
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing, pages 1169–1179,

Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Transition-based Neural Constituent Parsing

Taro Watanabe∗ and Eiichiro Sumita
National Institute of Information and Communications Technology

3-5 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0289 JAPAN
tarow@google.com, eiichiro.sumita@nict.go.jp

Abstract

Constituent parsing is typically modeled
by a chart-based algorithm under prob-
abilistic context-free grammars or by a
transition-based algorithm with rich fea-
tures. Previous models rely heavily on
richer syntactic information through lex-
icalizing rules, splitting categories, or
memorizing long histories. However en-
riched models incur numerous parameters
and sparsity issues, and are insufficient for
capturing various syntactic phenomena.
We propose a neural network structure that
explicitly models the unbounded history of
actions performed on the stack and queue
employed in transition-based parsing, in
addition to the representations of partially
parsed tree structure. Our transition-based
neural constituent parsing achieves perfor-
mance comparable to the state-of-the-art
parsers, demonstrating F1 score of 90.68%
for English and 84.33% for Chinese, with-
out reranking, feature templates or addi-
tional data to train model parameters.

1 Introduction

A popular parsing algorithm is a cubic time chart-
based dynamic programming algorithm that uses
probabilistic context-free grammars (PCFGs).
However, PCFGs learned from treebanks are too
coarse to represent the syntactic structures of texts.
To address this problem, various contexts are in-
corporated into the grammars through lexicaliza-
tion (Collins, 2003; Charniak, 2000) or cate-
gory splitting either manually (Klein and Man-
ning, 2003) or automatically (Matsuzaki et al.,
2005; Petrov et al., 2006). Recently a rich feature
set was introduced to capture the lexical contexts

∗The first author is now affiliated with Google, Japan.

in each span without extra annotations in gram-
mars (Hall et al., 2014).

Alternatively, transition-based algorithms run in
linear time by taking a series of shift-reduce ac-
tions with richer lexicalized features considering
histories; however, the accuracies did not match
with the state-of-the-art methods until recently
(Sagae and Lavie, 2005; Zhang and Clark, 2009).
Zhu et al. (2013) show that the use of better transi-
tion actions considering unaries and a set of non-
local features can compete with the accuracies of
chart-based parsing. The features employed in a
transition-based algorithm usually require part of
speech (POS) annotation in the input, but the de-
layed feature technique allows joint POS inference
(Wang and Xue, 2014).

In both frameworks, the richer models require
that more parameters be estimated during train-
ing which can easily result in the data sparseness
problems. Furthermore, the enriched models are
still insufficient to capture various syntactic rela-
tions in texts due to the limited contexts repre-
sented in latent annotations or non-local features.
Recently Socher et al. (2013) introduced composi-
tional vector grammar (CVG) to address the above
limitations. However, they employ reranking over
a forest generated by a baseline parser for efficient
search, because CVG is built on cubic time chart-
based parsing.

In this paper, we propose a neural network-
based parser — transition-based neural con-
stituent parsing (TNCP) — which can guarantee
efficient search naturally. TNCP explicitly models
the actions performed on the stack and queue em-
ployed in transition-based parsing. More specif-
ically, the queue is modeled by recurrent neural
network (RNN) or Elman network (Elman, 1990)
in backward direction (Henderson, 2004). The
stack structure is also modeled similarly to RNNs,
and its top item is updated using the previously
constructed hidden representations saved in the

1169

stack. The representations from both the stack and
queue are combined with the representations prop-
agated from the partially parsed tree structure in-
spired by the recursive neural networks of CVGs.
Parameters are estimated efficiently by a variant
of max-violation (Huang et al., 2012) which con-
siders the worst mistakes found during search and
updates parameters based on the expected mistake.

Under similar settings, TCNP performs compa-
rably to state-of-the-art parsers. Experimental re-
sults obtained using the Wall Street Journal corpus
of the English Penn Treebank achieved a labeled
F1 score of 90.68%, and the result for the Penn
Chinese Treebank was 84.33%. Our parser per-
forms no reranking with computationally expen-
sive models, employs no templates for feature en-
gineering, and requires no additional monolingual
data for reliable parameter estimation. The source
code and models will be made public1.

2 Related Work

Our study is largely inspired by recursive neural
networks for parsing, first pioneered by Costa et
al. (2003), in which parsing is treated as a ranking
problem of finding phrasal attachment. Such net-
work structures have been used successfully as a
reranker for k-best parses from a baseline parser
(Menchetti et al., 2005) or parse forests (Socher et
al., 2013), and have achieved gains on large data.
Stenetorp (2013) showed that the recursive neu-
ral networks are comparable to the state-of-the-art
system with a rich feature set under dependency
parsing. Our model is not a reranking model, but
a discriminative parsing model, which incorpo-
rates the representations of stacks and queues em-
ployed in the transition-based parsing framework,
in addition to the representations of the tree struc-
tures. The use of representations outside of the
partial parsed trees is very similar to the recently
proposed inside-outside recursive neural networks
(Le and Zuidema, 2014) which can assign proba-
bilities in a top-down manner, in the same way as
PCFGs.

Henderson (2003) was the first to demonstrate
the successful use of neural networks to represent
derivation histories under large-scale parsing ex-
periments. He employed synchrony networks, i.e.,
feed-forward style networks, to assign a probabil-
ity for each step in the left-corner parsing condi-
tioning on all parsing steps. Henderson (2004)

1http://github.com/tarowatanabe/trance

later employed a discriminative model and showed
further gains by conditioning on the representa-
tion of the future input in addition to the history
of parsing steps. Similar feed-forward style net-
works are successfully applied for transition-based
dependency parsing in which limited contexts are
considered in the feature representation (Chen and
Manning, 2014). Our model is very similar in that
the score of each action is computed by condition-
ing on all previous actions and future input in the
queue.

