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Abstract

In this paper, we introduce Long Short-
Term Memory (LSTM) recurrent network
for twitter sentiment prediction. With the
help of gates and constant error carousels
in the memory block structure, the model
could handle interactions between words
through a flexible compositional function.
Experiments on a public noisy labelled
data show that our model outperforms sev-
eral feature-engineering approaches, with
the result comparable to the current best
data-driven technique. According to the
evaluation on a generated negation phrase
test set, the proposed architecture dou-
bles the performance of non-neural model
based on bag-of-word features. Further-
more, words with special functions (such
as negation and transition) are distin-
guished and the dissimilarities of words
with opposite sentiment are magnified. An
interesting case study on negation expres-
sion processing shows a promising poten-
tial of the architecture dealing with com-
plex sentiment phrases.

1 Introduction

Twitter and other similar microblogs are rich re-
sources for opinions on various kinds of products
and events. Detecting sentiment in microblogs is
a challenging task that has attracted increasing re-
search interest in recent years (Hu et al., 2013b;
Volkova et al., 2013).

Go et al. (2009) carried out the pioneer work
of predicting sentiment in tweets using machine
learning technology. They conducted comprehen-
sive experiments on multiple classifiers based on
bag-of-words feature. Such feature is widely used
because it’s simple and surprisingly efficient in
many tasks. However, there are also disadvan-

tages of bag-of-words features represented by one-
hot vectors. Firstly, it bears a data sparsity is-
sue (Saif et al., 2012a). In tweets, irregulari-
ties and 140-character limitation exacerbate the
sparseness. Secondly, losing sequence informa-
tion makes it difficult to figure out the polarity
properly (Pang et al., 2002). A typical case is that
the sentiment word in a negation phrase tends to
express opposite sentiment to that of the context.

Distributed representations of words can ease
the sparseness, but there are limitations to the
unsupervised-learned ones. Words with special
functions in specific tasks are not distinguished.
Such as negation words, which play a special
role in polarity classification, are represented sim-
ilarly with other adverbs. Such similarities will
limit the compositional models’ abilities of de-
scribing a sentiment-specific interaction between
words. Moreover, word vectors trained by co-
occurrence statistics in a small window of con-
text effectively represent the syntactic and seman-
tic similarity. Thus, words like good and bad have
very similar representations (Socher et al., 2011).
It’s problematic for sentiment classifiers.

Sentiment is expressed by phrases rather than
by words (Socher et al., 2013). Seizing such se-
quence information would help to analyze com-
plex sentiment expressions. One possible method
to leverage context is connecting embeddings of
words in a window and compose them to a fix-
length vector (Collobert et al., 2011). However,
window-based methods may have difficulty reach-
ing long-distance words and simply connected
vectors do not always represent the interactions of
context properly.

Theoretically, a recurrent neural network could
process the whole sentence of arbitrary length by
encoding the context cyclically. However, the
length of reachable context is often limited when
using stochastic gradient descent (Bengio et al.,
1994; Pascanu et al., 2013). Besides that, a
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traditional recurrent architecture is not powerful
enough to deal with the complex sentiment expres-
sions. Fixed input limits the network’s ability of
learning task-specific representations and simple
additive combination of hidden activations and in-
put activations has difficulty capturing more com-
plex linguistic phenomena.

In this paper, we introduce the Long Short-
Term Memory (LSTM) recurrent neural network
for twitter sentiment classification by means of
simulating the interactions of words during the
compositional process. Multiplicative operations
between word embeddings through gate structures
provide more flexibility and lead to better com-
positional results compare to the additive ones
in simple recurrent neural network. Experimen-
tally, the proposed architecture outperforms vari-
ous classifiers and feature engineering approaches,
matching the performance of the current best data-
driven approach. Vectors of task-distinctive words
(such as not) are distinguished after tuning and
representations of opposite-polarity words are sep-
arated. Moreover, predicting result on negation
test set shows our model is effective in dealing
with negation phrases (a typical case of sentiment
expressed by sequence). We study the process of
the network handling the negation expressions and
show the promising potential of our model sim-
ulating complex linguistic phenomena with gates
and constant error carousels in the LSTM blocks.

