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Abstract

Many existing knowledge bases (KBs), in-
cluding Freebase, Yago, and NELL, rely
on a fixed ontology, given as an input
to the system, which defines the data to
be cataloged in the KB, i.e., a hierar-
chy of categories and relations between
them. The system then extracts facts that
match the predefined ontology. We pro-
pose an unsupervised model that jointly
learns a latent ontological structure of an
input corpus, and identifies facts from the
corpus that match the learned structure.
Our approach combines mixed member-
ship stochastic block models and topic
models to infer a structure by jointly mod-
eling text, a latent concept hierarchy, and
latent semantic relationships among the
entities mentioned in the text. As a case
study, we apply the model to a corpus
of Web documents from the software do-
main, and evaluate the accuracy of the var-
ious components of the learned ontology.

1 Introduction

Knowledge base (KB) construction methods can
be broadly categorized along several dimensions.
One dimension is ontology-guided construction,
where the list of categories and relations that de-
fine the schema of the KB are explicit, versus open
IE methods, where they are not. Another dimen-
sion is the type of relations and types included in
the KB: some KBs, like WordNet, are hierarchi-
cal, in that they contain mainly concept types, su-
pertypes and instances, while other KBs contain
many types of relationships between concepts. Hi-
erarchical knowledge can be learned by methods
including distributional clustering (Pereira et al.,
1993), as well as Hearst patterns (Hearst, 1992)
and similar techniques (Snow et al., 2006). Re-
verb (Fader et al., 2011) and TextRunner (Yates

et al., 2007) are open methods for learning multi-
relation KBs. Finally, NELL (Carlson et al., 2010;
Mitchell et al., 2015), FreeBase (Google, 2011)
and Yago (Suchanek et al., 2007; Hoffart et al.,
2013) are ontology-guided methods for extracting
KBs containing both hierarchies and relations.

One advantage of ontology-guided methods is
that the extracted knowledge is easier to reason
with. An advantage of open IE methods is that
ontologies may be incomplete, and are expensive
to construct for a new domain. Ontology design
involves assembling a set of categories, organized
in a meaningful hierarchical structure, often pro-
viding seeds, i.e., representative examples for each
category, and finally, defining inter-category rela-
tions. This process is often done manually (Carl-
son et al., 2010) leading to a rigid set of categories.
Redesigning a new ontology for a specialized do-
main represents an additional challenge as it re-
quires extensive knowledge of the domain.

In this paper, we propose an unsupervised
model that learns a latent hierarchical structure
of categories from an input corpus, learns latent
semantic relations between categories, and also
identifies facts from the corpus that match the
learned structure. In other words, the model learns
both the schema for a KB, and a set of facts that
are related to that schema, thus combining the
processes of KB population and ontology con-
struction. The intent is to build systems that ex-
tract facts which can be interpreted relative to a
meaningful ontology without requiring the effort
of manual ontology construction.

The input to the learning method is a cor-
pus of documents, plus two sets of resources ex-
tracted from the same corpus: a set of hypernym-
hyponym pairs (e.g., “animal”, “horse”) extracted
using Hearst patterns, and a set of subject-verb-
object triples (e.g., “horse”, “eats”, “hay”) ex-
tracted from parsed sentences. These resources
are analogous to the output of open IE systems for
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hierarchies and relations, and as we demonstrate,
our method can be used to highlight domain-
specific data from open IE repositories.

Our approach combines mixed membership
stochastic block models and topic models to in-
fer a structure by jointly modeling text docu-
ments, and links that indicate hierarchy and rela-
tion among the entities mentioned in the text. Joint
modeling allows information on topics of nouns
(referred to as instances) and verbs (referred to
as relations) to be shared between text documents
and an ontological structure, resulting in a set of
compelling topics. This model offers a complete
solution for KB construction based on an input
corpus, and we therefore name it KB-LDA.

We additionally propose a method for recover-
ing meaningful names for concepts in the learned
hierarchy. These are equivalent to category names
in other KBs, however, following our method we
extract from the data a set of potential alterna-
tive concepts describing each category, including
probabilities for their strength of association.

To show the effectiveness of our method, we ap-
ply the model to a dataset of Web based documents
from the software domain, and learn a software
KB. This is an example of a specialized domain in
which, to our knowledge, no broad-coverage on-
tology exists. We evaluate the model on the in-
duced categories, relations, and facts, and we com-
pare the proposed categories with an independent
set of human-provided labels for documents. Fi-
nally, we use KB-LDA to retrieve domain-specific
relations from an open IE resource. We provide
the learned software KB as supplemental material.

