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Abstract

This paper investigates the problem of
cross-lingual dependency parsing, aim-
ing at inducing dependency parsers for
low-resource languages while using only
training data from a resource-rich lan-
guage (e.g. English). Existing approaches
typically don’t include lexical features,
which are not transferable across lan-
guages. In this paper, we bridge the lex-
ical feature gap by using distributed fea-
ture representations and their composition.
We provide two algorithms for inducing
cross-lingual distributed representations of
words, which map vocabularies from two
different languages into a common vector
space. Consequently, both lexical features
and non-lexical features can be used in our
model for cross-lingual transfer.

Furthermore, our framework is able to in-
corporate additional useful features such
as cross-lingual word clusters. Our com-
bined contributions achieve an average rel-
ative error reduction of 10.9% in labeled
attachment score as compared with the
delexicalized parser, trained on English
universal treebank and transferred to three
other languages. It also significantly out-
performs McDonald et al. (2013) aug-
mented with projected cluster features on
identical data.

1 Introduction

Dependency Parsing has been one of NLP’s long-
standing central problems. The majority of work
on dependency parsing has been dedicated to
resource-rich languages, such as English and Chi-
nese. For these languages, there exist large-scale

∗This work was done while the author was visiting JHU.

annotated treebanks that can be used for super-
vised training of dependency parsers. However,
for most of the languages in the world, there are
few or even no labeled training data for parsing,
and it is labor intensive and time-consuming to
manually build treebanks for all languages. This
fact has given rise to a number of research on un-
supervised methods (Klein and Manning, 2004),
annotation projection methods (Hwa et al., 2005),
and model transfer methods (McDonald et al.,
2011) for predicting linguistic structures. In this
study, we focus on the model transfer methods,
which attempt to build parsers for low-resource
languages by exploiting treebanks from resource-
rich languages.

The major obstacle in transferring a parsing
system from one language to another is the lex-
ical features, e.g. words, which are not directly
transferable across languages. To solve this prob-
lem, McDonald et al. (2011) build a delexical-
ized parser - a parser that only has non-lexical
features. A delexicalized parser makes sense in
that POS tag features are significantly predic-
tive for unlabeled dependency parsing. How-
ever, for labeled dependency parsing, especially
for semantic-oriented dependencies like Stanford-
type dependencies (De Marneffe et al., 2006;
De Marneffe and Manning, 2008), these non-
lexical features are not predictive enough. Täck-
ström et al. (2012) propose to learn cross-lingual
word clusters from multilingual paralleled un-
labeled data through word alignments, and ap-
ply these clusters as features for semi-supervised
delexicalized parsing. Word clusters can be
thought as a kind of coarse-grained representa-
tions of words. Thus, this approach partially fills
the gap of lexical features in cross-lingual learning
of dependency parsing.

This paper proposes a novel approach for cross-
lingual dependency parsing that is based on pure
distributed feature representations. In contrast to
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the discrete lexical features used in traditional de-
pendency parsers, distributed representations map
symbolic features into a continuous representation
space, that can be shared across languages. There-
fore, our model has the ability to utilize both lexi-
cal and non-lexical features naturally. Specifically,
our framework contains two primary components:

• A neural network-based dependency parser.
We expect a non-linear model for depen-
dency parsing in our study, because dis-
tributed feature representations are shown to
be more effective in non-linear architectures
than in linear architectures (Wang and Man-
ning, 2013). Chen and Manning (2014) pro-
pose a transition-based dependency parser
using a neural network architecture, which
is simple but works well on several datasets.
Briefly, this model simply replaces the pre-
dictor in transition-based dependency parser
with a well-designed neural network classi-
fier. We will provide explanations for the
merits of this model in Section 3, as well as
how we adapt it to the cross-lingual task.

• Cross-lingual word representation learning.
The key to filling the lexical feature gap is to
project the representations of these features
from different languages into a common vec-
tor space, preserving the translational equiv-
alence. We will study and compare two ap-
proaches of learning cross-lingual word rep-
resentations in Section 4. The first approach
is robust projection, and the second approach
is based on canonical correlation analysis.
Both approaches are simple to implement and
are scalable to large data.

