vr)

10: end for

proportion of remaining words at α, named “noise
level” of PNS. However, traversing all the condi-
tions to guess the remaining words requiresO(D!)
computations. To avoid this, we simply bound the
remaining words with the data and noise in ad-
vance and the noise logPn(V ) is derived readily:

logPθ(Vr) +
∑

v∈V \Vr

[
vT log p̃

]
(9)

where the remaining words Vr are still assumed
to be described by RSM with a smaller document
length. In this way, it also strengthens the robust-
ness of RSM towards incomplete data.

Sampling the noise normally requires additional
computational load. Fortunately, since p̃ is fixed,
sampling is efficient using the “alias method”. It
also allows storing the noise for subsequent use,
yielding much faster computation than CD.

3.3 Uniform Contrastive Estimate
When we initially implemented NCE for RSM,
we found the document lengths terribly biased the
log-ratio, resulting in bad parameters. Therefore
“Uniform Contrastive Estimate (UCE)” was pro-
posed to accommodate variant document lengths

by adding the uniform assumption:

X̄(V ) = D−1 log [Pθ(V )/Pn(V )] (10)

where UCE adopts the uniform probabilities D
√
Pθ

and D
√
Pn for classification to average the mod-

elling ability at word-level. Note that D is not
necessarily an integer in UCE, and allows choos-
ing a real-valued weights on the document such as
idf -weighting (Salton and McGill, 1983). Typi-
cally, it is defined as a weighting vector w, where
wk = log Td

|V ∈{Vd}:vik=1,vi∈V | is multiplied to the
kth word in the dictionary. Thus for a weighted in-
put V w and corresponding length Dw, we derive:

X̃(V w) = Dw−1 log [Pθ(V w)/Pn(V w)] (11)

where logPn(V w) =
∑
vw∈V w

[
vwT log p̃

]
. A

specific Zc
Dw will be assigned to Pθ(V w).

Combining PNS and UCE yields a new estima-
tor for RSM, which we simply call α-NCE1.

4 Experiments

4.1 Datasets and Details of Learning
We evaluated the new estimator to train RSMs on
two text datasets: 20 Newsgroups and IMDB.

The 20 Newsgroups2 dataset is a collection of
the Usenet posts, which contains 11,345 training
and 7,531 testing instances. Both the training and
testing sets are labeled into 20 classes. Removing
stop words as well as stemming were performed.

The IMDB dataset3 is a benchmark for senti-
ment analysis, which consists of 100,000 movie
reviews taken from IMDB. The dataset is divided
into 75,000 training instances (1/3 labeled and
2/3 unlabeled) and 25,000 testing instances. Two
types of labels, positive and negative, are given to
show sentiment. Following (Maas et al., 2011), no
stop words are removed from this dataset.

For each dataset, we randomly selected 10% of
the training set for validation, and the idf -weight
vector is computed in advance. In addition, replac-
ing the word count v̂ by dlog (1 + v̂)e slightly im-
proved the modelling performance for all models.

We implemented α-NCE according to the pa-
rameter settings in (Hinton, 2010) using SGD in
minibatches of size 128 and an initialized learning
rate of 0.1. The number of hidden units was fixed

1α comes from the noise level in PNS, but UCE is also
the vital part of this estimator, which is absorbed in α-NCE.

2Available at http://qwone.com/˜jason/20Newsgroups
3Available at http://ai.stanford.edu/˜amaas/data/sentiment
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at 128 for all models. Although learning the parti-
tion function Zc

D separately for every length D is
nearly impossible, as in (Mnih and Teh, 2012) we
also surprisingly found freezing Zc

D as a constant
function of D without updating never harmed but
actually enhanced the performance. It is proba-
bly because the large number of free parameters
in RSM are forced to learn better when Zc

D is a
constant. In practise, we set this constant function
as Zc

D = 2H · (∑k e
bk
)D. It can readily extend to

learn RSM for real-valued weighted length Dw.
We also implemented CD with the same set-

tings. All the experiments were run on a single
GPU GTX970 using the library Theano (Bergstra
et al., 2010). To make the comparison fair, both
α-NCE and CD share the same implementation.

4.2 Evaluation of Efficiency
To evaluate the efficiency in learning, we used
the most frequent words as dictionaries with sizes
ranging from 100 to 20, 000 for both datasets, and
test the computation time both for CD of vari-
ant Gibbs steps and α-NCE of variant noise sam-
ple sizes. The comparison of the mean running

Figure 1: Comparison of running time

time per minibatch is clearly shown in Figure 1,
which is averaged on both datasets. Typically,
α-NCE achieves 10 to 500 times speed-up com-
pared to CD. Although both CD and α-NCE run
slower when the input dimension increases, CD
tends to take much more time due to the multino-
mial sampling at each iteration, especially when
more Gibbs steps are used. In contrast, running
time stays reasonable in α-NCE even if a larger
noise size or a larger dimension is applied.