2 KB-LDA

Modeling latent sets of entities from observed in-
teractions among them is a well researched task,
often encountered in social network analysis for
the purpose of identifying specialized communi-
ties in the network. Mixed Membership Stochas-
tic Blockmodels (Airoldi et al., 2009; Parkkinen
et al., 2009) model entities as graph nodes with
pairwise relations drawn from latent blocks with
mixed membership. A related approach is taken
by topic models such as LDA (Latent Dirichlet
Allocation; (Blei et al., 2003)), which model doc-
uments as generated by a mixture of latent topics,
and words in the documents as generated by topic-
specific word distributions. The KB-LDA model
combines the two approaches. It models links be-

πO – multinomial over ontology topic pairs, with Dirichlet
prior αO

πR – multinomial over relation topic tuples, with Dirichlet
prior αR

θd – topic multinomial for document d, with Dirichlet
prior αD

σk – multinomial over instances for topic k, with Dirichlet
prior γI

δk′ – multinomial over relations for topic k′, with Dirichlet
prior γR

CIi = 〈Ci, Ii〉 – i-th ontological assignment pair
SVOj = 〈Sj , Oj , Vj〉 – j-th relation assignment tuple
zCI
i = 〈zCi , zIi〉 – topic pair chosen for example 〈Ci, Ii〉
zSV O
j = 〈zSj , zOj , zVj 〉 – topic tuple chosen for example
〈Sj , Oj , Vj〉

zD
E1
, zD

E2
– topic chosen for instance entityE1, or relation

entity E2, respectively, in a document
nI

z,i – number of times instance i is observed under topic
z (in either zD , zCI or zSV O)

nR
z,r – number of times relation r is observed under topic
z (in either zD or zSV O)

nO
〈zc,zi〉 – count of ontological pairs assigned the topic

pair 〈zc, zi〉 (in zCI )
nR

〈zs,zo,zv〉 – count of relation tuples assigned the topic
tuple 〈zs, zo, zv〉 (in zSV O)

Table 1: KB-LDA notation.

tween tuples of two or three entities using stochas-
tic block models, and these are additionally influ-
enced by latent topic assignments of the entities in
a document corpus.

In the KB-LDA model, shown as a plate dia-
gram in Figure 1 with notation in Table 1, informa-
tion is shared between three components, through
common latent topics over noun and verb entities.
The Ontology component (upper right) models
hierarchical links between Concept-Instance (CI)
entity pairs. The Relations component (left) mod-
els links between Subject-Verb-Object (SVO) en-
tity triples, where the subject and object are nouns
and the verb represents a relation between them.
Finally, the Documents component (lower left) is
a link-LDA model (Erosheva et al., 2004) of text
documents containing a combination of noun and
verb entity types. In this formulation, distribu-
tions over noun and verb entities that are related
according to hierarchical or relational constraints,
are linked with a text model via shared parameters.

In more detail, the Documents component pro-
vides the context in which noun and verb entities
are being used in text. It is modeled as an exten-
sion of LDA, viewing documents as sets of “bags
of words”, where in this case, each bag contains
either noun or verb entities. Each entity type has a
topic-wise multinomial distribution over the set of
entities in the vocabulary of that type.
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Figure 1: Plate Diagram of KB-LDA.

The Ontology component is a generative model
representing hierarchal links between pairs of
nouns. The examples for this component are ex-
tracted using a small collection of Hearst patterns
indicating concept-instance or concept-concept
links, including, ’X such as Y’, and ’X including
Y’. For example, the sentence “websites such as
StackOverflow” indicates that Stackoverflow is a
type of website, leading to the extracted noun pair
〈websites, StackOverflow〉. We refer to the exam-
ples extracted using these hierarchical patterns as
concept-instance pairs, and to the individual enti-
ties as instances.

The pairs have an underlying block structure
derived from a sparse block model (Parkkinen et
al., 2009). They are generated by topic specific
instance distributions conditioned on topic pair
edges, which are defined by the multinomial πO

over the Cartesian product of the noun topic set
with itself. The individual instances, therefore,
have a mixed membership in topics. Note that
we allow for a concept and instance to be drawn
from different noun topics, defined by σ. For ex-
ample, we may learn a topic highlighting concept
tokens like ’websites’, ’platforms’, ’applications’.
Another topic can highlight instances shared by
these concepts, such as, ’stackoverflow’, ’google’,
and ’facebook’. Finally, the observation that the
former topic frequently contains concepts of in-
stances from the latter topic, is encoded in the
multinomial distribution πO. From this we infer
that the former topic should be placed higher in
the induced hierarchy.