We evaluate our model on the universal multi-
lingual treebanks (McDonald et al., 2013). Case
studies include transferring from English to Ger-
man, Spanish and French. Experiments show that
by incorporating lexical features, the performance
of cross-lingual dependency parsing can be im-
proved significantly. By further embedding cross-
lingual cluster features (Täckström et al., 2012),
we achieve an average relative error reduction of
10.9% in labeled attachment score (LAS), as com-
pared with the delexicalized parsers. It also signif-
icantly outperforms McDonald et al. (2013) aug-
mented with cluster features on identical data. The
original major contributions of this paper include:

ROOT He has good control .
PRP VBZ JJ NN .

root
nsubj

dobj
amod

punct

Figure 1: An example labeled dependency tree.

• We propose a novel and flexible cross-lingual
learning framework for dependency parsing
based on distributed representations, which
can effectively incorporate both lexical and
non-lexical features.

• We present two novel and effective ap-
proaches for inducing cross-lingual word rep-
resentations, that bridge the lexical feature
gap in cross-lingual dependency parsing.

• We show that cross-lingual word cluster fea-
tures can be effectively embedded into our
model, leading to significant additive im-
provements.

2 Background

2.1 Dependency Parsing
Given an input sentence x = w0w1...wn, the goal
of dependency parsing is to build a dependency
tree (Figure 1), which can be denoted by d =

{(h,m, l) ∶ 0 ≤ h ≤ n; 0 <m ≤ n, l ∈ L}. (h,m, l)
indicates a directed arc from the head word wh to
the modifier wm with a dependency label l, and L
is the label set. The mainstream models that have
been proposed for dependency parsing can be de-
scribed as either graph-based models or transition-
based models (McDonald and Nivre, 2007).

Graph-based models view the parsing problem
as finding the highest scoring tree from a directed
graph. The score of a dependency tree is typi-
cally factored into scores of some small structures
(e.g. arcs) depending on the order of a model.
Transition-based models aim to predict a transi-
tion sequence from an initial parser state to some
terminal states, depending on the parsing history.
This approach has a lot of interest since it is fast
(linear time) and can incorporate rich non-local
features (Zhang and Nivre, 2011).

It has been considered that simple transition-
based parsing using greedy decoding and local
training is not as accurate as graph-based parsers
or transition-based parsers with beam-search and
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global training (Zhang and Clark, 2011). Recently,
Chen and Manning (2014) show that greedy
transition-based parsers can be greatly improved
by using a well-designed neural network architec-
ture. This approach can be considered as a new
paradigm of parsing, in that it is based on pure dis-
tributed feature representations. In this study, we
choose Chen and Manning’s architecture to build
our basic dependency parsing model.

2.2 Distributed Representations for NLP
In recent years, there has been a trend in the NLP
research community of learning distributed rep-
resentations for different natural language units,
from morphemes, words and phrases, to sentences
and documents. Using distributed representations,
these symbolic units are embedded into a low-
dimensional and continuous space, thus it is often
referred to as embeddings.1

In general, there are two major ways of apply-
ing distributed representations to NLP tasks. First,
they can be fed into existing supervised NLP sys-
tems as augmented features in a semi-supervised
manner. This kind of approach has been adopted
in a variety of applications (Turian et al., 2010).
Despite its simplicity and effectiveness, it has been
shown that the potential of distributed representa-
tions cannot be fully exploited in the generalized
linear models which are adopted in most of the ex-
isting NLP systems (Wang and Manning, 2013).
One remedy is to discretize the distributed feature
representations, as studied in Guo et al. (2014).
However, we believe that a non-linear system, e.g.
a neural network, is a more powerful and effec-
tive solution. Some decent progress has already
been made in this paradigm of NLP on various
tasks (Collobert et al., 2011; Chen and Manning,
2014; Sutskever et al., 2014).

3 Transition-based Dependency Parsing:
A Neural Network Architecture

In this section, we first briefly describe transition-
based dependency parsing and the arc-standard
parsing algorithm. Then we revisit the neural net-
work architecture for transition-based dependency
parsing proposed by Chen and Manning (2014).

As discussed in Section 2.1, transition-based
parsing aims to predict a transition sequence from
an initial parser state to the terminal state. Each
state is conventionally regarded as a configuration,

1In this paper, these two terms are used interchangeably.

Words POS tags Arc labels

Embeddings

Transition actions

ROOT    has_VBZ good_JJ control_NN ._.

