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Abstract

The performance of discriminative con-
stituent parsing relies crucially on feature
engineering, and effective features usu-
ally have to be carefully selected through
a painful manual process. In this paper,
we propose to automatically learn a set
of effective features via neural networks.
Specifically, we build a feedforward neu-
ral network model, which takes as input
a few primitive units (words, POS tags
and certain contextual tokens) from the lo-
cal context, induces the feature represen-
tation in the hidden layer and makes pars-
ing predictions in the output layer. The
network simultaneously learns the feature
representation and the prediction model
parameters using a back propagation al-
gorithm. By pre-training the model on a
large amount of automatically parsed data,
and then fine-tuning on the manually an-
notated Treebank data, our parser achieves
the highest F) score at 86.6% on Chi-
nese Treebank 5.1, and a competitive Fj
score at 90.7% on English Treebank. More
importantly, our parser generalizes well
on cross-domain test sets, where we sig-
nificantly outperform Berkeley parser by
3.4 points on average for Chinese and 2.5
points for English.

1 Introduction

Constituent parsing seeks to uncover the phrase
structure representation of sentences that can be
used in a variety of natural language applications
such as machine translation, information extrac-
tion and question answering (Jurafsky and Martin,
2008). One of the major challenges for this task is
that constituent parsers require an inference algo-
rithm of high computational complexity in order
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to search over their large structural space, which
makes it very hard to efficiently train discrimina-
tive models. So, for a long time, the task was
mainly solved with generative models (Collins,
1999; Charniak, 2000; Petrov et al., 2006). In
the last few years, however, with the use of ef-
fective parsing strategies, approximate inference
algorithms, and more efficient training methods,
discriminative models began to surpass the gen-
erative models (Carreras et al., 2008; Zhu et al.,
2013; Wang and Xue, 2014).

Just like other NLP tasks, the performance of
discriminative constituent parsing crucially relies
on feature engineering. If the feature set is too
small, it might underfit the model and leads to low
performance. On the other hand, too many fea-
tures may result in an overfitting problem. Usu-
ally, an effective set of features have to be de-
signed manually and selected through repeated ex-
periments (Sagae and Lavie, 2005; Wang et al.,
2006; Zhang and Clark, 2009). Not only does
this procedure require a lot of expertise, but it
is also tedious and time-consuming. Even af-
ter this painstaking process, it is still hard to say
whether the selected feature set is complete or op-
timal to obtain the best possible results. A more
desirable alternative is to learn features automat-
ically with machine learning algorithms. Lei et
al. (2014) proposed to learn features by represent-
ing the cross-products of some primitive units with
low-rank tensors for dependency parsing. How-
ever, to achieve competitive performance, they had
to combine the learned features with the tradi-
tional hand-crafted features. For constituent pars-
ing, Henderson (2003) employed a recurrent neu-
ral network to induce features from an unbounded
parsing history. However, the final performance
was below the state of the art.

In this work, we design a much simpler neu-
ral network to automatically induce features from
just the local context for constituent parsing. Con-
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cretely, we choose the shift-reduce parsing strat-
egy to build the constituent structure of a sentence,
and train a feedforward neural network model
to jointly learn feature representations and make
parsing predictions. The input layer of the net-
work takes as input a few primitive units (words,
POS tags and certain contextual tokens) from the
local context, the hidden layer aims to induce
a distributed feature representation by combining
all the primitive units with different weights, and
the output layer attempts to make parsing predic-
tions based on the feature representation. Dur-
ing the training process, the model simultaneously
learns the feature representation and prediction
model parameters using a backpropagation algo-
rithm. Theoretically, the learned feature represen-
tation is optimal (or at least locally optimal) for
the parsing predictions. In practice, however, our
model does not work well if it is only trained on
the manually annotated Treebank data sets. How-
ever, when pre-trained on a large amount of auto-
matically parsed data and then fine-tuned on the
Treebank data sets, our model achieves a fairly
large improvement in performance. We evaluated
our model on both Chinese and English. On stan-
dard data sets, our model reaches F; = 86.6%
for Chinese and outperforms all the state-of-the-
art systems, and for English our final performance
is F1 = 90.7% and this result surpasses that of
all the previous neural network based models and
is comparable to the state-of-the-art systems. On
cross-domain data sets, our model outperforms the
Berkeley Parser ! by 3.4 percentage points for Chi-
nese and 2.5 percentage points for English.