The use of neural networks for transition-based
shift-reduce parsing was first presented by May-
berry and Miikkulainen (1999) in which the stack
representation was treated as a hidden state of an
RNN. In their study, the hidden state is updated
recurrently by either a shift or reduce action, and
its corresponding parse tree is decoded recursively
from the hidden state (Berg, 1992) using recursive
auto-associative memories (Pollack, 1990). We
apply the idea of representing a stack in a contin-
uous vector; however, our method differs in that
it memorizes all hidden states pushed to the stack
and performs push/pop operations. In this man-
ner, we can represent the local contexts saved in
the stack explicitly and use them to construct new
hidden states.

3 Transition-based Constituent Parsing

Our transition-based parser is based on a study by
Zhu et al. (2013), which adopts the shift-reduce
parsing of Sagae and Lavie (2005) and Zhang and
Clark (2009). However, our parser differs in that
we do not differentiate left or right head words.
In addition, POS tags are jointly induced during
parsing in the same manner as Wang and Xue
(2014). Given an input sentence w0, · · · , wn−1,
the transition-based parser employs a stack of par-
tially constructed constituent tree structures and a
queue of input words. In each step, a transition
action is applied to a state 〈i, f, S〉, where i is the
next input word position in the queuewi, f is a flag
indicating the completion of parsing, i.e., whether
the ROOT of a constituent tree covering all the
input words is reached, and S represents a stack of
tree elements, s0, s1, · · · .

The parser consists of five actions:

shift-X consumes the next input word, wi, from
the queue and pushes a non-terminal symbol
(or a POS label) as a tree of X → wi.

1170

axiom 0 : 〈0, false, 〈eps〉〉 : 0
goal (2 + u)n : 〈n, true, S〉 : ρ

shift-X
j : 〈i, false, S〉 : ρ

j + 1 : 〈i+ 1, false, S|X〉 : ρ+ ρsh

reduce-X
j : 〈i, false, S|s1|s0〉 : ρ

j + 1 : 〈i, false, S|X〉 : ρ+ ρre

unary-X
j : 〈i, false, S|s0〉 : ρ

j + 1 : 〈i, false, S|X〉 : ρ+ ρun

finish
j : 〈n, false, S〉 : ρ

j + 1 : 〈n, true, S〉 : ρ+ ρfi

idle
j : 〈n, true, S〉 : ρ

j + 1 : 〈n, true, S〉 : ρ+ ρid

Figure 1: Deduction system for shift-reduce pars-
ing, where j is a step size and ρ is a score.

reduce-X pops the top two items s0 and s1 out of
the stack and combines them as a partial tree
with the constituent label X as its root, and
with s0 and s1 as right and left antecedents,
respectively (X → s1s0). The newly created
tree is then pushed into the stack.

unary-X is similar to reduce-X; however, it con-
sumes only the top most item s0 from the
stack and pushes a new tree of X → s0.

finish indicates the completion of parsing, i.e.,
reaching the ROOT .

idle preserves completion until the goal is
reached.

The whole procedure is summarized as a deduc-
tion system in Figure 1. We employ beam search
which starts from an axiom consisting of a stack
with a special symbol 〈eps〉, and ends when we
reach a goal item (Zhang and Clark, 2009). A set
of agenda B = B0, B1, · · · maintains the k-best
states for each step j at Bj , which is first initial-
ized by inserting the axiom in B0. Then, at each
step j = 0, 1, · · · , every state in the agenda Bj is
extended by applying one of the actions and the
new states are inserted into the agenda Bj+1 for
the next step, which retains only the k-best states.

We limit the maximum number of consecutive
unary actions to u (Sagae and Lavie, 2005; Zhang
and Clark, 2009) and the maximum number of
unary actions in a single derivation to u×n. Thus,
the process is repeated until we reach the final step

of (2+u)n, which keeps the completed states. The
idle action is inspired by the padding method of
Zhu et al. (2013), such that the states in an agenda
are comparable in terms of score even if differ-
ences exist in the number of unary actions. Un-
like Zhu et al. (2013) we do not terminate parsing
even if all the states in an agenda are completed
(f = true).

The score of a state is computed by summing
the scores of all the actions leading to the state. In
Figure 1, ρsh, ρre, ρun, ρfi and ρid are the scores
of shift-X , reduce-X , unary-X , finish and idle ac-
tions, respectively, which are computed on the ba-
sis of the history of actions.

4 Neural Constituent Parsing

The score of a state is defined formally as the total
score of transition actions, or a (partial) derivation
d = d0, d1, · · · leading to the state as follows:

ρ(d) =
|d|−1∑
j=0

ρ(dj |dj−1
0). (1)

Note that the score of each action is dependent on
all previous actions. In previous studies, the score
is computed by a linear model, i.e., a weighted
sum of feature values derived from limited histo-
ries, such as those that consider two adjacent con-
stituent trees in a stack (Sagae and Lavie, 2005;
Zhang and Clark, 2009; Zhu et al., 2013). Our
method employs an RNN or Elman network (El-
man, 1990) to represent an unlimited stack and
queue history.

Formally, we use an m-dimensional vector for
each hidden state unless otherwise stated. Here, let
xi ∈ Rm′×1 be an m′-dimensional vector repre-
senting the input word wi and the dimension may
not match with the hidden state sizem. qi ∈ Rm×1

denotes the hidden state for the input word wi in a
queue. Following the RNN in backward direction
(Henderson, 2004), the hidden state for each word
wi is computed right-to-left, qn−1 to q0, beginning
from a constant qn:

qi = τ (Hquqi+1 +Wquxi + bqu) , (2)

where Hqu ∈ Rm×m, Wqu ∈ Rm×m′ , bqu ∈
Rm×1 and τ(x) is hard-tanh applied element-
wise2.