He_PRP
nsubj

Configuration

Stack Buffer

Hidden units

𝐸𝑤 𝐸𝑡 𝐸𝑙

Distance, 
Valency, Cluster

𝐸𝑑, 𝐸𝑣, 𝐸𝑐

𝑊1

𝑊2

𝑔 𝑥 = 𝑥3

Figure 2: Neural network model for dependency
parsing. The Cluster features are introduced in
Section 5.2.

which typically consists of a stack S, a buffer B,
and a partially derived forest, i.e. a set of depen-
dency arcs A. Given an input word sequence x =

w1w2, ...,wn, the initial configuration can be rep-
resented as a tuple: ⟨[w0]S , [w1w2, ...,wn]B,∅⟩,
and the terminal configuration is ⟨[w0]S , []B,A⟩,
where w0 is a pseudo word indicating the root
of the whole dependency tree. We consider the
arc-standard algorithm (Nivre, 2004) in this pa-
per, which defines three types of transition actions:
LEFT-ARC(l), RIGHT-ARC(l), and SHIFT, l is the
dependency label.

The typical approach for greedy arc-standard
parsing is to build a multi-class classifier (e.g.,
SVM, MaxEnt) of predicting the transition ac-
tion given a feature vector extracted from a spe-
cific configuration. While conventional feature
engineering suffers from the problem of sparsity,
incompleteness and expensive feature computa-
tion (Chen and Manning, 2014), the neural net-
work model provides a potential solution.

The architecture of the neural network-based
dependency parsing model is illustrated in Fig-
ure 2. Primarily, three types of information are
extracted from a configuration in Chen and Man-
ning’s model: word features, POS features and la-
bel features respectively. In this study, we add dis-
tance features indicating the distance between two
items, and valency features indicating the num-
ber of children for a given item (Zhang and Nivre,
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Word features
Ew

Si
,Ew

Bi
, i = 0,1,2

Ew
lc1(Si),E

w
rc1(Si),E

w
lc2(Si),E

w
rc2(Si), i = 0,1

Ew
lc1(lc1(Si)),E

w
rc1(rc1(Si)), i = 0,1

POS features
Et

Si
,Et

Bi
, i = 0,1,2

Et
lc1(Si),E

t
rc1(Si),E

t
lc2(Si),E

t
rc2(Si), i = 0,1

Et
lc1(lc1(Si)),E

t
rc1(rc1(Si)), i = 0,1

Label features
El

lc1(Si),E
l
rc1(Si),E

l
lc2(Si),E

l
rc2(Si), i = 0,1

El
lc1(lc1(Si)),E

l
rc1(rc1(Si)), i = 0,1

Distance: Ed
⟨S0,S1⟩,E

d
⟨S0,B0⟩

Valency: Elv
S0 ,Elv

S1 ,Erv
S1

Table 1: Feature templates of the neural network
parsing model. Ew

p ,E
t
p,E

l
p,E

d
p ,E

lv
p ,E

rv
p indi-

cate the {word, POS, label, distance, left/right va-
lency} embeddings of the element at position p,
correspondingly. lc1 / rc1 is the first child in the
left / right, lc2 / rc2 is the second child in the left
/ right. Si and Bi refer to the ith elements respec-
tively in the stack and buffer.

2011). All of these features are projected to an em-
bedding layer via corresponding embedding matri-
ces, which will be estimated through the training
process. The complete feature templates used in
our system are shown in Table 1. Then, feature
compositions are performed at the hidden layer via
a cube activation function: g(x) = x3.

The cube activation function can be viewed as
a special case of low-rank tensor. Formally, g(x)
can be expanded as:

g(w1x1 + ... +wmxm + b) =

∑
i,j,k

(wiwjwk)xixjxk +∑
i,j

b(wiwj)xixj + ...

If we treat the bias term as b × x0 where x0 =

1, then the weight corresponding to each feature
combination xixjxk is wiwjwk, which is exactly
the same as a rank-1 component tensor in the low-
rank form using CP tensor decomposition (Cao
and Khudanpur, 2014). Consequently, the cube
activation function implicitly derives full feature
combinations. An advantage of the cube activa-
tion function is that it is flexible for adding extra
features to the input. In fact, we can add as many
features as possible to the input layer to improve
the parsing accuracy. We will show in Section 5.2
that the Brown cluster features can be readily in-
corporated into our model.

Cross-lingual Transfer. The idea of cross-
lingual transfer using the parser we examined

above is straightforward. In contrast to tradi-
tional approaches that have to discard rich lexical
features (delexicalizing) when transferring mod-
els from one language to another, our model can
be transferred using the full model trained on the
source language side, i.e. English.