Similarly, the Relations component represents
relational links between a noun subject, a verb and
a noun object. The examples for this component

Let K be the number of target latent topics.
1. Generate topics: For topic k∈1, . . . ,K, sample:
• σk∼Dirichlet(γI), the per-topic instance distribution
• δk∼Dirichlet(γR), the per-topic relation distribution

2. Generate ontology: Sample πO∼Dirichlet(αO), the
instance topic pair distribution.
• For each concept-instance pair CIi, i∈1, . . . , NO:

– Sample topic pair zCI
i ∼Multinomial(πO)

– Sample instances Ci∼Multinomial(σzCi
), Ii∼

Multinomial(σzIi
), then CIi = 〈Ci, Ii〉

3. Generate relations: Sample πR∼Dirichlet(αR), the
relation topic tuple distribution.
• For each tuple SVOj , j∈1, . . . , NR:

– Sample topic tuple zSV O
j ∼Multinomial(πR)

– Sample instances, Sj∼Multinomial(σzSj
), Oj∼

Multinomial(σzOj
), and sample a relation Vj∼

Multinomial(δzVj
)

4. Generate documents: For document d∈1, . . . , D:
• Sample θd∼Dirichlet(αD), the topic mixing distri-

bution for document d.
• For every noun entity (El1) and verb entity (El2), l1∈

1, . . . , Nd,I , l2∈1, . . . , Nd,R:
– Sample topics zEl1

, zEl2
∼Multinomial(θd)

– Sample entities El1∼Multinomial(σzEl1
) and

El2∼Multinomial(δzEl2
)

Table 2: KB-LDA generative process.

are extracted from SVO patterns found in the doc-
ument corpus, following Talukdar et al. (2012).
An extracted example looks like: 〈websites, ex-
ecute, javascript〉. Subject and object topics are
drawn from the noun topics (σ), while the verb
topics is drawn from the verb topics, defined by
δ. The multinomial πR encodes the interaction of
noun and verb topics based on the extracted rela-
tional links, and it is defined over the Cartesian
product of the noun topic set with itself and with
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the verb topic set.
The generative process of KB-LDA is de-

scribed in Table 2. Given the hyperparameters
(αO, αR, αD, γI , γR), the joint distribution over
CI pairs, SVO tuples, documents, topics and topic
assignments is given by

p(πO, πR, σ, δ,CI, zCI ,SVO, zSV O,θ,E, zD|
αO, αR, αD, γI , γR) =

K∏
k=1

Dir(σk|γI)×
K∏

k′=1

Dir(δk′ |γR)× (1)

Dir(πO|αO)
NO∏
i=1

π
〈zCi

,zIi
〉

O σCi
zCi
σIi

zIi
×

Dir(πR|αR)
NR∏
j=1

π
〈zSj

,zOj
,zVj

〉
R σ

Sj
zSj
σ

Oj
zOj

δ
Vj
zVj
×

ND∏
d=1

Dir(θd|αD)
Nd,I∏
l1=1

θ
zD
El1

d σEl1

zD
El1

Nd,R∏
l2=1

θ
zD
El2

d δEl2

zD
El2

2.1 Inference in KB-LDA
Exact inference is intractable in the KB-LDA
model. We use a collapsed Gibbs sampler (Grif-
fiths and Steyvers, 2004) to perform approximate
inference in order to query the topic distributions
and assignments. It samples a latent topic pair for
a CI pair in the corpus conditioned on the assign-
ments to all other CI pairs, SVO tuples, and docu-
ment entities, using the following expression, after
collapsing πO:

p̂(zCI
i |CIi, zCI

¬i , z
SV O, zD,CI¬i, αO, γI) (2)

∝
(
nO¬i

zCI
i

+ αO

)
×

(nI¬i
zCi

,Ci
+ γI)(nI¬i

zIi
,Ii

+ γI)

(
∑
C

nI¬i
zCi

,C + TIγI)(
∑
I

nI¬i
zIi

,I + TIγI)

where counts of observations from the training set
are noted by n (see Table 1), and TI is the number
of instance entities (size of noun vocabulary).