2τ(x) = −1 for x < 1, 1 for x > 1 otherwise x.

1171

h1
j h0

j xi xi+1

qi qi+1h2
j+1 h

1
j+1 h

0
j+1

current stack

next stack queue

input

Hsh

Qsh

Wsh

(a) shift-X action

h3
j h2

j h1
j h0

j

qi qi+1

h2
j+1 h

1
j+1 h

0
j+1

current stack

next stack

queue

Wre

Qre

Hre

(b) reduce-X action

h2
j h1

j h0
j

qi qi+1

h2
j+1 h

1
j+1 h

0
j+1

current stack

next stack

queue

Wun

Hun

Qun

(c) unary-X action

Figure 2: Example neural network for constituent
parsing. The thick arrows indicate the context of
tree structures, and the gray arrows represent in-
teractions from the stack and queue. The dotted
arrows denote popped states.

Shift: Now, let hl
j ∈ Rm×1 represent a hidden

state associated with the lth stack item for the jth
action. We define the score of a shift action:

h0
j+1 = τ

(
HX

shh
0
j +QX

shqi +WX
shxi + bXsh

)
(3)

ρ(dj = shift-X|dj−1
0) = V X

sh h
0
j+1 + vX

sh (4)

where HX
sh ∈ Rm×m, QX

sh ∈ Rm×m, WX
sh ∈

Rm×m′ and bXsh ∈ Rm×1. Figure 2(a) shows the
network structure for Equation 3. HX

sh represents
an RNN-style architecture that propagates the pre-
vious context in the stack. QX

sh can reflect the
queue context qi, or the future input sequence from
wi through wn−1, while WX

sh directly expresses
the leaf of a tree structure using the shifted input
word representation xi for wi. The hidden state
h0

j+1 is used to compute the score of a derivation
ρ(dj |dj−1

0) in Equation 4, which is based on the
matrix V X

sh ∈ R1×m and the bias term vX
sh ∈ R.

Note that hl
j+1 = hl−1

j for l = 1, 2, · · · because
the stack is updated by the newly created partial
tree label X associated with the new hidden state
h0

j+1.
Inspired by CVG (Socher et al., 2013), we dif-

ferentiate the matrices for each non-terminal (or
POS) labelX rather than using shared parameters.

However, our model differs in that the parameters
are untied on the basis of the left hand side of a
rule, rather than the right hand side, because our
model assigns a score discriminatively for each ac-
tion with the left hand side label X unlike a gen-
erative model derived from PCFGs.

Reduce: Similarly, the score for a reduce action
is obtained as follows:

h0
j+1 = τ

(
HX

reh
2
j +QX

reqi +WX
re h

[0:1]
j + bXre

)
(5)

ρ(dj = reduce-X|dj−1
0) = V X

re h
0
j+1 + vX

re , (6)

where HX
re ∈ Rm×m, QX

re ∈ Rm×m, WX
re ∈

Rm×2m, bXre ∈ Rm×1, and h[l:l′] denotes the verti-
cal matrix concatenation of hidden states from hl

to hl′ .
Note that the reduce-X action pops top two

items in the stack that correspond to the two hid-
den states of h[0:1]

j as represented by Figure 2(b).
By pushing a newly created tree with the con-
stituent X , its corresponding hidden state h0

j+1 is
pushed to the stack with each remaining hidden
state hl

j+1 = hl+1
j for l = 1, 2, · · · . The hid-

den state of the top stack item h0
j is a represen-

tation of the right antecedent of a newly created
binary tree with h0

j+1 as a root, while the hidden
state of the next top stack item h1

j corresponds
to the left antecedent of the binary tree. Thus,
the two hidden states capture the recursive neural
network-like structure (Costa et al., 2003), while
h2

j = h1
j+1 represents the RNN-like linear history

in the stack.

Unary: In the same manner as the reduce action,
the unary action is defined by simply reducing a
single item from a stack and by pushing a new item
(Figure 2(c)):

h0
j+1 = τ

(
HX

unh
1
j +QX

unqi +WX
unh

0
j + bXun

)
(7)

ρ(dj = unary-X|dj−1
0) = V X

unh
0
j+1 + vX

un, (8)

where HX
un ∈ Rm×m, QX

un ∈ Rm×m, WX
un ∈

Rm×m and bXun ∈ Rm×1. Note that hl
j+1 = hl

j

for l = 1, 2, · · · , because only the top item is up-
dated in the stack by creating a partial tree with h0

j

together with the stack history h1
j .

In summary, the number of model parameters
for the three actions is 9×m2+m×m′+6×m+3
for each non-terminal label X . The scores for a

1172

finish action and an idle action are defined analo-
gous to the unary-X action with special labels for
X , 〈finish〉 and 〈idle〉, respectively3.

5 Parameter Estimation

Let θ =
{
HX

sh, Q
X
sh, · · ·

} ∈ RM be an M -
dimensional vector of all model parameters. The
parameters are initialized randomly by following
Glorot and Bengio (2010), in which the random
value range is determined by the size of the in-
put/output layers. The bias parameters are initial-
ized to zeros.