Since the non-lexical feature (POS, label, dis-
tance, valency) embeddings are directly transfer-
able between languages,2 the key component of
this framework is the cross-lingual learning of lex-
ical feature embeddings, i.e. word embeddings.
Once the cross-lingual word embeddings are in-
duced, we first learn a dependency parser at the
source language side. After that, the parser will be
directly used for parsing target language data.

4 Cross-lingual Word Representation
Learning

Prior to introducing our approaches for cross-
lingual word representation learning, we briefly
review the basic model for learning monolingual
word embeddings, which constitutes a subproce-
dure of the cross-lingual approaches.

4.1 Continuous Bag-of-Words Model

Various approaches have been studied for learn-
ing word embeddings from large-scale plain
texts. In this study, we consider the Continuous
Bag-of-Words (CBOW) model (Mikolov et al.,
2013) as implemented in the open-source toolkit
word2vec.3 The basic principle of the CBOW
model is to predict each individual word in a se-
quence given the bag of its context words within a
fixed window size as input, using a log-linear clas-
sifier. This model avoids the non-linear transfor-
mation in hidden layers, and hence can be trained
with high efficiency.

With large window size, grouped words us-
ing the resulting word embeddings are more topi-
cally similar; whereas with small window size, the
grouped words will be more syntactically similar.
So we set the window size to 1 in our parsing task.

Next, we introduce our approach for inducing
bilingual word embeddings. In general, we ex-
pect our bilingual word embeddings to preserve
translational equivalences. For example, “cook-
ing” (English) should be close to its translation:
“kochen” (German) in the embedding space.

2POS tags are language-independent here since we use the
universal POS tags (Section 5).

3http://code.google.com/p/word2vec/
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4.2 Robust Alignment-based Projection
Our first method for inducing cross-lingual word
embeddings has two stages. First, we learn word
embeddings from a source language (S) corpora
as in the monolingual case, and then project the
monolingual word embeddings to a target lan-
guage (T), based on word alignments.

Given a sentence-aligned parallel corpus D,
we first conduct unsupervised bidirectional word
alignment, and then collect an alignment dictio-
nary. Specifically, in each word-aligned sentence
pair of D, we keep all alignments with condi-
tional alignment probability exceeding a thresh-
old δ = 0.95 and discard the others. Specifically,
let AT ∣S = {(wT

i ,w
S
j , ci,j), i = 1,2, ...,NT ; j =

1,2, ...,NS} be the alignment dictionary, where
ci,j is the number of times when the ith target word
wT

i is aligned to the jth source word wS
j . NS and

NT are vocabulary sizes. We use the shorthand
(i, j) ∈ AT ∣S to denote a word pair in AT ∣S . The
projection can be formalized as the weighted aver-
age of the embeddings of translation words:

v(wT
i ) = ∑

(i,j)∈AT ∣S

ci,j

ci,⋅
⋅ v(wS

j ) (1)

where ci,⋅ = Σjci,j , v(w) is the embedding of w.
Obviously, the simple projection method has

one drawback, it only assigns word embeddings
for those target language words that occur in the
word aligned data, which is typically smaller than
the monolingual datasets. Therefore, in order to
improve the robustness of projection, we utilize
a morphology-inspired mechanism, to propagate
embeddings from in-vocabulary words to out-of-
vocabulary (OOV) words. Specifically, for each
OOV word wT

oov, we extract a list of candidate
words that is similar to it in terms of edit distance,
and then set the averaged vector as the embedding
of wT

oov. Formally,

v(wT
oov) = Avg

w′∈C
(v(w′

))

where C = {w∣EditDist(wT
oov,w) ≤ τ}

(2)

To reduce noise, we choose a small edit distance
threshold τ = 1.

4.3 Canonical Correlation Analysis
The second approach we consider is similar
to Faruqui and Dyer (2014), which use CCA to
improve monolingual word embeddings with mul-
tilingual correlation. CCA is a way of measur-

Σ Ω𝑛1

𝑑1

𝑛2

𝑑2
Σ′ Ω′

𝑉 𝑊𝑑1

𝑑

𝑑2

𝑑

𝑛1

𝑑

𝑛2

𝑑

CCA

Σ∗ Ω∗

Figure 3: CCA for cross-lingual word representa-
tion learning.

ing the linear relationship between multidimen-
sional variables. For two multidimensional vari-
ables, CCA aims to find two projection matrices to
map the original variables to a new basis (lower-
dimensional), such that the correlation between
the two variables is maximized.