2 Related Work

2.1 Microblogs Sentiment Analysis

There have been a large amount of works on sen-
timent analysis over tweets. Some research makes
use of social network information (Tan et al.,
2011; Calais Guerra et al., 2011). These works re-
veal that social network relations of opinion hold-
ers could bring an influential bias to the textual
models. While some other works utilize the mi-
croblogging features uncommon in the formal lit-
erature, such as hashtags, emoticons (Hu et al.,
2013a; Liu et al., 2012). Speriosu et al. (2011) pro-
pose a unified graph propagation model to lever-
age textual features (such as emoticons) as well as
social information.

Semantic concept or entity based approaches
lead another research direction. Saif et al. (2012a;
2012b) make use of sentiment-topic features and
entities extracted by a third-party service to ease
data sparsity. Aspect-based models are also ex-

ploited to improve the tweet-level classifier (Lek
and Poo, 2013).

2.2 Representation Learning and Deep
Models

Bengio et al. (2003) use distributed representa-
tions for words to fight the curse of dimension-
ality when training a neural probabilistic language
model. Such word vectors ease the syntactic and
semantic sparsity of bag-of-words representations.
Much recent research has explored such represen-
tations (Turian et al., 2010; Huang et al., 2012).

Recent works reveal that modifying word vec-
tors during training could capture polarity infor-
mation for the sentiment words effectively (Socher
et al., 2011; Tang et al., 2014). It would be also
insightful to analyze the embeddings that changed
the most during training. We conduct a compar-
ison between initial and tuned vectors and show
how the tuned vectors of task-distinctive function
words cooperate with the proposed architecture to
capture sequence information.

Distributed word vectors help in various NLP
tasks when using in neural models (Collobert et
al., 2011; Kalchbrenner et al., 2014). Com-
posing these representations to fix-length vectors
that contain phrase or sentence level information
also improves performance of sentiment analy-
sis (Yessenalina and Cardie, 2011). Recursive
neural networks model contextual interaction in
binary trees (Socher et al., 2011; Socher et al.,
2013). Words in the complex utterances are con-
sidered as leaf nodes and composed in a bottom-
up fashion. However, it’s difficult to get a binary
tree structure from the irregular short comments
like tweets. Not requiring structure information
or parser, long short-term memory models encode
the context in a chain and accommodate complex
linguistic phenomena with structure of gates and
constant error carousels.

3 Recurrent Neural Networks for
Sentiment Analysis

Recurrent Neural Networks (RNN) have gained
attention in NLP field since Mikolov et al. (2010)
developed a statistical language model based on
a simple form known as Elman network (El-
man, 1990). Recent works used RNNs to pre-
dict words or characters in a sequence (Chrupała,
2014; Zhang and Lapata, 2014). Treating opin-
ion expression extraction as a sequence labelling
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Figure 1: Illustration of simple recurrent neural
network. The input of the hidden layer comes
from both input layer and the hidden layer acti-
vations of previous time step.

problem, Irsoy and Cardie (2014) leverage deep
RNN models and achieve new state-of-the-art re-
sults for fine-grained extraction task. The lastest
work propose a tree-structured LSTM and conduct
a comprehensive study on using LSTM in predict-
ing the semantic relatedness of two sentences and
sentiment classification (Tai et al., 2015).

Fig.1 shows the illustration of a recurrent net-
work. By using self-connected layers, RNNs al-
low information cyclically encoded inside the net-
works. Such structures make it possible to get a
fix-length representation of a whole tweet by tem-
porally composing word vectors.

The recurrent architecture we used in this work
is shown in Fig.2. Each word is mapped to a vec-
tor through a Lookup-Table (LT) layer. The in-
put of the hidden layer comes from both the cur-
rent lookup-table layer activations and the hidden
layer’s activations one step back in time. In this
way, hidden layer encodes the past and current in-
formation. The hidden activations of the last time
step could be considered as the representation of
the whole sentence and used as input to classifica-
tion layer. By storing the word vectors in LT layer,
the model has reading and tuning access to word
representations.

Based on such recurrent architecture, we can
capture sequence information in the context and
identify polarities of the tweets.