The remainder of this paper is organized as fol-
lows: Section 2 introduces the shift-reduce con-
stituent parsing approach. Section 3 describes our
feature optimization model and some parameter
estimation techniques. We discuss and analyze
our experimental results in Section 4. Section 5
discusses related work. Finally, we conclude this
paper in Section 6.

2 Shift-Reduce Constituent Parsing

Shift-reduce constituent parsing utilizes a series of
shift-reduce decisions to construct syntactic trees.
Formally, the shift-reduce system is a quadruple
C = (5,T,s0,S5), where S is a set of parser
states (sometimes called configurations), T is a fi-
nite set of actions, sg is an initialization function

'https://code.google.com/p/berkeleyparser/
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Figure 1: An example of constituent tree.

to map each input sentence into a unique initial
state, and S; € S is a set of terminal states. Each
action ¢t € T is a transition function that maps a
state into a new state. A parser state s € S is
defined as a tuple s = (o, 3), where o is a stack
which is maintained to hold partial subtrees that
are already constructed, and (3 is a queue which
is used for storing remaining unprocessed words.
In particular, the initial state has an empty stack o
and a queue [3 containing the entire input sentence,
and the terminal states have an empty queue 3 and
a stack o containing only one complete parse tree.
The task of parsing is to scan the input sentence
from left to right and perform a sequence of shift-
reduce actions to transform the initial state into a
terminal state.

In order to jointly assign POS tags and construct
a constituent structure for an input sentence, we
define the following actions for the action set 7',
following Wang and Xue (2014):

e SHIFT-X (sh-x): remove the first word from
(3, assign a POS tag X to the word and push it
onto the top of o;

o REDUCE-UNARY-X (ru-x): pop the top
subtree from o, construct a new unary node
labeled with X for the subtree, then push the
new subtree back onto . The head of the
new subtree is inherited from its child;

e REDUCE-BINARY-{L/R}-X (r1/rr-x): pop
the top two subtrees from o, combine them
into a new tree with a node labeled with X,
then push the new subtree back onto . The
left (L) and right (R) versions of the action
indicate whether the head of the new subtree
is inherited from its left or right child.

With these actions, our parser can process
trees with unary and binary branches easily.
For example, in Figure 1, for the sentence ‘“the
assets are sold”, our parser can construct the
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parse tree by performing the action sequence
{sh-DT, sh-NNS, rr-NP, sh-VBP,
sh-VBN, ru-VP, rr-VP, rr-S}. To pro-
cess multi-branch trees, we employ binarization
and debinarization processes described in Zhang
and Clark (2009) to transform multi-branch trees
into binary trees and restore the generated binary
trees back to their original forms. For inference,
we employ the beam search decoding algorithm
(Zhang and Clark, 2009) to balance the tradeoff
between accuracy and efficiency.

3 Feature Optimization Model
3.1 Model

To determine which action ¢ € T should be per-
formed at a given state s € S, we need a model
to score each possible (s,¢) combination. In pre-
vious approaches (Sagae and Lavie, 2005; Wang
et al., 2006; Zhang and Clark, 2009), the model is
usually defined as a linear model Score(s,t) =
W - B(s,t), where P(s,t) is a vector of hand-
crafted features for each state-action pair and W
is the weight vector for these features. The hand-
crafted features are usually constructed by com-
pounding primitive units according to some fea-
ture templates. For example, almost all the pre-
vious work employed the list of primitive units in
Table 1(a), and constructed hand-crafted features
by concatenating these primitive units according
to the feature templates in Table 1(b). Obviously,
these feature templates are only a small subset of
the cross products of all the primitive units. This
feature set is the result of a large number of exper-
iments through trial and error from previous work.
Still we cannot say for sure that this is the optimal
subset of features for the parsing task.