We employ a variant of max-violation (Huang
et al., 2012) as our training objective, in which pa-
rameters are updated based on the worst mistake
found during search, rather than the first mistake
as performed in the early update perceptron al-
gorithm (Collins and Roark, 2004). Specifically,
given a training instance (w,y) where w is an in-
put sentence and y is its gold derivation, i.e., a se-
quence of actions representing the gold parse tree
forw, we seek for the step j∗ where the difference
of the scores is the largest:

j∗ = arg min
j

{
ρθ(y

j
0)− max

d∈Bj

ρθ(d)
}
. (9)

Then, we define the following hinge-loss function:

L(w,y;B,θ) = max
{

0, 1− ρθ(yj∗
0) + EB̃j∗

[ρθ]
}
,

(10)

wherein we consider the subset of sub-derivations
B̃j∗ ⊂ Bj∗ consisting of those scored higher than
ρθ(y

j∗
0):

B̃j∗ =
{
d ∈ Bj∗

∣∣ρθ(d) > ρθ(y
j∗
0)
}

(11)

pθ(d) =
exp(ρθ(d))∑

d′∈B̃j∗
exp(ρθ(d′))

(12)

EB̃j∗
[ρθ] =

∑
d∈B̃j∗

pθ(d)ρθ(d). (13)

Unlike Huang et al. (2012) and inspired by Tamura
et al. (2014), we consider all incorrect sub-
derivations found in B̃j∗ through the expected
score EB̃j∗

[ρθ]4. The loss function in Equation

3Since h1
j and qn are constants for the finish and idle ac-

tions, we enforce HX
un = 0 and QX

un = 0 for those special
actions.

4We can use all the sub-derivations in Bj∗ ; however, our
preliminary studies indicated that the use of B̃j∗ was better.

10 can be intuitively considered an expected mis-
take suffered at the maximum violated step j∗,
which is measured by the Viterbi violation in
Equation 9. Note that if we replace EB̃j∗

[ρθ] with
maxd∈Bj∗ ρθ(d) in Equation 10, it is exactly the
same as the max-violation objective (Huang et al.,
2012)5.

To minimize the loss function, we use a di-
agonal version of AdaDec (Senior et al., 2013)
— a variant of diagonal AdaGrad (Duchi et al.,
2011) — under mini-batch settings. Given the
sub-gradient gt ∈ RM of Equation 10 at time t
computed by the back-propagation through struc-
ture (Goller and Küchler, 1996), we maintain ad-
ditional parametersGt ∈ RM :

Gt ← γGt−1 + gt � gt, (14)

where� is the Hadamard product (or the element-
wise product). θt−1 is updated using the element
specific learning rate ηt ∈ RM derived from Gt

and a constant η0 > 0:

ηt ← η0 (Gt + ε)−
1
2 (15)

θt− 1
2
← θt−1 − ηt � gt (16)

θt ← arg min
θ

1
2
‖θ − θt− 1

2
‖22 + λη>t abs(θ).

(17)

Compared with AdaGrad, the squared sum of the
sub-gradients decays over time using a constant
0 < γ ≤ 1 in Equation 14. The learning
rate in Equation 15 is computed element-wise and
bounded by a constant ε ≥ 0, and if we set ε ≥ η2

0 ,
it is always decayed6. In our preliminary stud-
ies, AdaGrad eventually becomes very conserva-
tive to update parameters when training longer it-
erations. AdaDec fixes the problem by ignoring
older histories of sub-gradients in G, which is re-
flected in the learning rate η. In each update, we
employ `1 regularization through FOBOS (Duchi
and Singer, 2009) using a hyperparameter λ ≥ 0
to control the fitness in Equation 16 and 17. For
testing, we found that taking the average of the pa-
rameters over period 1

T+1

∑T
t=0 θt under training

iterations T was very effective as demonstrated by
Hashimoto et al. (2013).

Parameter estimation is performed in parallel
by distributing training instances asynchronously

5Or, setting pθ(d∗) = 1 for the Viterbi derivation d∗ =
arg maxd∈Bj∗ ρθ(d) and zero otherwise.

6Note that AdaGrad is a special case of AdaDec with γ =
1 and ε = 0.

1173

in each shard and by updating locally copied pa-
rameters using the sub-gradients computed from
the distributed mini-batches (Dean et al., 2012).
The sub-gradients are broadcast asynchronously
to other shards to reflect the updates in one shard.
Unlike Dean et al. (2012), we do not keep a cen-
tral storage for model parameters; the replicated
parameters are synchronized in each iteration by
choosing the model parameters from one of the
shards with respect to the minimum of `1 norm7.
Note that we synchronize θ, but G is maintained
as shard local parameters.

6 Experiments

6.1 Settings

We conducted experiments for transition-based
neural constituent parsing (TNCP) for two lan-
guages — English and Chinese. English data were
derived from the Wall Street Journal (WSJ) of the
Penn Treebank (Marcus et al., 1993), from which
sections 2-21 were used for training, 22 for de-
velopment and 23 for testing. Chinese data were
extracted from the Penn Chinese Treebank (CTB)
(Xue et al., 2005); articles 001-270 and 440-
1151 were used for training, 301-325 for develop-
ment, and 271-300 for testing. Inspired by jack-
knifing (Collins and Koo, 2005), we reassigned
POS tags for training data using the Stanford tag-
ger (Toutanova et al., 2003)8. The treebank trees
were normalized by removing empty nodes and
unary rules with X over X (or X → X), then
binarized in a left-branched manner.

The possible actions taken for our shift-reduce
parsing, e.g., X → w in shift-X , were learned
from the normalized treebank trees. The words
that occurred twice or less were handled differ-
ently in order to consider OOVs for testing: They
were simply mapped to a special token 〈unk〉when
looking up their corresponding word representa-
tion vector. Similarly, when assigning possible
POS tags in shift actions, they fell back to their
corresponding “word signature” in the same man-
ner as the Berkeley parser9. A maximum number
of consecutive unary actions was set to u = 3 for
WSJ and u = 4 for CTB, as determined by the

7We also tried averaging among shards. However we ob-
served no gains likely because we performed averaging for
testing.