3.1 Elman Network With Fixed
Lookup-Table

RNN-FLT: A simple implementation of the recur-
rent sentiment classifier is an Elman network (also
known as simple RNN) with Fixed Lookup-Table
(FLT). In such model, unsupervised pre-trained
word vectors in LT layer are constant during the
whole training process. The hidden layer activa-
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h
Y

Figure 2: Illustration of the general recurrent ar-
chitecture unfolded as a deep feedforward net-
work.

tion of position h at time t is:

bt
h = f

(
at

h

)
(1)

at
h =

E∑
i

wihet
i +

H∑
h′

wh′hbt−1
h′ (2)

where et represents the E-length embedding of
the tth word of the sentence, which stored in LT
layer. wih is the weight of connection between in-
put and hidden layer, while wh′h is the weights
of recurrent connection (self-connection of hidden
layer). f represents the sigmoid function. The
binary classification loss function O is computed
via cross entropy (CE) criterion and the network is
trained by stochastic gradient descent using back-
propagation through time (BPTT) (Werbos, 1990).
Here, we introduce the notation:

δt
i =

∂O

∂at
i

(3)

Firstly, the error propagate from output layer to
hidden layer of last time step T . The derivatives
with respect to the hidden activation of position i
at the last time step T are computed as follow:

δT
i = f ′ (aT

i

) ∂O

∂y
vi (4)

where vi represents the weights of hidden-output
connection and the activation of the output layer y
is used to estimate probability of the tweet bearing
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a particular polarity.

y = f

(
H∑
i

bT
i vi

)
(5)

Then the gradients of hidden layer of previous
time steps can be recursively computed as:

δt
h = f ′ (at

h

) H∑
h′

δt+1
h′ whh′ (6)

3.2 Elman Network with Trainable
Lookup-Table

Unsupervised trained word embeddings represent
the syntactic and semantic similarity. However,
in specific tasks, the importance and functions of
different words vary. Negation words have simi-
lar unsupervised trained representations with other
adverbs, but they make distinctive contributions
in sentiment expressions. Besides the function
words, tuning word vectors of sentiment words
into polarity-representable ones turns out to be an
effective way to improve the performance of sen-
timent classifiers. (Maas et al., 2011; Labutov and
Lipson, 2013). Such tuned vectors work together
with the deep models, gaining the ability to de-
scribe complex linguistic phenomena.

RNN-TLT: To this end, we modify the word
vectors in the Trainable Lookup-Table (TLT) via
back propagation to get a better embedding of
words. The gradient of lookup-table layer is:

δt
i = g′

(
at

i

) H∑
h=1

δt
hwih =

H∑
h=1

δt
hwih (7)

where identity function g (x) = x is considered as
the activation function of lookup-table layer.

3.3 Long Short-Term Memory
The simple RNN has the ability to capture con-
text information. However, the length of reach-
able context is often limited. The gradient tends
to vanish or blow up during the back propaga-
tion (Bengio et al., 1994; Pascanu et al., 2013).
Moreover, Elman network simply combines pre-
vious hidden activations with the current inputs
through addictive function. Such combination is
not powerful enough to describe a complex inter-
actions of words.

An effective solution for these problems is
the Long Short-Term Memory (LSTM) architec-
ture (Hochreiter and Schmidhuber, 1997; Gers,

Figure 3: Illustration of LSTM memory block
with one cell. Constant Error Carousel (CEC)
maintains the internal activation (called state) with
a recurrent connection of fixed weight 1.0, which
may be reset by the forget gate. The input and
output gates scale the input and output respec-
tively. All the gates are controlled by the main-
tained state, network input and hidden activation
of previous time step.

2001). Such architecture consists of a set of re-
currently connected subnets, known as memory
blocks. Each block contains one or more self-
connected memory cells and the input, output and
forget gates. Fig.3 gives an illustration of an
LSTM block. Once an error signal arrives Con-
stant Error Carousel (CEC), it remains constant,
neither growing nor decaying unless the forget
gate squashes it. In this way, it solves the vanish-
ing gradient problem and learns more appropriate
parameters during training.