To cope with this problem, we propose to si-
multaneously optimize feature representation and
parsing accuracy via a neural network model. Fig-
ure 2 illustrates the architecture of our model. Our
model consists of input, projection, hidden and
output layers. First, in the input layer, all primi-
tive units (shown in Table 1(a)) are imported to the
network. We also import the suffixes and prefixes
of the first word in the queue, because these units
have been shown to be very effective for predict-
ing POS tags (Ratnaparkhi, 1996). Then, in the
projection layer, each primitive unit is projected
into a vector. Specifically, word-type units are
represented as word embeddings, and other units
are transformed into one-hot representations. The

) pow, pot,poc, prw, pit,pic,
paw, pat,pac, psw, pst,psc
2) Poiw, PoiC, PorwW, PorCPouW, Poul,
PuwW, P1C, P1rW, P1rCP1u W, P1uC
) qw, qw, gaw, gzw

(a) Primitive Units

potc, powe, pite, prwe, patc
pawe, pste, pswe, gowt, grwt
qawt, gzwt, poywce, porwe

PouWC, P1IWC, P1rWC, P1y, WC
Powpi1w, powp1C€, poCP1wW, pocp1€
Powqow, powqol, Pocqow, pocqol
Qowqiw, gowqit, gotqiw, qotqit
P1wgow, p1wqot, p1cgow, p1cqot
DoCp1Ep2c, Powp1CP2C, PocPr1wyot
Pocp1cp2w, pocp1cqot, powpicqot
DPocp1w{ot, Pocp1cqow

unigrams

bigrams

trigrams

(b) Feature Templates

Table 1: Primitive units (a) and feature templates
(b) for shift-reduce constituent parsing, where p;
represents the ¢, subtree in the stack and ¢; de-
notes the 44, word in the queue. w refers to the
head word, ¢ refers to the head POS, and c refers
to the constituent label. p; and p;, refer to the
left and right child for a binary subtree p;, and p;,,
refers to the child of a unary subtree p;.

vectors of all primitive units are concatenated to
form a holistic vector for the projection layer. The
hidden layer corresponds to the feature representa-
tion we want to learn. Each dimension in the hid-
den layer can be seen as an abstract factor of all
primitive units, and it calculates a weighted sum
of all nodes from the projection layer and applies
a non-linear activation function to yield its acti-
vation. We choose the logistic sigmoid function
for the hidden layer. The output layer is used for
making parsing predictions. Each node in the out-
put layer corresponds to a shift-reduce action. We
want to interpret the activation of the output layer
as a probability distribution over all possible shift-
reduce actions, therefore we normalize the out-
put activations (weighted summations of all nodes
from the hidden layer) with the softmax function.

3.2 Parameter Estimation

Our model consists of three groups of parameters:
(1) the word embedding for each word type unit,
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Figure 2: Neural network architecture for con-
stituent parsing, where w; denotes word type unit,
t; denotes POS tag unit, ¢; denotes constituent la-
bel unit, suf fiz; and prefiz; (1 < i < 4) de-
notes ¢-character word suffix or prefix for the first
word in the queue.

(2) the connections between the projection layer
and the hidden layer which are used for learning
an optimal feature representation and (3) the con-
nections between the hidden layer and the output
layer which are used for making accurate pars-
ing predictions. We decided to learn word em-
beddings separately, so that we can take advantage
of a large amount of unlabeled data. The remain-
ing two groups of parameters can be trained si-
multaneously by the back propagation algorithm
(Rumelhart et al., 1988) to maximize the likeli-
hood over the training data.

We also employ three crucial techniques to seek
more effective parameters. First, we utilize mini-
batched AdaGrad (Duchi et al., 2011), in which
the learning rate is adapted differently for differ-
ent parameters at different training steps. With this
technique, we can start with a very large learning
rate which decreases during training, and can thus
perform a far more thorough search within the pa-
rameter space. In our experiments, we got a much
faster convergence rate with slightly better accu-
racy by using the learning rate « = 1 instead of
the commonly-used o = 0.01. Second, we initial-
ize the model parameters by pre-training. Unsu-
pervised pre-training has demonstrated its effec-
tiveness as a way of initializing neural network
models (Erhan et al., 2010). Since our model re-
quires many run-time primitive units (POS tags
and constituent labels), we employ an in-house
shift-reduce parser to parse a large amount of unla-
beled sentences, and pre-train the model with the
automatically parsed data. Third, we utilize the
Dropout strategy to address the overfitting prob-

lem. However, different from Hinton et al. (2012),
we only use Dropout during testing, because we
found that using Dropout during training did not
improve the parsing performance (on the dev set)
while greatly slowing down the training process.