We similarly sample topics for each SVO tuple
conditioned on the assignments to all other tuples,
CI pairs and document entities, using the follow-
ing expression, after collapsing πR:

p̂(zSV O
j |SVOj , z

SV O
¬j , zCI , zD, SVO¬j , αR, γI , γR) (3)

∝
(
nR¬j

zSV O
j

+ αR

)
×

(nI¬j
zSj

,Sj
+ γI)(n

I¬j
zOj

,Oj
+ γI)(n

R¬j
zVj

,Vj
+ γR)

(
∑
I

nI¬j
zSi

,I +TIγI)(
∑
I

nI¬j
zOi

,I +TIγI)(
∑
V

nR¬j
zVj

,V +TRγR)

We sample a latent topic for an entity mention
in a document from the text corpus conditioned
on the assignments to all other entity mentions af-
ter collapsing θd. The following expression shows
topic sampling for a noun entity in a document:

p̂(zEl1
|E,CI,SVO, zD, zCI , zSV O, αD, γI) (4)

∝ (n¬l1
d,z + αD)

nI¬l1
zEl1

,El1
+ γI∑

E′l1
nI¬l1

zEl1
,E′l1

+ TIγI

The per-topic multinomial parameters and topic
distributions of CI pairs, SVO tuples and docu-
ments can be recovered with MLE estimates using
their observation counts:

σ̂I
k =

nI
k,I + γI∑

I′ n
I
k,I′ + TIγI

, δ̂R
k =

nR
k,R + γR∑

R′ n
R
k,R′ + TRγR

θ̂z
d =

nz,d + αD∑
z′ nz′,d +KαD

π̂
〈zC ,zI〉
O =

nO
〈zC ,zI〉 + αO∑

z′C ,z′I

nO
〈z′C ,z′I〉 +K2 · αO

π̂
〈zS ,zO,zV 〉
R =

nR
〈zS ,zO,zV 〉 + αR∑

z′S ,z′O,z′V

nR
〈z′S ,z′O,z′V 〉 +K3 · αR

Using the KB-LDA model we can describe the
latent topic hierarchy underlying the input cor-
pus. We consider the multinomial of the Ontology
component, πO, as an adjacency matrix describ-
ing a network where the nodes are instance topics
and edges indicate a hypernym-to-hyponym rela-
tion. By extracting the maximum spanning tree
over this adjacency matrix, we recover a hierarchy
over the input data. We recover relations among
instance topics by extracting from the Relations
multinomial, πR, the set of most probable tuples
of a 〈subject topic, verb topic, object topic〉.

Our model is implemented using a fast, parallel
approximation of collapsed Gibbs sampling, fol-
lowing Newman et al. (2009). In each sampling
iteration, topics are sampled locally on a subset of
the training examples. At the end of each iteration,
data from worker threads is joined and model pa-
rameters are updated with complete information.
In the next iteration, thread-local sampling starts
with complete topic assignment information from
the previous iteration. In each thread, the process
can be viewed as a reordering of the input exam-
ples, where the examples sampled in that thread
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are viewed first. It has been shown that parallel ap-
proaches considerably speed up iterative inference
methods such as collapsed Gibbs sampling, result-
ing in test data log probabilities indistinguishable
from those obtained using serial methods (Porte-
ous et al., 2008; Newman et al., 2009). A paral-
lel approach is especially important when training
the KB-LDA model due to the large dimensions
of the multinomials of the Ontology and Relations
components (K2 andK3, respectively for a model
with K topics). We train KB-LDA over 2000 iter-
ations, more than what has traditionally been used
for collapsed Gibbs samplers.

2.2 Data-driven discovery of topic concepts
The KB-LDA model described above clusters
noun entities into sets of instance topics, and re-
covers a latent hierarchical structure among these
topics. Each instance topic can be described by a
multinomial distribution of the underlying nouns.
It is often more intuitive, however, to refer to a
topic containing a set of high probability nouns by
a name, or category, just as traditional ontologies
describe hierarchies over categories.

Our model is trained over nouns that originate
from concept-instance example pairs (used to train
the Ontology component). We describe a method
for selecting a category name for a topic, based on
concepts that best represent high probability nouns
of the topic in the concept-instance examples.