Moreover, based on this structure, the input,
output and stored information can be partial ad-
justed by the gates, which enhances the flexibil-
ity of the model. The activations of hidden layer
rely on the current/previous state, previous hidden
activation and current input. These activations in-
teract to make up the final hidden outputs through
not only additive but also element-wise multiplica-
tive functions. Such structures are more capable to
learn a complex composition of word vectors than
simple RNNs.

These gates are controlled by current input, pre-
vious hidden activation and cell state in CEC unit:

Gt
I = f

(
UIx

t + VIh
t−1 + WIs

t−1
)

(8)
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Gt
F = f

(
UF xt + VF ht−1 + WF st−1

)
(9)

Gt
O = f

(
UOxt + VOht−1 + WOst

)
(10)

where Gt indicates the gate activation at time t,
xt, ht and st is input, hidden activation and state in
CEC unit at time t respectively, while U , V and W
represent the corresponding weight matrices con-
nect them to the gates. Subscript I , F and O in-
dicate input, forget and output respectively. The
CEC state and block output are computed by the
functions with element-wise multiplicative opera-
tion:

st = Gt
F st−1 + Gt

If
(
USxt + VSht−1

)
(11)

at = Gt
Ost (12)

where US indicates connection weight between in-
put and state, while VS represents the weight ma-
trix connecting hidden layer to state.

LSTM-TLT: By replacing the conventional
neural units in RNN-TLT with LSTM blocks,
we can get the LSTM network with Trainable
Lookup-Table. Such model achieves a flexible
compositional structure where the activations in-
teract in a multiplicative function. It provides
the capacity of describing diverse linguistic phe-
nomenon by learning complex compositions of
word embeddings.

4 Experiments

4.1 Data Set

We conduct experiments on the Stanford Twit-
ter Sentiment corpus (STS)1. The noisy-labelled
dataset is collected using emoticons as queries in
Twitter API (Go et al., 2009). 800,000 tweets con-
taining positive emoticons are extracted and la-
belled as positive, while 800,000 negative tweets
are extracted based on negative emoticons. The
manually labelled test set consists of 177 negative
and 182 positive tweets.

4.2 Experimental Settings

Recurrent Neural Network: We implement
the recurrent architecture with trainable lookup-
table layer by modifying RNNLIB (Graves, 2010)
toolkit.
Early Stopping: From the noisy labelled data,
we randomly selected 20,000 negative and 20,000

1http://twittersentiment.appspot.com/

positive tweets as validation set for early stopping.
The rest 1,560,000 tweets are used as training set.
Parameter Setting: Tuned on the validation set,
the size of the hidden layer is set to 60.
Word Embeddings: We run word2vec on the
training set of 1.56M tweets (without labels) to get
domain-specific representations and use them as
initial input of the model. Limited to the input for-
mat of the toolkit, we learned 25-dimensional (rel-
atively small) vectors. Skip-gram architecture and
hierarchical softmax algorithm are chosen during
training.

4.3 Comparison with Data Driven
Approaches

Classifier Accuracy(%)
SVM 81.6
MNB 82.7
MAXENT 83.0
MAX-TDNN 78.8
NBoW 80.9
DCNN 87.4
RAE 77.6
RNN-FLT 80.2
RNN-TLT 86.4
LSTM-TLT 87.2

Table 1: Accuracies of different classifiers.

Naive Bayes, Maximum Entropy and SVM are
widely used classifiers. Go et al. (2009) presented
the results of three non-neural models using uni-
gram and bigram features.

Dynamic Convolutional Neural Network
(DCNN) (Kalchbrenner et al., 2014) is a general-
ization of MAX-TDNN (Collobert et al., 2011).
It has a clear hierarchy and is able to capture
long-range semantic relations. While the Neural
Bag-of-Words (NBoW) takes the summation of
word vectors as the input of a classification layer.
Kalchbrenner et al. (2014) reported performances
of the above three neural classifiers.

Recursive Autoencoder (RAE) has proven to be
an effective model to compose words vectors in
sentiment classification tasks (Socher et al., 2011).
We run RAE with randomly initialized word em-
beddings. We do not compare with RNTN (Socher
et al., 2013) for lack of phrase-level sentiment la-
bels and accurate parsing results.