4 Experiment

4.1 Experimental Setting

We conducted experiments on the Penn Chinese
Treebank (CTB) version 5.1 (Xue et al., 2005) and
the Wall Street Journal (WSJ) portion of Penn En-
glish Treebank (Marcus et al., 1993). To fairly
compare with other work, we follow the standard
data division. For Chinese, we allocated Articles
001-270 and 400-1151 as the training set, Articles
301-325 as the development set, and Articles 271-
300 as the testing set. For English, we use sec-
tions 2-21 for training, section 22 for developing
and section 23 for testing.

We also utilized some unlabeled corpora and
used the word2vec? toolkit to train word em-
beddings. For Chinese, we used the unlabeled
Chinese Gigaword (LDC2003T09) and performed
Chinese word segmentation using our in-house
segmenter. For English, we randomly selected 9
million sentences from our in-house newswire cor-
pus, which has no overlap with our training, test-
ing and development sets. We use Evalb® toolkit
to evaluate parsing performance.

4.2 Characteristics of Our Model

There are several hyper-parameters in our model,
e.g., the word embedding dimension (wordDim),
the hidden layer node size (hiddenSize), the
Dropout ratio (dropRatio) and the beam size for
inference (beamS'ize). The choice of these hyper-
parameters may affect the final performance. In
this subsection, we present some experiments to
demonstrate the characteristics of our model, and
select a group of proper hyper-parameters that we
use to evaluate our final model. All the experi-
ments in this subsection were performed on Chi-
nese data and the evaluation is performed on Chi-
nese development set.

First, we evaluated the effectiveness of vari-
ous primitive units. We set wordDim = 300,
hiddenSize = 300, beamSize = 8, and did not
apply Dropout (dropRatio = 0). Table 2 presents
the results. By comparing numbers in other rows

Zhttps://code.google.com/p/word2vec/
*http://nlp.cs.nyu.edu/evalb/
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Figure 3: Influence of hyper-parameters.

with row “All Units”, we found that ablating the
Prefix and Suffix units (“w/o Prefix & Suffix”)
significantly hurts both POS tagging and parsing
performance. Ablating POS units (“w/o POS”)
or constituent label units (“w/o NT”) has little ef-
fect on POS tagging accuracy, but hurts parsing
performance. When only keeping the word type
units (“Only Word”), both the POS tagging and
parsing accuracy drops drastically. So the Prefix
and Suffix units are crucial for POS tagging, and
POS units and constituent label units are helpful
for parsing performance. All these primitive units
are indispensable to better performance.

Second, we uncovered the effect of the dimen-
sion of word embedding. We set hiddenSize =
300, beamSize = 8, dropRatio = 0 and var-
ied wordDim among {50, 100, 300, 500, 1000}.
Figure 3(a) draws the parsing performance curve.
When increasing wordDim from 50 to 300, pars-
ing performance improves more than 1.5 percent-
age points. After that, the curve flattens out, and
parsing performance only gets marginal improve-
ment. Therefore, in the following experiments, we
fixed wordDim = 300.

Third, we tested the effect of hidden layer node
size. We varied hiddenSize among {50, 100,
300, 500, 1000}. Figure 3(b) draws the pars-
ing performance curve. We found increasing
hiddenSize is helpful for parsing performance.
However, higher hiddenSize would greatly in-
crease the amount of computation. To keep the
efficiency of our model, we fixed hiddenSize =
300 in the following experiments.

Fourth, we applied Dropout and tuned the
Dropout ratio through experiments. Figure 3(c)
shows the results. We found that the peak
performance occurred at dropRatio = 0.5,
which brought about an improvement of more
than 1 percentage point over the model without
Dropout (dropRatio = 0). Therefore, we fixed

(c) Dropout ratio (d) beam size
Primitive Units F;  POS
All Units 86.7 96.7
w/o Prefix & Suffix 85.7 954
w/o POS 86.0 96.7
w/o NT 86.2 96.6
Only Word 82.7 952

Table 2: Influence of primitive units.

dropRatio = 0.5.

Finally, we investigated the effect of beam size.
Figure 3(d) shows the curve. We found increasing
beamSize greatly improves the performance ini-
tially, but no further improvement is observed after
beamSize is greater than 8. Therefore, we fixed
beamSize = 8 in the following experiments.