Let’s treat CCA as a blackbox here, and see how
to apply CCA for inducing bilingual word embed-
dings. Suppose there are already two pre-trained
monolingual word embeddings (e.g. English and
German): Σ ∈ Rn1×d1 and Ω ∈ Rn2×d2 . At the first
step, we extract a one-to-one alignment dictionary
D ∶ Σ′ ↔ Ω′ from the alignment dictionaryAS∣T .4

Here, Σ′ ⊆ Σ, indicating that every word in Σ′ is
translated to one word in Ω′ ⊆ Ω, and vice versa.

The process is illustrated in Figure 3. Denot-
ing the dimension of resulting word embeddings
by d ≤ min(d1, d2). First, we derive two projec-
tion matrices V ∈ Rd1×d,W ∈ Rd2×d respectively
for Σ′ and Ω′ using CCA:

V,W = CCA(Σ′,Ω′
) (3)

Then, V and W are used to project the entire vo-
cabulary Σ and Ω:

Σ∗
= ΣV, Ω∗

= ΩW (4)

where Σ∗ ∈ Rn1×d and Ω∗ ∈ Rn2×d are the result-
ing word embeddings for our cross-lingual task.

Contrary to the projection approach, CCA as-
signs embeddings for every word in the monolin-
gual vocabulary. However, one potential limita-
tion is that CCA assumes linear transformation of
word embeddings, which is difficult to satisfy.

4AT ∣S is also worth trying, but we observed slight perfor-
mance degradation in our experimental setting.
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Note that both approaches can be generalize
to lower-resource languages where parallel bitexts
are not available. In that way, the dictionaryA can
be readily obtained either using bilingual lexicon
induction approaches (Koehn and Knight, 2002;
Mann and Yarowsky, 2001; Haghighi et al., 2008),
or from resources like Wiktionary5 and Panlex.6

5 Experiments

5.1 Data and Settings

For the pre-training of word embeddings, we use
the WMT-2011 monolingual news corpora for En-
glish, German and Spanish.7 For French, we
combined the WMT-2011 and WMT-2012 mono-
lingual news corpora.8 We obtained the word
alignment counts using the fast-align toolkit in
cdec (Dyer et al., 2010) from the parallel news
commentary corpora (WMT 2006-10) combined
with the Europarl corpus for English-{German,
Spanish, French}.9

For the training of the neural network depen-
dency parser, we set the number of hidden units to
400. The dimension of embeddings for different
features are shown in Table 2.

Word POS Label Dist. Val. Cluster
Dim. 50 50 50 5 5 8

Table 2: Dimensions of feature embeddings.

Adaptive stochastic gradient descent (Ada-
Grad) (Duchi et al., 2011) is used for optimization.
For the CCA approach, we use the implementation
of Faruqui and Dyer (2014). The dimensions of
the monolingual embeddings (d1, d2) and the re-
sulting bilingual embeddings are set to 50 equally.

We employ the universal dependency treebanks
proposed by McDonald et al. (2013) for a reli-
able evaluation of our approach for cross-lingual
dependency parsing. The universal multilingual
treebanks are annotated using the universal POS
tagset (Petrov et al., 2011) which contains 12 POS
tags, as well as the universal dependencies which
contains 42 relations. We follow the standard split
of the treebanks for every language (DE, ES, and
FR).10

5https://www.wiktionary.org/
6http://panlex.org/
7http://www.statmt.org/wmt11/
8http://www.statmt.org/wmt12/
9http://www.statmt.org/europarl/

10http://code.google.com/p/uni-dep-tb/.

5.2 Baseline Systems

We compare our approach with three systems. For
the first baseline, we evaluate the delexicalized
transfer of our parser [DELEX], in which we only
use non-lexical features.

We also compare our approach with the delexi-
calized parser in McDonald et al. (2013) [McD13],
who used a perceptron-trained transition-based
parser with a beam of size 8, along with rich non-
local features (Zhang and Nivre, 2011).

Furthermore, we augment cross-lingual word
clusters to the perceptron-based delexicalized
parser, as proposed in Täckström et al. (2012). We
use the same alignment dictionary as described in
Section 4 to induce the cross-lingual word clus-
ters. We re-implement the PROJECTED cluster
approach in Täckström et al. (2012), which assigns
a target word to the cluster with which it is most
often aligned:

c(wT
i ) = arg max

k
∑

(i,j)∈AT ∣S
ci,j ⋅ 1[c(w

S
j ) = k]

This method also has the drawback that words that
do not occur in the alignment dictionary (OOV)
cannot be assigned a cluster. Therefore, we use
the same strategy as described in Section 4.2 to
find the most likely clusters for the OOV words.
Instead of the clustering model of Uszkoreit and
Brants (2008), we use Brown clustering (Brown
et al., 1992) to induce hierarchical word clusters,
where each word is represented as a bit-string.
We use the same word cluster feature templates
from Täckström et al. (2012), and set the number
of Brown clusters to 256.