Table 1 shows the accuracies of different clas-
sifiers. Notably, RNN-TLT and LSTM-TLT out-
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perform the three non-neural classifiers. Trained
on the considerable data, these classifiers pro-
vide strong baselines. However, bag-of-words rep-
resentations are not powerful enough. Sparsity
and losing sequence information hurt the perfor-
mance of classifiers. Neural models overcome
these problems by using distributed representa-
tions and temporally encoding the contextual in-
teraction.

We notice a considerable increase in the perfor-
mance of the RNN-TLT with respect to the NBoW,
whose embeddings are also tuned during super-
vised training. It suggests that recurrent models
could generate better tweet-level representations
for the task by composing the word embeddings
in a temporal manner and capturing the sequential
information of the context.

Convolutional neural networks have outstand-
ing abilities of feature extraction, while LSTM-
TLT achieves a comparable performance. It sug-
gests that LSTM model is effective in learning
sentence-level representations with a flexible com-
positional structure.

RAE provides more general representations of
phrases by learning to reconstruct the word vec-
tors. Recurrent models outperform RAE indi-
cates that task-specific composing and representa-
tion learning with less syntactic information lead
to a better result.

Comparing RNN-FLT with RNN-TLT, we can
easily figure out that the model with trainable
lookup-table achieves better performance. This
is due to the fact that tuned embeddings capture
the sentiment information of text by distinguish-
ing words with opposite sentiment polarities and
providing more flexibility for composing. LSTM-
TLT does not outperform RNN-TLT significantly.
And the situations are almost the same on short-
sentence (less than 25 words) and long-sentence
(not less than 25 words) test set. Such results in-
dicate that the ability of LSTM getting access to
longer-distance context is not the determinant of
improvement, while the capacity of LSTM han-
dling complex expressions plays a more important
role. Such capacity will be further discussed in
subsection 4.7.

Since the training set is large enough, we have
not observed strong overfitting during the training
process. Therefore, no regularization technology
is employed in the experiments.

4.4 Comparison with Feature Engineering
Approaches

Method Craft feature Accuracy(%)
Speriosu et
al. (2011)

emoticon 84.7
hashtag

Saif et
al. (2012a)

sentiment-topic 86.3
semantic 84.1

Lek and
Poo (2013)

aspect-based 88.3

This work 87.2

Table 2: Comparison with different feature engi-
neering methods.

Table 2 shows the comparison with different
feature engineering methods. In Speriosu et al.
(2011)’s work, sentiment labels propagated in a
graph constructed on the basis of contextual re-
lations (e.g. word presence in a tweet) as well
as social relations. Saif et al. (2012a) eased the
data sparsity by adding sentiment-topic features
that extracted using traditional lexicon. While Lek
and Poo (2013) extracted tuple of [aspect, word,
sentiment] with hand-crafted templates. With the
help of opinion lexicon and POS tagger especially
designed for twitter data, their approach achieved
a state-of-the-art result.

Even though these methods rely on lexicons and
extracted entities, our data-driven model outper-
forms most of them, except the aspect-based one
that introduced twitter-specific resources. This
is due to the fact that traditional lexicons, even
emoticons added, are not able to cover the diver-
sification of twitter sentiment expressions, while
LSTM learns appropriate representations of senti-
ment information through compositional manner.

4.5 Experiments on Manually Labelled Data
Different from STS dataset deciding the polar-
ity based on emoticons, the benchmark dataset
in SemEval 2013 (Nakov et al., 2013) is labelled
by human annotators. In this work we focus on
the binary polarity classification and abandon the
neutral tweets. There are 4099/735/1742 avail-
able tweets in the training/dev/test set respectively.
Since the training set is relatively small, we don’t
apply fine tuning on word vectors. Namely we
use fixed lookup-table for both RNN and LSTM.
300-dimensional vectors are learned on the 1.56M
tweets of STS dataset using word2vec. Other set-
tings stay the same as previous experiments.
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Method Accuracy(%)
SVM 74.5
RAE 75.4
RNN-FLT 83.0
LSTM-FLT 84.0

Table 3: Accuracies of different methods on Se-
mEval 2013

Table 3 shows our work compared to SVM
and Recursive Autoencoder. From the result, we
can see that the recurrent models outperforms the
baselines by exploiting more context information
of word interactions.