We calculate the probability that a concept noun
c describes the set of instances I that have been
assigned the topic z using

p(c, z|I) ∝ p(I|c, z) ∗ p(c, z) (5)

= p(I|c, z) ∗ p(z|c) ∗ p(c)
Let rep(c, z) =

∑
i:Ci=c n

I
z,Ii

describe how well
concept c represents topic z according to the as-
signments of instances with concept c to the topic.
Then,

p(z|c) =
rep(c, z)∑
z′ rep(c, z′)

(6)

The concept prior, p(c), is based on the relative
weight of instances with concept c in the concept-
instance example set, and is an indicator of the
generality of a concept:

p(c) =

∑
i:Ci=cwc,Ii∑

c′
∑

i:Ci=c′ wc′,Ii

(7)

where wC,I is the number of occurrences of
concept-instance pair 〈C, I〉 in the corpus.

Finally, p(I|c, z) measures how specific are the
topic instances to the concept c,

p(I|c, z) =

∑
i:Ii∈I,Ci=cwc,Ii∑

i:Ci=cwc,Ii

/
Z (8)

where I is the set of training instances assigned
with topic z, and Z is a normalizer over all con-
cepts and topics.

Following this method we extract concepts that
have a high probability p(c, z|I) with respect to a
topic z. These can be thought of as equivalent to
the single, fixed, category name provided by tra-
ditional KB ontologies; however, here we extract
from the data a set of potential alternative noun
phrases describing each topic, including a proba-
bility for the strength of this association.

3 Experimental Evaluation

We evaluate the KB-LDA model on a corpus
of 5.5M documents from the software domain;
thereby we are using the model to construct a soft-
ware domain knowledge base. Our evaluation ex-
plores the following questions:
• Can KB-LDA learn categories, relations, a

hierarchy and topic concepts with high pre-
cision?
• How well do KB-LDA topics correspond

with human-provided document labels?
• Is KB-LDA useful in extracting facts from

existing open IE resources?

3.1 Data
We use data from the Q&A website StackOver-
flow1 where users ask and answer technical ques-
tions about software development, tools, algo-
rithms, etc’. We extracted 562K concept-instance
example pairs from the data, and kept the 17K ex-
amples appearing at least twice. Noun phrases
in these examples make up our Instance Dictio-
nary. Out of 6.8M SVO examples found in the
data we keep 37K in which the subject and ob-
ject are in the Instance Dictionary, and the exam-
ple appears at least twice in the corpus. The verbs
in these SVOs make up our Relation Dictionary.
Finally, we consider as documents the 5.5M ques-
tions from StackOverflow with all their answers.

3.2 Evaluating the learned KB precision
In this section we evaluate the direct output of a
model trained with 50 topics: the extracted in-

1Data source: https://archive.org/details/stackexchange
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Figure 2: Average Match (top) and Group (bot-
tom) precision of top tokens of 50 topics learned
with KB-LDA, according to expert (dark blue) and
non-expert (light blue, stripes) labeling.

stance topics, topic hierarchy, relations among
topics and extracted topic concepts. In each of
the experiments below, we extract facts based on
one of the learned components and evaluate each
fact based on annotations from human judges: two
experts and three non-expert users, collected us-
ing Mechanical Turk, that were pre-tested on a
basic familiarity with concepts from the software
domain, such as programming languages, version
control systems, and databases.

3.2.1 Precision of Instance Topics

We measure the coherence of instance topics us-
ing an approach called word intrusion (Chang et
al., 2009). We extract the top 30 instance tokens
of a topic ranked by the instance topic multinomial
σ. We present to workers tokens 1-5,6-10,. . . ,26-
30, where each 5 tokens are randomly ordered and
augmented with an extra token that is ranked low
for the topic, (the intruder). We ask workers to
select all tokens that do not belong in the group
(and at least one). We define the topic Match Pre-
cision as the fraction of questions for which the
reviewer identified the correct intruder (out of 6
questions per topic), and the topic Group Precision
as the fraction of correct tokens (those not selected
as not belonging in the group). Thus Match Pre-
cision measures how well labelers understand the
topic, and Group Precision measures what fraction
of words appeared relevant to the topic.

Figure 2 shows the average Match and Group
precision over the top tokens of all 50 topics

learned with the model, as evaluated by expert and
non-expert workers. Both groups find the intruder
token in over 75% of questions. In the more subtle
task of validating each topic token (Group preci-
sion) we see a greater variance among the two la-
beler groups. This highlights the difficulty of eval-
uating domain specific facts with non-expert users.
Table 3 displays the top 20 instance topics learned
with KB-LDA, ranked by expert Group precision.