5.3 Experimental Results

All of the parsing models are trained using the de-
velopment data from English for early-stopping.
Table 3 lists the results of the cross-lingual trans-
fer experiments for dependency parsing. Table 4
further summarizes each of the experimental gains
detailed in Table 3.

Our delexicalized system obtains slightly lower
performance than those reported in McDonald
et al. (2013) (McD13), because we’re using

Before this dataset was carried out, the CoNLL multilingual
dependency treebanks (Buchholz and Marsi, 2006) were
often used for evaluation. However, the major problem is
that the dependency annotations vary for different languages
(e.g. the choice of lexical versus functional head), which
makes it impossible to evaluate the LAS.
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Unlabeled Attachment Score (UAS) Labeled Attachment Score (LAS)
EN DE ES FR AVG EN DE ES FR AVG

DELEX 83.67 57.01 68.05 68.85 64.64 79.42 47.12 56.99 57.78 53.96
PROJ 91.96 60.07 71.42 71.36 67.62 90.48 49.94 61.76 61.55 57.75
PROJ+Cluster 92.33 60.35 71.90 72.93 68.39 90.91 51.54 62.28 63.12 58.98
CCA 90.62† 59.42 68.87 69.58 65.96 88.88† 49.32 59.65 59.50 56.16
CCA+Cluster 92.03† 60.66 71.33 70.87 67.62 90.49† 51.29 61.69 61.50 58.16

MCD13 83.33 58.50 68.07 70.14 65.57 78.54 48.11 56.86 58.20 54.39

MCD13∗ 84.44 57.30 68.15 69.91 65.12 80.30 47.34 57.12 58.80 54.42
MCD13∗+Cluster 90.21 60.55 70.43 72.01 67.66 88.28 50.20 60.96 61.96 57.71

Table 3: Cross-lingual transfer dependency parsing from English on the test dataset of 4 universal multi-
lingual treebanks. Results measured by unlabeled attachment score (UAS) and labeled attachment score
(LAS). ∗ denotes our re-implementation of MCD13. Since the model varies for different target languages
in the CCA-based approach, † indicates the averaged UAS/LAS.

Experimental Contribution DE/ES/FR Avg
PROJ vs. DELEX +3.79 (8.2%)
CCA vs. DELEX +2.19 (4.8%)
PROJ vs. MCD13∗ +3.33 (7.3%)
CCA vs. MCD13∗ +1.74 (3.8%)
PROJ+Cluster vs. PROJ +1.23 (2.9%)
CCA+Cluster vs. CCA +2.00 (4.6%)
MCD13∗+Cluster vs. MCD13∗ +3.29 (7.2%)
PROJ+Cluster vs. DELEX +5.02 (10.9%)
CCA+Cluster vs. DELEX +4.20 (9.1%)
PROJ+Cluster vs. MCD13∗ +4.46 (9.8%)
CCA+Cluster vs. MCD13∗ +3.74 (8.2%)
PROJ+Cluster vs. MCD13∗+Cluster +1.27 (3.0%)
CCA+Cluster vs. MCD13∗+Cluster +0.45 (1.1%)

Table 4: Summary of each of the experimental
gains detailed in Table 3, in both absolute LAS
gain and relative error reduction. All gains are sta-
tistically significant using MaltEval at p < 0.01.12

greedy decoding and local training. Our re-
implementation of (McDonald et al., 2013) attains
comparable performance with MCD13.

For all languages we consider in this study, by
using cross-lingual word embeddings either from
alignment-based projection or CCA, we obtain
statistically significant improvements against the
delexicalized system, both in UAS and LAS.

Interestingly, we notice that PROJ consistently
performs better than CCA by a significant margin,
and is comparable to McD13∗+Cluster. We will
give further analysis to this observation in Sec-
tion 5.3.1 and 5.3.2.

Our framework is flexible for incorporating
richer features simply by embedding them into
continuous vectors. Thus we further embed the
cross-lingual word cluster features into our model,
together with the proposed cross-lingual word em-

beddings. The cluster feature template used here
is similar to the POS tag feature templates:

Cluster features
Ec

Si
,Ec

Bi
, i = 0,1,2

Ec
lc1(Si),E

c
rc1(Si),E

c
lc2(Si),E

c
rc2(Si), i = 0,1

Ec
lc1(lc1(Si)),E

c
rc1(rc1(Si)), i = 0,1

Table 5: Word cluster feature templates.