8http://nlp.stanford.edu/software/
tagger.shtml

9https://code.google.com/p/
berkeleyparser/

rep. size 32 64 128 256 512 1024

de
v

WSJ-32 89.91 90.15 90.48 90.70 90.75 90.87
64 90.37 90.73 90.81 90.62 90.71 91.11

CTB-32 79.25 81.59 82.80 82.68 84.17 85.12
64 84.04 83.29 82.92 85.12 85.24 85.77

te
st

WSJ-32 89.03 89.49 89.75 90.45 90.37 90.01
64 89.74 90.16 90.48 90.06 89.91 90.68

CTB-32 75.19 78.29 80.46 81.87 83.16 82.64
64 80.11 81.35 81.67 82.91 83.76 84.33

Table 1: Comparison of various state/word rep-
resentation dimension size measured by labeled
F1(%). “-32” denotes the hidden state size m =
32. The numbers in bold indicate the best results
for each hidden state dimension.

treebanks.
Parameter estimation was performed on 16

cores of a Xeon E5-2680 2.7GHz CPU. It took
approximately one day for 100 training iterations
with m = 32 and m′ = 128 under a mini-
batch size of 4 and a beam size of 32. Dou-
bling either one of m or m′ incurred approxi-
mately double training time. We chose the fol-
lowing hyperparameters by tuning toward the de-
velopment data in our preliminary experiments10:
η0 = 10−2, γ = 0.9, ε = 1. The choice of λ from
{10−5, 10−6, 10−7} and the number of training it-
erations were very important for different training
objectives and models in order to avoid overfitting.
Thus, they were determined by the performance
on the development data for each different train-
ing objective and/or network configuration, e.g.,
the dimension for a hidden state. The word rep-
resentations were initialized by a tool developed
in-house for an RNN language model (Mikolov et
al., 2010) trained by noise contrastive estimation
(Mnih and Teh, 2012). Note that the word repre-
sentations for initialization were learned from the
given training data, not from additional unanno-
tated data as done by Chen and Manning (2014).

Testing was performed using a beam size of 64
with a Xeon X5550 2.67GHz CPU. All results
were measured by the labeled bracketing metric
PARSEVAL (Black et al., 1991) using EVALB11

after debinarization.

6.2 Results

Table 1 shows the impact of dimensions on
the parsing performance. We varied the hid-

10We confirmed that this hyperparameter setting was ap-
propriate for different models experimented in Section 6.2
through our preliminary studies.

11http://nlp.cs.nyu.edu/evalb/

1174

model tree +stack +queue

de
v WSJ 77.70 90.54 91.11

CTB 69.74 84.70 85.77

te
st WSJ 76.48 90.00 90.68

CTB 66.03 82.85 84.33

Table 2: Comparison of network structures mea-
sured by labeled F1(%).

den vector size m = {32, 64} and the word
representation (embedding) vector size m′ =
{32, 64, 128, 256, 512, 1024}12. As can be seen,
the greater word representation dimensions are
generally helpful for both WSJ and CTB on the
closed development data (dev), which may match
with our intuition that the richer syntactic and se-
mantic knowledge representation for each word is
required for parsing. However, overfitting was ob-
served when using a 32-dimension hidden vector
in both tasks, i.e., drops of performance on the
open test data (test) when m′ = 1024, probably
caused by the limited generalization capability in
the smaller hidden state size. In the rest of this pa-
per, we show the results with m = 64 and m′ =
1024 as determined by the performance on the
development data, wherein we achieved 91.11%
and 85.77% labeled F1 for WSJ and CTB, respec-
tively. The total number of parameters were ap-
proximately 28.3M and 22.0M for WSJ and CTB,
respectively, among which 17.8M and 13.4M were
occupied for word representations, respectively.

Table 2 differentiated the network structure.
The tree model computes the new hidden state
h0

j+1 using only the recursively constructed net-
work by ignoring parameters from the stack and
queue, e.g., by enforcing HX

sh = 0 and QX
sh = 0

in Equation 3, which is essentially similar to the
CVG approach (Socher et al., 2013). Adding the
context from the stack in +stack boosts the per-
formance significantly. Further gains are observed
when the queue context +queue is incorporated in
the model. These results clearly indicate that ex-
plicit representations of the stack and queue are
very important when applying a recursive neural
network model for transition-based parsing.

We then compared the expected mistake with
the Viterbi mistake (Huang et al., 2012) as our
training objective by replacing EB̃j∗

[ρθ] with
maxd∈Bj∗ ρθ(d) in Equation 10. Table 3 shows
that the use of the expected mistake (expected)
as a loss function is significantly better than that

12We experimented larger dimensions in Appendix A.

loss Viterbi expected

de
v WSJ 90.89 91.11

CTB 84.94 85.77

te
st WSJ 90.21 90.68

CTB 82.62 84.33

Table 3: Comparison of loss functions measured
by labeled F1(%).

 65

 70

 75

 80

 85

 90

 95

 100

 0 10 20 30 40 50 60 70 80 90 100

F
1(

%
)

iterations

expected (train)
Viterbi (train)

expected (dev)
Viterbi (dev)

Figure 3: Plots for training iterations and labeled
F1(%) on WSJ.

of the Viterbi mistake (Viterbi) by considering all
the incorrect sub-derivations at maximum violated
steps during search. Figure 3 and 4 plot the train-
ing curves for WSJ and CTB, respectively. The
plots clearly demonstrate that the use of the ex-
pected mistake is faster in convergence and stabler
in learning when compared with that of the Viterbi
mistake13.

