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Abstract

The validity of applying paraphrase rules
depends on the domain of the text that
they are being applied to. We develop
a novel method for extracting domain-
specific paraphrases. We adapt the bilin-
gual pivoting paraphrase method to bias
the training data to be more like our tar-
get domain of biology. Our best model
results in higher precision while retaining
complete recall, giving a 10% relative im-
provement in AUC.

1 Introduction

Many data-driven paraphrase extraction algo-
rithms have been developed in recent years
(Madnani and Dorr, 2010; Androutsopoulos and
Malakasiotis, 2010). These algorithms attempt
to learn paraphrase rules, where one phrase can
be replaced with another phrase which has equiv-
alent meaning in at least some context. Deter-
mining whether a paraphrase is appropriate for
a specific context is a difficult problem (Bhagat
and Hovy, 2013), encompassing issues of syntax
(Callison-Burch, 2008), word sense (Apidianaki et
al., 2014), and style (Xu et al., 2012; Pavlick and
Nenkova, 2015). To date, the question of how do-
main effects paraphrase has been left unexplored.

Although most paraphrase extraction algo-
rithms attempt to estimate a confidence with which
a paraphrase rule might apply, these scores are
not differentiated by domain, and instead corre-
spond to the general domain represented by the
model’s training data. As illustrated by Table 1,
paraphrases that are highly probable in the gen-
eral domain (e.g. hot = sexy) can be extremely
improbable in more specialized domains like biol-
ogy. Dominant word senses change depending on

∗Incubated by the Allen Institute for Artificial Intelli-
gence.

General Biology
hot warm, sexy, exciting heated, warm, thermal
treat address, handle, buy cure, fight, kill
head leader, boss, mind skull, brain, cranium

Table 1: Examples of domain-sensitive paraphrases. Most
paraphrase extraction techniques learn paraphrases for a mix
of senses that work well in general. But in specific domains,
paraphrasing should be sensitive to specialized language use.

domain: the verb treat is used in expressions like
treat you to dinner in conversational domains ver-
sus treat an infection in biology. This domain shift
changes the acceptability of its paraphrases.

We address the problem of customizing para-
phrase models to specific target domains. We ex-
plore the following ideas:

1. We sort sentences in the training corpus
based on how well they represent the target
domain, and then extract paraphrases from a
subsample of the most domain-like data.

2. We improve our domain-specific paraphrases
by weighting each training example based on
its domain score, instead of treating each ex-
ample equally.

3. We dramatically improve recall while main-
taining precision by combining the subsam-
pled in-domain paraphrase scores with the
general-domain paraphrase scores.

2 Background

The paraphrase extraction algorithm that we cus-
tomize is the bilingual pivoting method (Bannard
and Callison-Burch, 2005) that was used to create
PPDB, the paraphrase database (Ganitkevitch et
al., 2013). To perform the subsampling, we adapt
and improve the method that Moore and Lewis
(2010) originally developed for domain-specific
language models in machine translation.
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2.1 Paraphrase extraction
Paraphrases can be extracted via bilingual pivot-
ing. Intuitively, if two English phrases e1 and e2
translate to the same foreign phrase f , we can as-
sume that e1 and e2 have similar meaning, and
thus we can “pivot” over f and extract 〈e1, e2〉 as a
paraphrase pair. Since many possible paraphrases
are extracted in this way, and since they vary in
quality (in PPDB, the verb treat has 1,160 poten-
tial paraphrases, including address, handle, deal
with, care for, cure him, ’m paying, and ’s on the
house), it is necessary to assign some measure of
confidence to each paraphrase rule. Bannard and
Callison-Burch (2005) defined a conditional para-
phrase probability p(e2|e1) by marginalizing over
all shared foreign-language translations f :

p(e2|e1) ≈
∑

f

p(e2|f)p(f |e1) (1)

where p(e2|f) and p(f |e1) are translation model
probabilities estimated from the bilingual data.

Equation 1 approximates the probability with
which e1 can paraphrase as e2, but its estimate in-
evitably reflects the domain and style of the bilin-
gual training text. If e1 is a polysemous word,
the highest probabilities will be assigned to para-
phrases of the most frequently occurring sense of
e1, and lower probabilities to less frequent senses.
This results in inaccurate probability estimates
when moving to a domain with different sense dis-
tributions compared to the training corpus.

2.2 Sorting by domain specificity
The crux of our method is to train a paraphrase
model on data from the same domain as the one in
which the paraphrases will be used. In practice, it
is unrealistic that we will be able to find bilingual
parallel corpora precompiled for each domain of
interest. We instead subsample from a large bitext,
biasing the sample towards the target domain.