As shown in Table 3, additive improvements are
obtained for both PROJ and CCA. Compared with
our delexicalized system, the relative error is re-
duced by up to 13.1% in UAS, and up to 12.6% in
LAS. The combined system further outperforms
McD13∗ augmented with cluster features signifi-
cantly .

5.3.1 Effect of Robust Projection
Since in both PROJ and the induction of cross-
lingual word clusters, we use edit distance mea-
sure for OOV words, we would like to see how
this affects the performance of parsing.

Intuitively, higher coverage of projected words
in the test dataset should promote the parsing per-
formance more. To verify this, we further con-
duct experiments under both settings using the
PROJ+Cluster model. Results are shown in Ta-
ble 6. Improvements are observed for all lan-
guages when using robust projection with edit dis-
tance measure, especially for FR, where the high-
est coverage gain is obtained by robust projection.

5.3.2 Fine-tuning of Word Embeddings
Another reason for the effectiveness of PROJ over
CCA lies in the fine-tuning of word embeddings
while training the parser.
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Simple Robust ∆

DE
coverage 91.37 94.70 +3.33

UAS 59.74 60.35 +0.61
LAS 50.84 51.54 +0.70

ES
coverage 94.51 96.67 +2.16

UAS 70.97 71.90 +0.93
LAS 61.34 62.28 +0.94

FR
coverage 90.83 97.60 +6.77

UAS 71.17 72.93 +1.76
LAS 61.72 63.12 +1.40

Table 6: Effect of robust projection.

CCA can be viewed as a joint method for in-
ducing cross-lingual word embeddings. When
training the source language dependency parser
with cross-lingual word embeddings derived from
CCA, the EN word embeddings should be fixed.
Otherwise, the translational equivalence will be
broken. However, for PROJ, there is no such limi-
tation. Word embeddings can be updated as other
non-lexical feature embeddings, in order to obtain
a more accurate dependency parser. We refer to
this procedure as a fine-tuning process to the word
embeddings. To verify the benefits of fine-tuning,
we conduct experiments to see relative loss if word
embeddings are fixed while training. Results are
shown in Table 7, which indicates that fine-tuning
indeed offers considerable help.

Fix Fine-tune ∆

DE
UAS 59.74 60.07 +0.33
LAS 49.44 49.94 +0.50

ES
UAS 70.10 71.42 +1.32
LAS 61.31 61.76 +0.45

FR
UAS 70.65 71.36 +0.71
LAS 60.69 61.50 +0.81

Table 7: Effect of fine-tuning word embeddings.

5.4 Compare with Existing Bilingual Word
Embeddings

In this section, we compare our bilingual em-
beddings with several previous approaches in the
context of dependency parsing. To the best of
our knowledge, this is the first work on eval-
uation of bilingual word embeddings in syntac-
tic tasks. The approaches we consider include
the multi-task learning approach (Klementiev et
al., 2012) [MTL], the bilingual auto-encoder ap-
proach (Chandar et al., 2014) [BIAE], the bilingual
compositional vector model (Hermann and Blun-
som, 2014) [BICVM], and the bilingual bag-of-

words approach (Gouws et al., 2014) [BILBOWA].
For MTL and BIAE, we adopt their released

word embeddings directly due to the inefficiency
of training.13 For BICVM and BILBOWA, we re-
run their systems on the same dataset as our pre-
vious experiments.14 Results are summarized in
Table 8. CCA and PROJ consistently outperforms
all other approaches in all languages, and PROJ

performs the best. The inferior performance of
MTL and BIAE is partly due to the low word
coverage. For example, they cover only 31% of
words in the universal DE test treebank, whereas
the CCA and PROJ covers over 70%. Moreover,
BIAE, BICVM and BILBOWA are optimized using
semantic-related objectives. So we suggest that
they are probably not well fit for syntactic tasks.

It is worth noting that we don’t assume/require
bilingual parallel data in CCA and PROJ. What
we need in practice is a bilingual lexicon for each
paired languages. This is especially important
for generalizing our approaches to lower-resource
languages, where parallel texts are not available.

6 Related Studies

Existing approaches for cross-lingual dependency
parsing can be divided into three categories: cross-
lingual annotation projection methods, jointly
modeling methods and cross-lingual representa-
tion learning methods.