4.6 Representation Learning

Recent works reveal that modifying word vec-
tors during training could capture polarity infor-
mation for the sentiment words effectively (Socher
et al., 2011; Tang et al., 2014). However, it would
be also helpful to analyse the embeddings that
changed the most.

Function words: We choose 1000 most fre-
quent words. For each word, we compute the dis-
tance between unsupervised vector and tuned vec-
tor. 20 words that change most are shown in Fig.4.

It’s noteworthy that there are five negation
words (not, no, n’t, never and Not) in the notably-
change group. The representations of negation
words are quite similar with other adverbs in un-
supervised learned embeddings, while the pro-
posed model distinguishes them. This indicate that
our polarity-supervised models identify negation
words as distinctive symbols in sentiment classifi-
cation task, while unsupervised learned vectors do
not contain such information.

Besides the negation words and sentiment
words, there are also other prepositions, pronouns
and conjunctions change dramatically (e.g. and
and but). Such function words also play a special
role in sentiment expressions (Socher et al., 2013)
and the model in this paper distinguishes them.
However, the contributions of these words to the
task are not that explainable as negation words (at
least without sentiment strength information).

To further explain how the tuned vectors work
together with the network and describe interac-
tions between words, we study the process of the
model classifying negation phrases in the follow-
ing subsection.

Sentiment words: In order to study the em-
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I

not

And

wait

this

for

be
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no

bad
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n't

better
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finally

never

Not

but

me

good

Figure 4: Word change scale to [0,1]. Distances
are computed by reversing cosine similarity.

bedding change of sentiment words, we choose
the most frequent sentiment words in our train-
ing data, 20 positive and 20 negative, and ob-
serve the dissimilarity of the vectors in a two-
dimensional space. An alternative least-square
scaling is implemented based on Euclidean dis-
tance between word vectors. Figure 5 shows
sentiment-specific tuning reduces the overlap of
opposite polarities. Polarities of words are identi-
fied based on a widely-used sentiment lexicon (Hu
and Liu, 2004).

To explicitly evaluate it, we selected embed-
dings of 2000 most frequent sentiment words
(1000 each polarity) and compute the centers of
both classes. If an embedding is closer to the op-
posite polarity center, we consider it as an over-
lap. Experimentally, the proportion of overlap of
unsupervised learned vectors is 19.55%, while the
one of tuned vectors is 11.4%. Namely the over-
lap ratio is reduced by 41.7%. Experimentally,
such polarity separating relies on tuning through
lookup-table layer rather than LSTM structure.
With the decrease of overlap of polarities, senti-
ment of word turns more distinguishable, which is
helpful for polarity prediction.

4.7 Case Study: Negation

Negation phrases are typical cases where senti-
ment is expressed by sequence rather than words.
To evaluate the ability of the model dealing with
such cases, we select most frequent 1000 negative
and 1000 positive words in the training data and
generate the corresponding negation phrases (such
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Figure 5: Distance of word vectors shown in two-
dimensional space. The above figure shows the
distribution of unsupervised learning vectors and
the below figure indicates the tuned one. The solid
and hollow points represent the positive and nega-
tive words respectively.

as not good).

Classifier Accuracy(%)
MNB+unigram+bigram 32.98
RNN-TLT 52.00
LSTM-TLT 64.85

Table 4: Accuracy on generated negation phrases
test set.

Statistical result shows that only 37.6% of the
negation phrases appeared in the training text. It
sets a theoretical upper bound to the classifiers
based on the unigram and bigram features. Ex-
perimental result shown in Table 4 indicates that
LSTM model effectively handles the sequential
expressions of negation. By composing word vec-
tors, recurrent models ease the sparsity of bag-of-
word features and achieve a significant improve
than MNB using unigram and bigram features.
LSTM outperform RNN by 12.85%, such result
suggests the element-wise multiplicative composi-
tional function of LSTM provides more flexibility
to simulate interactions between word vectors. A
clear process of LSTM handling negation phrases
is observed, which is described in the rest of the
subsection, while the one of RNN is not that obvi-
ous.