3.2.2 Precision of Topic Concepts
We assess the precision of the top 5 concept names
proposed for instance topics, following the method
presented in Section 2.2. Top concepts for a sub-
set of topics are shown in Table 3. For each topic,
we present to the user a hypernym-hyponym pat-
tern of the topic based on the top concepts and top
instances of the topic. As an example, if the top 5
instances of a topic are ie, firefox, chrome, buttons,
safari and the top 5 concepts for this topic are web
browsers, web browser, browser, ie, chrome, the
pattern presented to workers is
• [ie, firefox, chrome, buttons, safari] is a [web browsers,

web browser, browser, ie, chrome]

Workers were asked to match at least 3 instances
to a proposed concept name. In addition, the same
assessment was applied for each topic using ran-
domly sampled concepts. We present in Table 4
the number and precision of patterns based on ex-
tracted concepts (Concepts) and random concepts
(Random), that were labeled by 1, 2 or 3 workers,
as well as the average results among experts. We
achieve nearly 90% precision according to expert
labeling, however we do not observe large agree-
ment among non-expert labelers.

3.2.3 Precision of Relations
To assess the precision of the relations learned in
the KB-LDA model, we extract the top 100 rela-
tions learned according to their probability in the
relation multinomial πR. Relation patterns were
presented to workers as sets of the top subject-
verb-object tokens of the respective topics in the
relation. An example relation is
• Subject words: [user, users, people, customer, client]

• Verb words: [clicks, selects, submits, click, hits]

• Object words: [function, method, class, object, query]

and workers are asked to state whether the pat-
tern indicates a valid relation or not, by check-
ing whether a reasonable number of combinations
of subject-verb-object triples extracted from each
of the relation groups can produce valid relations.
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Top 2 Topic Concepts Top 10 Topic Tokens

table, key table, query, database, sql, column, data, tables, mysql, index, columns
properties, css image, code, images, problem, point, color, data, size, screen, points

credentials, user information name, images, id, number, text, password, address, strings, files, string
page, content page, html, code, file, image, javascript, browser, http, jquery, js

orm tools, orm tool tomcat, hibernate, server, boost, apache, spring, mongodb, framework, nhibernate, png
clients, apps app, application, http, android, device, phone, code, api, iphone, google

applications, systems devices, systems, applications, services, platforms, tools, sites, apps, system, service
systems, platforms google, windows, linux, facebook, git, ant, database, gmail, android, so

limits, limit memory, time, thread, code, threads, process, file, program, data, object
data, table query, table, data, list, example, number, results, search, database, rows
type, value code, function, value, type, pointer, array, memory, compiler, example, string

table, request data, information, types, properties, details, fields, values, content, resources, attributes
dependencies, jar file libraries, library, framework, frameworks, formats, format, database, databases, tools, server

type, object value, focus, place, property, method, reference, interface, effect, pointer, data
kinds, code languages, language, features, objects, functions, methods, code, operations, structures, types

element, elements button, form, link, item, file, mouse, image, value, option, row
javascript libraries, javascript framework jquery, mysql, http, json, xml, library, html, sqlite, asp, php

process, operating system server, client, connection, data, http, socket, message, request, port, service
folder, files file, files, directory, folder, path, code, name, resources, project, folders
value, array array, list, value, values, number, string, code, elements, loop, object

Table 3: Top 20 instance topics learned with KB-LDA. For each topic we show the top 2 concepts
recovered for the topic, and top 10 tokens. In italics are words marked as out-of-topic by expert labelers.

Workers Concepts Relations Subsumptions

KB-LDA (p) Random (p) KB-LDA (p) Random (p) KB-LDA (p) Random (p)

1 48 (0.96) 6 (0.12) 90 (0.9) 69 (0.69) 31 (0.63) 28 (0.57)
2 42 (0.84) 0 (0.0) 63 (0.63) 22 (0.22) 16 (0.33) 9 (0.18)
3 26 (0.52) 0 (0.0) 15 (0.15) 4 (0.05) 3 (0.06) 4 (0.08)

Experts 44 (0.88) 0 (0.0) 70 (0.7) 13 (0.13) 25 (0.51) 4 (0.08)

Table 4: Precision of topic concepts, relations, and subsumptions. For items extracted from the model
(KB-LDA), and randomly (Random), we show the number of items marked as correct, and precision in
parentheses (p), as labeled by 1, 2, or 3 non-expert workers, and the average precision by experts.