The cross-lingual annotation projection method
is first proposed in Yarowsky et al. (2001) for shal-
lower NLP tasks (POS tagging, NER, etc.). The
central idea is to project the syntactic annotations
from a resource-rich language to the target lan-
guage through word alignments, and then train a
supervised parser on the projected noisy annota-
tions (Hwa et al., 2005; Smith and Eisner, 2009;
Zhao et al., 2009; Jiang et al., 2011; Tiedemann,
2014; Tiedemann, 2015). Noises and errors intro-
duced by the word alignment and annotation pro-
jection processes can be reduced with robust pro-
jection methods by using graph-based label propa-
gation (Das and Petrov, 2011; Kim and Lee, 2012),
or by incorporating auxiliary resources (Kim et al.,
2012; Khapra et al., 2010).

The jointly modeling methods integrates the
monolingual grammar induction with bilingually-
projected dependency information (Liu et al.,
2013), or linguistic constraints via posterior

13The MTL embeddings are normalized before training.
14BICVM only uses the bilingual parallel dataset.
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DE ES FR
UAS LAS UAS LAS UAS LAS

MTL (Klementiev et al., 2012)‡ 57.70 47.13 68.04 58.78 67.66 57.30
BIAE (Chandar et al., 2014)‡ 53.74 43.68 58.81 46.66 60.10 49.47
BICVM (Hermann and Blunsom, 2014) 56.30 46.99 67.78 58.08 69.13 58.13
BILBOWA (Gouws et al., 2014) 51.65 41.83 65.02 54.35 63.35 51.65
CCA 59.42 49.32 68.87 59.65 69.58 59.50
PROJ 60.07 49.94 71.42 61.76 71.36 61.55

Table 8: Comparison with existing bilingual word embeddings. ‡For MTL and BIAE, we use their
released bilingual word embeddings.

regularization (Ganchev et al., 2009), manu-
ally constructed universal dependency parsing
rules (Naseem et al., 2010) and manually spec-
ified typological features (Naseem et al., 2012).
Besides dependency parsing, the joint modeling
method has also been applied for other multi-
lingual NLP tasks, including NER (Che et al.,
2013; Wang and Manning, 2014), SRL (Zhuang
and Zong, 2010; Titov and Klementiev, 2012) and
WSD (Guo and Diab, 2010).

The cross-lingual representation learning
method aims at building connections across
different languages by inducing language-
independent feature representations. After that, a
parser can be trained at the source-language side
within the induced feature space, and directly be
applied to the target language. Typical approaches
include cross-lingual word clustering (Täckström
et al., 2012) which is employed in this paper as a
baseline, projection features (Durrett et al., 2012).
Xiao and Guo (2014) learns cross-lingual word
embeddings and apply them with MSTParser for
linguistic transfer, which inspires this work.

It is worth mentioning that remarkable re-
sults on the universal dependency treebanks have
been achieved by using annotation projection
method (Tiedemann, 2014), treebank translation
method (Tiedemann and Nivre, 2014), and distri-
bution transferring method (Ma and Xia, 2014).
Unlike our approach, all of these methods in-
volve training a parser at the target language side.
Parallel bitexts are required in these methods,
which limits their scalability to lower-resource
languages. That said, these methods have the ad-
vantage that they are capable of capturing some
language-specific syntactic patterns which our ap-
proach cannot.15 These two kinds of approaches

15For example, in Spanish and French, adjectives often ap-
pears after nouns, thus forming a right-directed arc labeled
by amod, whereas in English, the amod arcs are mostly left-
directed.

are complementary, and can be integrated to push
the performance further.

7 Conclusion

This paper proposes a novel framework based on
distributed representations for cross-lingual de-
pendency parsing. Two algorithms are proposed
for the induction of cross-lingual word represen-
tations: robust projection and CCA, which bridge
the lexical feature gap.

Experiments show that by using cross-lingual
word embeddings derived from either approach,
the transferred parsing performance can be im-
proved significantly against the delexicalized sys-
tem. A notable observation is that our projection
method performs significantly better than CCA,
a joint method. Additionally, our framework is
flexibly able to incorporate the cross-lingual word
cluster features, with further significant gains in
each use. The combined system significantly
outperforms the delexicalized system on all lan-
guages, by an average of 10.9% error reduction
on LAS, and further significantly outperforms Mc-
Donald et al. (2013) augmented with projected
cluster features.16
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