As mentioned in 4.6, the task-distinctive func-

hyperplane 

Figure 6: Hidden activations of negation phrases.
<s> represent the beginning of sentences. not bad
and good lead to positive outputs, while not good
and bad result in negative values. The dotted line
indicates the classification hyperplane. The solid
arrows represent the hidden vector changes when
the network take the word good as input, while the
dotted arrows indicate the changes when the word
bad is input. The sentiment words are input in two
situations (as initial input or after negation word),
while the changes of hidden vectors of same word
are opposite in the two situations.

tion words are distinguished. It would be insight-
ful to show how it works together with the LSTM
structure.

We train the network on STS dataset and test it
on few words and phrases (good, bad, not good
and not bad). For the convenience of analysis the
activation within the network, we set the size of
hidden layer to 2. Such setting reduces the perfor-
mance by about 7% on the public test set, but the
trained model still work effectively. Fig.6 shows
the activations of LSTM hidden layers. Both sen-
timent words and negation phrases are classified
into correct categories. Furthermore, when senti-
ment words like good (i) input as the first word
of sentence and (ii) input after negation word, it
cause opposite change in hidden layer. These be-
haviours simulate the change of sentiment in the
negation expressions.

As mentioned in 3.3, gates’ activations are con-
trolled by current input, state in CEC unit and out-
put of hidden layer of previous time step. They
are many possible ways for the model to simulat-
ing the sentiment change. In the experiment, the
observed situation is shown in Fig.7:
Negation word contains both polarities. The

1350



Figure 7: Observed process of LSTM block han-
dling negation phrase not good. Some less impor-
tant connections are omitted in this figure.

positive-axle and negative-axle are almost orthog-
onal. Negation word has large components on
both axles.
not make input gate close. Experiments show
recurrent activations make the input gate close,
namely previous word not squashes the input (both
current and recurrent input) to a very small value.
Choose a polarity to forget. The combination
of the recurrent input not and current input good
make the CEC unit forget the positive informa-
tion, namely they make forget gate reduce state’s
component on positive-axle while leaving a large
projection on negative-axle. A significant dissim-
ilarity of forget gate activations between positive
and negative words is observed in the experiment,
when they are input after not.

In this way, the temporally-input phrase not
good shows a negative polarity. Correspondingly,
phrase not bad turns positive after reducing the
negative components of the negation word. Such
case shows the process of the gates and CEC unit
cooperating in the LSTM structure. Together with
tuned vectors, the architecture has a promising po-
tential of capture sequence information by simu-
lating complex interactions between words.

5 Conclusion

In this paper we have explored to capture twit-
ter sentiment expressed by interactions of words.
The contributions of this paper can be summarized
as follows: (i) We have described long short-term
memory based model to compose word represen-
tations through a flexible compositional function.
Tested on a public dataset, the proposed architec-

ture achieves result comparable to the current best
data-driven model. The experiment on negation
test set shows the ability of the model capturing
sequential information. (ii) Beyond tuning vectors
of sentiment words, we put forward a perspective
of distinguishing task-distinctive function words
only relying on the label of the whole sequence.
(iii) We conduct an interesting case study on the
process of task-distinctive word vectors working
together with deep model, which is usually con-
sidered as a black-box in other neural networks,
indicating the promising potential of the architec-
ture simulating complex linguistic phenomena.

Acknowledgments

We thank Deyuan Zhang, Lei Cui, Feng Liu and
Ming Liu for their great help. We thank the
anonymous reviewers for their insightful feed-
backs on this work. This research is sup-
ported by National Natural Science Foundation
of China (No.613400114), Specialized Research
Fund for the Doctoral Program of Higher Educa-
tion (No.20132302120047), the Special Financial
Grant from the China Postdoctoral Science Foun-
dation (No.2014T70340), China Postdoctoral Sci-
ence Foundation (No.2013M530156)

References
Yoshua Bengio, Patrice Simard, and Paolo Frasconi.

1994. Learning long-term dependencies with gra-
dient descent is difficult. Neural Networks, IEEE
Transactions on, 5(2):157–166.
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