Next, we compare our parser, TNCP, with other
parsers listed in Table 4 for WSJ and Table 5 for
CTB on the test data. The Collins parser (Collins,
1997) and the Berkeley parser (Petrov and Klein,
2007) are chart-based parsers with rich states, ei-
ther through lexicalization or latent annotation.
SSN is a left-corner parser (Henderson, 2004), and
CVG is a compositional vector grammar-based
parser (Socher et al., 2013)14. Both parsers rely on
neural networks to represent rich contexts, similar
to our work; however they differ in that they es-
sentially perform reranking from either the k-best
parses or parse forests15. The word representa-

13The labeled F1 on those plots are slightly different from
EVALB in that all the syntactic labels are considered when
computing bracket matching. Further, the scores on the train-
ing data are approximation since they were obtained as a by-
product of online learning.

14http://nlp.stanford.edu/software/
lex-parser.shtml

15Strictly speaking, SSN can work as a standalone parser;
Table 4 shows the result after reranking (Henderson, 2004).

1175

 65

 70

 75

 80

 85

 90

 95

 100

 0 10 20 30 40 50 60 70 80 90 100

F
1(

%
)

iterations

expected (train)
Viterbi (train)

expected (dev)
Viterbi (dev)

Figure 4: Plots for training iterations and labeled
F1(%) on CTB.

parser test
Collins (Collins, 1997) 87.8
Berkeley (Petrov and Klein, 2007) 90.1
SSN (Henderson, 2004) 90.1
ZPar (Zhu et al., 2013) 90.4
CVG (Socher et al., 2013) 90.4
Charniak-R (Charniak and Johnson, 2005) 91.0
This work: TNCP 90.7

Table 4: Comparison of different parsers on the
WSJ test data measured by labeled F1(%).

tion in CVG was learned from large monolingual
data (Turian et al., 2010), but our parser learns
word representation from only the provided train-
ing data. Charniak-R is a discriminative rerank-
ing parser with non-local features (Charniak and
Johnson, 2005). ZPar is a transition-based shift-
reduce parser (Zhu et al., 2013)16 that influences
the deduction system in Figure 1, but differs in that
scores are computed by a large number of features
and POS tagging is performed separately. The re-
sults shown in Table 4 and 5 come from the feature
set without extra data, i.e., semi-supervised fea-
tures. Joint is the joint POS tagging and transition-
based parsing with non-local features (Wang and
Xue, 2014). Similar to ZPar, we present the result
without cluster features learned from extra unan-
notated data.

Finally, we measured the speed for parsing by
varying beam size and hidden dimension (Table
6). When testing, we applied a pre-computation
technique for layers involving word representation
vectors (Devlin et al., 2014), i.e., Wqu in Equation
2 and WX

sh in Equation 3. Thus, the parsing speed
was influenced by only the hidden state size m. It
is clear that the enlarged beam size improves per-

16http://sourceforge.net/projects/zpar/

parser test
ZPar (Zhu et al., 2013) 83.2
Berkeley (Petrov and Klein, 2007) 83.3
Joint (Wang and Xue, 2014) 84.9
This work: TNCP 84.3

Table 5: Comparison of different parsers on the
CTB test data measured by labeled F1(%).

beam 32 64 128
WSJ-32 15.42/89.95 7.90/90.01 3.97/90.04

64 7.31/90.56 3.56/90.68 1.76/90.73
CTB-32 13.67/82.35 6.95/82.64 3.68/82.84

64 6.15/84.12 3.11/84.33 1.53/83.83

Table 6: Comparison of parsing speed by varying
beam size and hidden dimension; each cell shows
the number of sentences per second/labeled F1(%)
measured on the test data.

formance by trading off run time in most cases.
Note that Berkeley, CVG and ZPar took 4.74, 1.54
and 37.92 sentences/sec, respectively, with WSJ.
Although it is more difficult to compare with other
parsers, our parser implemented in C++ is on par
with Java implementations of Berkeley and CVG.
The large run time difference with the C++ imple-
mented ZPar may come from the network compu-
tation and joint POS inference in our model which
impact parsing speed significantly.

6.3 Error Analysis
To assess parser error types, we used the tool pro-
posed by Kummerfeld et al. (2012)17. The average
number of errors per sentence is listed in Table 7
for each error type on the WSJ test data. Gener-
ally, our parser results in errors that are compara-
ble to the state-of-the-art parsers; however, greater
reductions are observed for various attachments
errors. One of the largest gains comes from the
clause attachment, i.e., 0.12 reduction in average
errors from Berkeley and 0.05 from CVG. The av-
erage number of errors is also reduced by 0.09
from Berkeley and 0.06 from CVG for the PP at-
tachment. We also observed large reductions in
coordination and unary rule errors.

7 Conclusion

We have introduced transition-based neural con-
stituent parsing — a neural network architecture
that encodes each state explicitly — as a con-
tinuous vector by considering the recurrent se-

17https://code.google.com/p/
berkeley-parser-analyser/

1176

error type Berkeley CVG TNCP
PP Attach 0.82 0.79 0.73
Clause Attach 0.50 0.43 0.38
Diff Label 0.29 0.29 0.29
Mod Attach 0.27 0.27 0.27
NP Attach 0.37 0.31 0.32
Co-ord 0.38 0.32 0.29
1-Word Span 0.28 0.31 0.30
Unary 0.24 0.22 0.18
NP Int 0.18 0.19 0.20
Other 0.41 0.41 0.45

Table 7: Comparison of different parsers on the
WSJ test data measured by average number of er-
rors per sentence; the numbers in bold indicate the
least errors in each error type.

quences of the stack and queue in the transition-
based parsing framework in addition to recursively
constructed partial trees. Our parser works in
a standalone fashion without reranking and does
not rely on an external POS tagger or additional
monolingual data for reliable estimates of syntac-
tic and/or semantic representations of words. The
parser achieves performance that is comparable to
state-of-the-art systems.