We adapt and extend a method developed by
Moore and Lewis (2010) (henceforth M-L), which
builds a domain-specific sub-corpus from a large,
general-domain corpus. The M-L method assigns
a score to each sentence in the large corpus based
on two language models, one trained on a sam-
ple of target domain text and one trained on the
general domain. We want to identify sentences
which are similar to our target domain and dissim-
ilar from the general domain. M-L captures this
notion using the difference in the cross-entropies

according to each language model (LM). That is,
for a sentence si, we compute

σi = Htgt(si)−Hgen(si) (2)

where Htgt is the cross-entropy under the in-
domain language model and Hgen is the cross-
entropy under the general domain LM. Cross-
entropy is monotonically equivalent to LM per-
plexity, in which lower scores imply a better fit.
Lower σi signifies greater domain-specificity.

3 Domain-Specific Paraphrases

To apply the M-L method to paraphrasing, we
need a sample of in-domain monolingual text.
This data is not directly used to extract para-
phrases, but instead to train an n-gram LM for the
target domain. We compute σi for the English side
of every sentence pair in our bilingual data, using
the target domain LM and the general domain LM.
We sort the entire bilingual training corpus so that
the closer a sentence pair is to the top of the list,
the more specific it is to our target domain.

We can apply Bannard and Callison-Burch
(2005)’s bilingual pivoting paraphrase extraction
algorithm to this sorted bitext in several ways:

1. By choosing a threshold value for σi and dis-
carding all sentence pairs that fall outside
of that threshold, we can extract paraphrases
from a subsampled bitext that approximates
the target domain.

2. Instead of simply extracting from a subsam-
pled corpus (where each training example is
equally weighted), we can weight each train-
ing example proportional to σi when comput-
ing the paraphrase scores.

3. We can combine multiple paraphrase scores:
one derived from the original corpus and one
from the subsample. This has the advantage
of producing the full set of paraphrases that
can be extracted from the entire bitext.

4 Experimental Conditions

Domain data We evaluate our domain-specific
paraphrasing model in the target domain of biol-
ogy. Our monolingual in-domain data is a com-
bination of text from the GENIA database (Kim
et al., 2003) and text from an introductory biology
textbook. Our bilingual general-domain data is the
109 word parallel corpus (Callison-Burch et al.,
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2009), a collection of French-English parallel data
covering a mix of genres from legal text (Stein-
berger et al., 2006) to movie subtitles (Tiedemann,
2012). We use 5-gram language models with
Kneser-Ney discounting (Heafield et al., 2013).

Evaluation We measure the precision and recall
of paraphrase pairs produced by each of our mod-
els by collecting human judgments of what para-
phrases are acceptable in sentences drawn from
the target domain and in sentences drawn from the
general domain. We sample 15K sentences from
our biology data, and 10K general-domain sen-
tences from Wikipedia. We select a phrase from
each sentence, and show the list of candidate para-
phrases1 to 5 human judges. Judges make a binary
decision about whether each paraphrase is appro-
priate given the domain-specific context. We con-
sider a paraphrase rule to be good in the domain if
it is judged to be good in least one context by the
majority of judges. See Supplementary Materials
for a detailed description of our methodology.

Baseline We run normal paraphrase extraction
over the entire 109 word parallel corpus (which
has 828M words on the English side) without any
attempt to bias it toward the target domain. We
refer this system as General.

Subsampling After sorting the 109 word paral-
lel corpus by Equation 2, we chose several thresh-
old values for subsampling, keeping only top-
ranked τ words of the bitext. We train models on
for several values of τ (1.5M, 7M, 35M, and 166M
words). We refer to these model as M-L,T=τ .

M-L Change Point We test a model where τ is
set at the point where σi switches from negative
to positive. This includes all sentences which look
more like the target domain than the general. This
threshold is equivalent to sampling 20M words.

Weighted Counts Instead of weighting each
subsampled sentence equally, we test a novel ex-
tension of M-L in which we weight each sentence
proportional to σi when computing p(e2|e1).

Combined Models We combine the subsam-
pled models with the general model, using binary
logistic regression to combine the p(e2|e1) esti-
mate of the general model and that of the domain-
specific model. We use 1,000 labeled pairs from

1The candidates paraphrases constitute the full set of para-
phrases that can be extracted from our training corpus.

Figure 1: Precision-recall curves for paraphrase pairs ex-
tracted by models trained on data from each of the described
subsampling methods. These curves are generated using the
15k manually annotated sentences in the biology domain.

the target domain to set the regression weights.
This tuning set is disjoint from the test set.