We present in Table 4 the number and precision of
patterns based on the top 100 relations (Relations)
and 100 random relations (Random), that were la-
beled by 1, 2 or 3 workers, and the average results
among experts. We achieve 80% precision accord-
ing to experts, and only 18% on random relations.
We observe similar agreement among expert and
non-expert workers as in the concept evaluation
experiment, however we note that random rela-
tions prove more confusing for non-experts and
more of them are (falsely) labeled as correct.

3.2.4 Precision of Hierarchy

We assess the precision of subsumption relations
making up the ontology hierarchy. These are ex-
tracted using the maximum spanning tree over the
graph represented by the Ontology component, πO

(see Section 2.1 for details), resulting in 49 sub-
sumption relations. We compare their quality to

that of 49 randomly sampled subsumption rela-
tions. Subsumptions are presented to the worker
using is a patterns, similar to the ones described
above for concept evaluation, however in this case,
the concept tokens are the top tokens of the hyper-
nym topic. An example subsumption relation is

• [java, python, javascript, lists, ruby] is a [languages,

language, features, objects, functions]

The results shown in Table 4 indicate a low pre-
cision among the extracted subsumption relations.
This might be explained by the fact that at the final
training iteration (2K) of the model, the perplexity
of the Ontology component was still improving,
while the perplexity of the other model compo-
nents seemed closer to convergence. It is possible
that the low precision observed here indicates that
more training iterations are needed to achieve an
accurate ontology using KB-LDA.
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Topic string, character, characters, text, line
Tags regex, string, python, php, ruby

Topic element, div, css, elements, http
Tags css, html, jquery, html5, javascript

Topic table, query, database, sql, column
Tags sql, mysql, database, performance, php

Topic jquery, mysql, http, json, xml
Tags jquery, json, javascript, ruby, string

Table 5: Top tags associated with sample topics.

3.3 Overlap of KB-LDA topics with
human-provided labels

We evaluated how well topics from KB-LDA cor-
respond to document labels provided by humans,
over a randomly sampled set of 40K documents
from our corpus. In StackOverflow, questions
(which we consider as documents) can be labeled
with predefined tags. Here, we estimate the over-
lap with the most frequently used tags. First, for
topic k, we aggregate tags from documents where
k = argmaxk′ θ

k′
d , where θd is the document topic

distribution. Table 5 shows examples of the top
tags associated with sample topics, indicating a
good correlation between top topic words and the
underlying concepts.

Next, for each tested document d ∈ D, let Wd

be the top 30 words of the most probable topic in
θd, and Td the set of human provided document
tags. We consider the following metrics:

Docs-Overlap =

∑D
d 1{∃t∈Td:t∈Wd}

|D|

measures the ratio of documents for which at least
one tag overlaps with a top topic word. The aver-
age ratio of overlapping tags per document is

Tag-Overlap =
1
|D|

D∑
d

|t : t ∈ Td ∧ t ∈Wd|
|Td|

As a baseline, we measure similar overlap metrics
using the 30 most frequent instance tokens in the
document corpus. The results in Table 6 indicate
an overlap of nearly half of the 20, 50, 100, and
500 most frequent tags with top topic tokens – sig-
nificantly higher than the overlap with frequent to-
ken. Our evaluation is based on the subset of tags
found in the instance dictionary of KB-LDA.

Top Found in KB-LDA Frequent Tokens
Tags Dictionary Docs Tag Docs Tag

20 14 0.45 0.42 0.21 0.16
50 36 0.48 0.42 0.20 0.14

100 72 0.45 0.38 0.20 0.13
500 322 0.44 0.33 0.18 0.10

Table 6: Docs and Tag overlap of human-provided
tags with KB-LDA topics, and frequent tokens.

Top 10 ranked triples: 〈server, not found, error〉,
〈user, can access, file〉, 〈method, not found, error〉,
〈user, can change, password〉, 〈page, not found, error〉,
〈user, can upload, videos〉, 〈compiler, will generate,
error〉, 〈users, can upload, files〉, 〈users, can upload,
files〉, 〈object, not found, error〉
Bottom 10 ranked triples: 〈france, will visit,
germany〉, 〈utilities, may include, heat〉, 〈iran, has had,
russia〉, 〈russia, can stop, germany〉, 〈macs, do not
support, windows media player〉, 〈cell phones, do not
make, phone calls〉, 〈houses, have made, equipment〉,
〈guests, will find, restaurants〉, 〈guests, can request,
bbq〉, 〈inspectors, do not make, appointments〉

Table 7: Top and bottom ReVerb software triples
ranked with KB-LDA.