In the future, we plan to apply our neural net-
work structure to dependency parsing. We are also
interested in using long short-term memory neu-
ral networks (Hochreiter and Schmidhuber, 1997)
to better model the locality of propagated infor-
mation from the stack and queue. The parameter
estimation under semi-supervised setting will be
investigated further.

Acknowledgments

We would like to thank Lemao Liu for suggestions
while drafting this paper. We are also grateful for
various comments from anonymous reviewers.

References

George Berg. 1992. A connectionist parser with recur-
sive sentence structure and lexical disambiguation.
In Proc. of AAAI ’92, pages 32–37.

Ezra Black, Steve Abney, Dan Flickinger, Claudia
Gdaniec, Ralph Grishman, Phil Harrison, Don Hin-
dle, Robert Ingria, Fred Jelinek, Judith Klavans,
Mark Liberman, Mitchell Marcus, Salim Roukos,
Beatrice Santorini, and Tomek Strzalkowski. 1991.
Procedure for quantitatively comparing the syntac-
tic coverage of english grammars. In Proc. of the
Workshop on Speech and Natural Language, pages
306–311, Stroudsburg, PA, USA.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and maxent discriminative
reranking. In Proc. of ACL 2005, pages 173–180,
Ann Arbor, Michigan, June.

Eugene Charniak. 2000. A maximum-entropy-
inspired parser. In Proc. of NAACL 2000, pages
132–139, Stroudsburg, PA, USA.

Danqi Chen and Christopher Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proc. of EMNLP 2014, pages 740–750,
Doha, Qatar, October.

Michael Collins and Terry Koo. 2005. Discriminative
reranking for natural language parsing. Computa-
tional Linguistics, 31(1):25–70, March.

Michael Collins and Brian Roark. 2004. Incremental
parsing with the perceptron algorithm. In Proc. of
ACL 2004, pages 111–118, Barcelona, Spain, July.

Michael Collins. 1997. Three generative, lexicalised
models for statistical parsing. In Proc. of ACL ’97,
pages 16–23, Madrid, Spain, July.

Michael Collins. 2003. Head-driven statistical models
for natural language parsing. Computational Lin-
guistics, 29(4):589–637, December.

Fabrizio Costa, Paolo Frasconi, Vincenzo Lombardo,
and Giovanni Soda. 2003. Towards incremental
parsing of natural language using recursive neural
networks. Applied Intelligence, 19(1-2):9–25, May.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Mark Mao, Marc’aurelio Ranzato,
Andrew Senior, Paul Tucker, Ke Yang, Quoc V. Le,
and Andrew Y. Ng. 2012. Large scale distributed
deep networks. In Advances in Neural Information
Processing Systems 25, pages 1223–1231. Curran
Associates, Inc.

Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas
Lamar, Richard Schwartz, and John Makhoul. 2014.
Fast and robust neural network joint models for sta-
tistical machine translation. In Proc. of ACL 2014,
pages 1370–1380, Baltimore, Maryland, June.

John Duchi and Yoram Singer. 2009. Efficient online
and batch learning using forward backward splitting.
Journal of Machine Learning Research, 10:2899–
2934, December.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research, 12:2121–2159, July.

Jeffrey L. Elman. 1990. Finding structure in time.
Cognitive Science, 14(2):179–211.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In Proc. of the Thirteenth International
Conference on Artificial Intelligence and Statistics
(AISTATS-10), volume 9, pages 249–256.

1177

Christoph Goller and Andreas Küchler. 1996. Learn-
ing task-dependent distributed representations by
backpropagation through structure. In Proc. of
IEEE International Conference on Neural Networks,
1996, volume 1, pages 347–352 vol.1, Jun.

David Hall, Greg Durrett, and Dan Klein. 2014. Less
grammar, more features. In Proc. of ACL 2014,
pages 228–237, Baltimore, Maryland, June.

Kazuma Hashimoto, Makoto Miwa, Yoshimasa Tsu-
ruoka, and Takashi Chikayama. 2013. Simple cus-
tomization of recursive neural networks for seman-
tic relation classification. In Proc. of EMNLP 2013,
pages 1372–1376, Seattle, Washington, USA, Octo-
ber.

James Henderson. 2003. Inducing history represen-
tations for broad coverage statistical parsing. In
Proc. of HLT-NAACL 2003, pages 24–31, Strouds-
burg, PA, USA.

James Henderson. 2004. Discriminative training of a
neural network statistical parser. In Proc. of ACL
2004, pages 95–102, Barcelona, Spain, July.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780, November.

Liang Huang, Suphan Fayong, and Yang Guo. 2012.
Structured perceptron with inexact search. In Proc.
of NAACL-HLT 2012, pages 142–151, Montréal,
Canada, June.

Dan Klein and Christopher D. Manning. 2003. Ac-
curate unlexicalized parsing. In Proc. of ACL 2003,
pages 423–430, Sapporo, Japan, July.

Jonathan K. Kummerfeld, David Hall, James R. Cur-
ran, and Dan Klein. 2012. Parser showdown at the
wall street corral: An empirical investigation of error
types in parser output. In Proc. of EMNLP-CoNLL
2012, pages 1048–1059, Jeju Island, Korea, July.

Phong Le and Willem Zuidema. 2014. The inside-
outside recursive neural network model for depen-
dency parsing. In Proc. of EMNLP 2014, pages
729–739, Doha, Qatar, October.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large anno-
tated corpus of english: The penn treebank. Compu-
tational Linguistics, 19(2):313–330, June.