4.3 Evaluation of Performance
One direct measure to evaluate the modelling per-
formance is to assess RSM as a generative model

to estimate the log-probability per word as per-
plexity. However, as α-NCE learns RSM by dis-
tinguishing the data and noise from their respec-
tive features, parameters are trained more like a
feature extractor than a generative model. It is not
fair to use perplexity to evaluate the performance.
For this reason, we evaluated the modelling per-
formance with some indirect measures.

Figure 2: Precision-Recall curves for the retrieval
task on the 20 Newsgroups dataset using RSMs.

For 20 Newsgroups, we trained RSMs on the
training set, and reported the results on docu-
ment retrieval and document classification. For
retrieval, we treated the testing set as queries, and
retrieved documents with the same labels in the
training set by cosine-similarity. Precision-recall
(P-R) curves and mean average precision (MAP)
are two metrics we used for evaluation. For clas-
sification, we trained a softmax regression on the
training set, and checked the accuracy on the test-
ing set. We use this dataset to show the modelling
ability of RSM with different estimators.

For IMDB, the whole training set is used for
learning RSMs, and an L2-regularized logistic re-
gression is trained on the labeled training set. The
error rate of sentiment classification on the testing
set is reported, compared with several BoW-based
baselines. We use this dataset to show the general
modelling ability of RSM compared with others.

We trained both α-NCE and CD, and naturally
NCE (without UCE) at a fixed vocabulary size
(2000 for 20 Newsgroups, and 5000 for IMDB).
Posteriors of the hidden units were used as topic
features. For α-NCE , we fixed noise level at 0.5
for 20 Newsgroups and 0.3 for IMDB. In compar-
ison, we trained CD from 1 up to 5 Gibbs steps.

Figure 2 and Table 1 show that a larger noise
size in α-NCE achieves better modelling perfor-
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(a) MAP for document retrieval (b) Document classification accuracy (c) Sentiment classification accuracy

Figure 3: Tracking the modelling performance with variant α using α-NCE to learn RSMs. CD is also
reported as the baseline. (a) (b) are performed on 20 Newsgroups, and (c) is performed on IMDB.

mance, and α-NCE greatly outperforms CD on re-
trieval tasks especially around large recall values.
The classification results of α-NCE is also compa-
rable or slightly better than CD. Simultaneously,
it is gratifying to find that the idf -weighting in-
puts achieve the best results both in retrieval and
classification tasks, as idf -weighting is known to
extract information better than word count. In ad-
dition, naturally NCE performs poorly compared
to others in Figure 2, indicating variant document
lengths actually bias the learning greatly.

CD α-NCE
k=1 k=5 k=25 k=25 (idf)

64.1% 61.8% 63.6% 64.8% 65.6%

Table 1: Comparison of classification accuracy on
the 20 Newsgroups dataset using RSMs.

Models Accuracy
Bag of Words (BoW) (Maas and Ng, 2010) 86.75%
LDA (Maas et al., 2011) 67.42%
LSA (Maas et al., 2011) 83.96%
Maas et al. (2011)’s “full” model 87.44%
WRRBM (Dahl et al., 2012) 87.42%
RSM:CD 86.22%
RSM:α-NCE-5 87.09%
RSM:α-NCE-5 (idf) 87.81%

Table 2: The performance of sentiment classifica-
tion accuracy on the IMDB dataset using RSMs
compared to other BoW-based approaches.

On the other hand, Table 2 shows the perfor-
mance of RSM in sentiment classification, where
model combinations reported in previous efforts
are not considered. It is clear that α-NCE learns
RSM better than CD, and outperforms BoW and
other BoW-based models4 such as LDA. The idf -

4Accurately, WRRBM uses “bag of n-grams” assumption.

weighting inputs also achieve the best perfor-
mance. Note that RSM is also based on BoW, in-
dicating α-NCE has arguably reached the limits of
learning BoW-based models. In future work, RSM
can be extended to more powerful undirected topic
models, by considering more syntactic informa-
tion such as word-order or dependency relation-
ship in representation. α-NCE can be used to learn
them efficiently and achieve better performance.

4.4 Choice of Noise Level-α
In order to decide the best noise level (α) for PNS,
we learned RSMs using α-NCE with different
noise levels for both word count and idf -weighting
inputs on the two datasets. Figure 3 shows that
α-NCE learning with partial noise (α > 0) out-
performs full noise (α = 0) in most situations,
and achieves better results than CD in retrieval and
classification on both datasets. However, learning
tends to become extremely difficult if the noise
becomes too close to the data, and this explains
why the performance drops rapidly when α → 1.
Furthermore, curves in Figure 3 also imply the
choice of α might be problem-dependent, with
larger sets like IMDB requiring relatively smaller
α. Nonetheless, a systematic strategy for choos-
ing optimal α will be explored in future work. In
practise, a range from 0.3 ∼ 0.5 is recommended.

5 Conclusions

We propose a novel approach α-NCE for learning
undirected topic models such as RSM efficiently,
allowing large vocabulary sizes. It is new a es-
timator based on NCE, and adapted to documents
with variant lengths and weighted inputs. We learn
RSMs with α-NCE on two classic benchmarks,
where it achieves both efficiency in learning and
accuracy in retrieval and classification tasks.
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