5 Experimental Results

What is the effect of subsampling? Figure 1
compares the precision and recall of the differ-
ent subsampling methods against the baseline of
training on everything, when they are evaluated
on manually labeled test paraphrases from the bi-
ology domain. All of subsampled models have a
higher precision than the baseline General model,
except for the largest of the subsampled models
(which was trained on sentence pairs with 166M
words - many of which are more like the general
domain than the biology domain).

The subsampled models have reduced recall
since many of the paraphrases that occur in the full
109 word bilingual training corpus do not occur in
the subsamples. As we increase τ we improve re-
call at the expense of precision, since we are in-
cluding training data that is less and less like our
target domain. The highest precision model based
on the vanilla M-L method is M-L Change Point,
which sets the subsample size to include exactly
those sentence pairs that look more like the target
domain than the general domain.

Our novel extension of the M-L model (M-L
Weighted) provides further improvements. Here,
we weight each sentence pair in the bilingual train-
ing corpus proportional to σi when computing
the paraphrase scores. Specifically, we weight
the counting during the bilingual pivoting so that
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(a) Biology domain (b) General domain

Figure 2: Performance of models build by combining small domain-specific models trained on subsampled data with general
domain models trained on all the data. Performance in the general domain are shown as a control.

rather than each occurrence counting as 1, each
occurrence counts as the ratio of the sentence’s
cross-entropies: Hgen

Htgt
. The top-ranked sentence

pairs receive an exaggerated count of 52, while
the bottom ones receive a tiny factional count of
0.0068. Thus, paraphrases extracted from sen-
tence pairs that are unlike the biology domain re-
ceive very low scores. This allows us to achieve
higher recall by incorporating more training data,
while also improving the precision.

What is the benefit of combining models? We
have demonstrated that extracting paraphrases
from subsampled data results in higher precision
domain-specific paraphrases. But these models
extract only a fraction of the paraphrases that are
extracted by a general model trained on the full
bitext, resulting in a lower recall.

We dramatically improve the recall of our
domain-specific models by combining the small
subsampled models with the large general-domain
model. We use binary logistic regression to com-
bine the p(e2|e1) estimate of the general model
with that of each domain-specific model. Figure
2(a) shows that we are able to extend the recall
of our domain-specific models to match the recall
of the full general-domain model. The precision
scores remain higher for the domain-specific mod-
els. Our novel M-L Weighted model performs the
best. Table 3 gives the area under the curve (AUC).
The best combination improves AUC by more
than 4 points absolute (>10 points relative) in the
biology domain. Table 2 provides examples of
paraphrases extracted using our domain-specific

general / bio-spec. general / bio-spec.
air aerial / atmosphere fruit result / fruiting
balance pay / equilibrate heated lively / hot
breaks pauses / ruptures motion proposal / movement

Table 2: Top paraphrase under the general and the best
domain-specific model, General+M-L Weighted.

AUC ∆absolute ∆relative

General 39.5 – –
Gen.+M-L,T=1 40.8 +1.3 +3.3
Gen.+M-L,T=145 40.8 +1.3 +3.3
Gen.+M-L,T=29 41.2 +1.7 +4.3
Gen.+M-L CP 41.9 +2.4 +6.1
Gen.+M-L,T=6 42.3 +2.8 +7.1
Gen.+M-L Weighted 43.7 +4.2 +10.6

Table 3: AUC (× 100) for each model in the biology domain
from Figure 2(a).

model for biology versus the baseline model.

6 Related Work

Domain-specific paraphrasing has not received
previous attention, but there is relevant prior work
on domain-specific machine translation (MT). We
build on the Moore-Lewis method, which has
been used for language models (Moore and Lewis,
2010) and translation models (Axelrod et al.,
2011). Similar methods use LM perplexity to
rank sentences (Gao et al., 2002; Yasuda et al.,
2008), rather than the difference in cross-entropy.
Within MT, Foster and Kuhn (2007) used log-
linear weightings of translation probabilities to
combine models trained in different domains, as
we do here. Relevant to our proposed method of
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fractional counting, (Madnani et al., 2007) used
introduced a count-centric approach to paraphrase
probability estimation. Matsoukas et al. (2009)
and Foster et al. (2010) explored weighted training
sentences for MT, but set weights discriminatively
based on sentence-level features.

7 Conclusion

We have discussed the new problem of extracting
domain-specific paraphrases. We adapt a method
from machine translation to the task of learn-
ing domain-biased paraphrases from bilingual cor-
pora. We introduce two novel extensions to this
method. Our best domain-specific model dramat-
ically improves paraphrase quality for the target
domain.
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