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii.
2005. Probabilistic CFG with latent annotations. In
Proc. of ACL 2005, pages 75–82, Ann Arbor, Michi-
gan, June.

Marshall R. Mayberry and Risto Miikkulainen. 1999.
Sardsrn: A neural network shift-reduce parser. In
Proc. of IJCAI ’99, pages 820–827, San Francisco,
CA, USA.

Sauro Menchetti, Fabrizio Costa, Paolo Frasconi, and
Massimiliano Pontil. 2005. Wide coverage natural
language processing using kernel methods and neu-
ral networks for structured data. Pattern Recogni-
tion Letters, 26(12):1896–1906, September.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan
Černocký, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In Proc.
of INTERSPEECH 2010, pages 1045–1048.

Andriy Mnih and Yee W. Teh. 2012. A fast and simple
algorithm for training neural probabilistic language
models. In John Langford and Joelle Pineau, edi-
tors, Proc. of ICML-2012, pages 1751–1758, New
York, NY, USA.

Slav Petrov and Dan Klein. 2007. Improved inference
for unlexicalized parsing. In Proc. of NAACL-HLT
2007, pages 404–411, Rochester, New York, April.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and inter-
pretable tree annotation. In Proc. of COLING-ACL
2006, pages 433–440, Sydney, Australia, July.

Jordan B. Pollack. 1990. Recursive distributed repre-
sentations. Artificial Intelligence, 46(1-2):77–105,
November.

Kenji Sagae and Alon Lavie. 2005. A classifier-
based parser with linear run-time complexity. In
Proc. of the Ninth International Workshop on Pars-
ing Technology, pages 125–132, Vancouver, British
Columbia, October.

Andrew Senior, Georg Heigold, Marc’Aurelio Ran-
zato, and Ke Yang. 2013. An empirical study of
learning rates in deep neural networks for speech
recognition. In Proc. of ICASSP 2013, pages 6724–
6728, May.

Richard Socher, John Bauer, Christopher D. Manning,
and Ng Andrew Y. 2013. Parsing with compo-
sitional vector grammars. In Proc. of ACL 2013,
pages 455–465, Sofia, Bulgaria, August.

Pontus Stenetorp. 2013. Transition-based dependency
parsing using recursive neural networks. In Proc.
of Deep Learning Workshop at the 2013 Conference
on Neural Information Processing Systems (NIPS),
Lake Tahoe, Nevada, USA, December.

Akihiro Tamura, Taro Watanabe, and Eiichiro Sumita.
2014. Recurrent neural networks for word align-
ment model. In Proc. of ACL 2014, pages 1470–
1480, Baltimore, Maryland, June.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-rich part-
of-speech tagging with a cyclic dependency net-
work. In Proc. of HLT-NAACL 2003, pages 173–
180, Stroudsburg, PA, USA.

1178

rep. size 32 64 128 256 512 1024 2048 4096

de
v

WSJ-32 89.91 90.15 90.48 90.70 90.75 90.87 91.11 91.04
64 90.37 90.73 90.81 90.62 90.71 91.11 91.34 91.36

CTB-32 79.25 81.59 82.80 82.68 84.17 85.12 85.61 85.76
64 84.04 83.29 82.92 85.12 85.24 85.77 86.28 86.94

te
st

WSJ-32 89.03 89.49 89.75 90.45 90.37 90.01 90.33 90.40
64 89.74 90.16 90.48 90.06 89.91 90.68 91.05 90.94

CTB-32 75.19 78.29 80.46 81.87 83.16 82.64 83.13 83.67
64 80.11 81.35 81.67 82.91 83.76 84.33 83.76 84.38

Table 8: Comparison of various state/word representation dimension size measured by labeled F1(%).
“-32” denotes the hidden state sizem = 32. The numbers in bold indicate the best results for each hidden
state dimension.

Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio.
2010. Word representations: A simple and general
method for semi-supervised learning. In Proc. of
ACL 2010, pages 384–394, Uppsala, Sweden, July.

Zhiguo Wang and Nianwen Xue. 2014. Joint pos tag-
ging and transition-based constituent parsing in chi-
nese with non-local features. In Proc. of ACL 2014,
pages 733–742, Baltimore, Maryland, June.

Naiwen Xue, Fei Xia, Fu-dong Chiou, and Marta
Palmer. 2005. The penn chinese treebank: Phrase
structure annotation of a large corpus. Natural Lan-
guage Engineering, 11(2):207–238, June.

Yue Zhang and Stephen Clark. 2009. Transition-based
parsing of the chinese treebank using a global dis-
criminative model. In Proc. of the 11th International
Conference on Parsing Technologies (IWPT’09),
pages 162–171, Paris, France, October.

Muhua Zhu, Yue Zhang, Wenliang Chen, Min Zhang,
and Jingbo Zhu. 2013. Fast and accurate shift-
reduce constituent parsing. In Proc. of ACL 2013,
pages 434–443, Sofia, Bulgaria, August.

A Additional Results

We conducted additional experiments by enlarg-
ing the word representation vector size m′ in Ta-
ble 8. In general, we observed further gains with
richer word representation, but suffered overfit-
ting effects when setting m′ = 4096. The re-
sults with m = 64 and m′ = 4096 achieved
the best performance on the development data,
91.36% and 86.94% labeled F1 for WSJ and CTB,
respectively, wherein we observed the accuracies
of 90.94% and 84.38% on the test data, respec-
tively. Note that it took approximately one week
to train the model when m′ = 4096 under WSJ,
which was impractical to analyze the results fur-
ther, e.g. comparison with other training objec-
tives.

1179