3.4 Extracting facts from an open IE
resource

We use KB-LDA to extract domain specific triples
from an existing open IE KB, the 15M relations
extracted using ReVerb (Fader et al., 2011) from
ClueWeb09. By extracting the relations in which
the subject, verb and object noun phrases are in-
cluded in the KB-LDA dictionary, we are left with
under 5K triples, indicating the low coverage of
software related triples using open domain extrac-
tion, in comparison with the 37K triples extracted
from StackOverflow and given as an input to KB-
LDA.

Due to word polysemy, many of the 5K
extracted triples are themselves not specific
to the domain. This suggests a hybrid ap-
proach in which KB-LDA is used to rank
open IE triples for relevance to a domain. We
ranked the 5K open triples by the probability
of the triple given a trained KB-LDA model:
p(s, v, o) =

∑K
ks

∑K
kv

∑K
ko
π
〈ks,kv ,ko〉
R σs

ks
σo

ko
δv
kv

.
Table 7 shows the top and bottom 10 triples
according to this ranking, which suggests that
the triples ranked higher by KB-LDA are more
relevant to the software domain.

We compare the ranking based on KB-LDA to
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Figure 3: Precision-recall curves of rankers of
open IE triples by software relevance, based on
KB-LDA probabilities (blue), and ReVerb confi-
dence (red). A star is pointing the highest F1.

a ranking using a confidence score for the triple
as assigned by ReVerb. We manually labeled 500
of the triples according to their relevance to the
software domain, and measured the precision and
recall of the two rankings at any cutoff thresh-
old. Figure 3 shows precision-recall curves for
the two rankings, demonstrating that the ranking
using probabilities based on KB-LDA leads to a
more accurate detection of domain-relevant triples
(with AUC of 0.67 for KB-LDA versus 0.57 for
ReVerb).

4 Related Work

KB-LDA is an extension to LDA and link-LDA
(Blei et al., 2003; Erosheva et al., 2004), model-
ing documents as a mixed membership over en-
tity types with additional annotated metadata, such
as links (Nallapati et al., 2008; Chang and Blei,
2009). It is a generalization of Block-LDA (Bal-
asubramanyan and Cohen, 2011), however, KB-
LDA models two link components, and the input
links have a meaningful semantic correspondence
to a KB structure (hierarchical and relational). In
a related approach, Dalvi et al. (2012) cluster web
table concepts to non-probabilistically create hier-
archies with assigned concept names.

Our work is related to latent tensor representa-
tion of KBs, aimed at enhancing the ontological
structure of existing KBs with relational data in the
form of tensor structures. Nickel et al. (2012) fac-
torized the ontology of Yago 2 for relational learn-
ing. A related approach was using Neural Tensor
Networks to extract new facts from an existing KB
(Chen et al., 2013; Socher et al., 2013). In con-

trast, in KB-LDA, relational data is learned jointly
with the model through the Relations component.

Statistical language models have recently been
adapted for modeling software code and text
documents. Most tasks focused on enhancing
the software development workflow with code
and comment completion (Hindle et al., 2012;
Movshovitz-Attias and Cohen, 2013), learning
coding conventions (Allamanis et al., 2014), and
extracting actionable tasks from software doc-
umentation (Treude et al., 2014). In related
work, specific semantic relations, coordinate re-
lations, have been extracted for a restricted class
of software entities, ones that refer to Java classes
(Movshovitz-Attias and Cohen, 2015). KB-LDA
extends previous work by reasoning over a large
variety of semantic relations among general soft-
ware entities, as found in a document corpus.

5 Conclusions

We presented a model that jointly learns a latent
ontological structure of a corpus augmented by re-
lations, and identifies facts matching the learned
structure. The quality of the produced structure
was demonstrated through a series of real-world
evaluations employing human judges, which mea-
sured the semantic coherence of instance topics,
relations, topic concepts, and hierarchy. We fur-
ther validated the semantic meaning of topic con-
cepts, by their correspondence to an independent
source of human-provided document tags. The ex-
perimental evaluation validates the usefulness of
the proposed model for corpus exploration.

The results highlight the benefits of generaliz-
ing pattern-based facts (hypernym-hyponym pairs
and subject-verb-object tuples), using text docu-
ments in a topic model framework. This modular
approach offers opportunities to further improve
an induced KB structure by posing additional con-
straints on corpus entities in the form of additional
components to the model.
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