4.3 Semi-supervised Training

In this subsection, we investigated whether we
can train more effective models using automati-
cally parsed data. We randomly selected 200K
sentences from our unlabeled data sets for both
Chinese and English. Then, we used an in-house
shift-reduce parser* to parse these selected sen-
tences. The size of the automatically parsed data
set may have an impact on the final model. So
we trained many models with varying amounts of
automatically parsed data. We also designed two
strategies to exploit the automatically parsed data.
The first strategy (Mix-Train) is to directly add the
automatically parsed data to the hand-annotated
training set and train models with the mixed data
set. The second strategy (Pre-Train) is to first pre-
train models with the automatically parsed data,
and then fine-tune models with the hand-annotated
training set.

Table 3 shows results of different experimen-
tal configurations for Chinese. For the Mix-Train

“Its performance is F; =83.9 on Chinese and F; =90.8%
on English.
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Mix-Train Pre-Train
#AutoSent F; POS F; POS
0 87.8 970 — —
50K 872 968 884 97.1
100K 88.7 969 895 97.1
200K 89.2 972 895 974

Table 3: Semi-supervised training for Chinese.

Mix-Train Pre-Train
#AutoSent F; POS F; POS
0 89.7 96.6 — —
50K 894 96.1 90.2 964
100K 89.5 96.0 904 96.5
200K 89.2 958 90.8 96.7

Table 4: Semi-supervised training for English.

strategy, when we only use 50K automatically
parsed sentences, the performance drops in com-
parison with the model trained without using any
automatically parsed data. When we increase the
automatically parsed data to 100K sentences, the
parsing performance improves about 1 percent but
the POS tagging accuracy drops slightly. When
we further increase the automatically parsed data
to 200K sentences, both the parsing performance
and POS tagging accuracy improve. For the Pre-
Train strategy, the performance of all three config-
urations improves performance against the model
that does not use any automatically parsed data.
The Pre-Train strategy consistently outperforms
the Mix-Train strategy when the same amount of
automatically parsed data is used. Therefore, for
Chinese, the Pre-Train strategy is much more help-
ful, and the more automatically parsed data we use
the better performance we get.

Table 4 presents results of different experimen-
tal configurations for English. The performance
trend for the Mix-Train strategy is different from
that of Chinese. Here, no matter how much auto-
matically parsed data we use, there is a consistent
degradation in performance against the model that
does not use any automatically parsed data at all.
And the more automatically parsed data we use,
the larger the drop in accuracy. For the Pre-Train
strategy, the trend is similar to Chinese. The pars-
ing performance of the Pre-Train setting consis-
tently improves as the size of automatically parsed
data increases.

Type System 1]
Supervised*1 83.2
Ours  prerain-Finetune*} 86.6
Petrov and Klein (2007) 83.3
SI. Wang and Xue (2014)} 83.6
Zhu et al. (2013)1 85.6
SE  Wang and Xue (2014) 86.3
Charniak and Johnson (2005) 82.3
RE " Wang and Zong (2011) 85.7

Table 5: Comparison with the state-of-the-art sys-
tems on Chinese test set. * marks neural network
based systems. I marks shift-reduce parsing sys-
tems.

4.4 Comparing With State-of-the-art
Systems

In this subsection, we present the performance
of our models on the testing sets. We trained
two systems. The first system (“Supervised”)
is trained only with the hand-annotated training
set, and the second system (“Pretrain-Finetune”)
is trained with the Pre-Train strategy described
in subsection 4.3 using additional automatically
parsed data. The best parameters for the two sys-
tems are set based on their performance on the de-
velopment set. To further illustrate the effective-
ness of our systems, we also compare them with
some state-of-the-art systems. We group parsing
systems into three categories: supervised single
systems (SI), semi-supervised single systems (SE)
and reranking systems (RE). Both of our two mod-
els belong to semi-supervised single systems, be-
cause our “Supervised” system utilized word em-
beddings in its input layer.

Table 5 lists the performance of our systems as
well as the state-of-the-art systems on Chinese test
set. Comparing the performance of our two sys-
tems, we see that our ‘“Pretrain-Finetune” system
shows a fairly large gain over the “Supervised”
system. One explanation is that our neural net-
work model is a non-linear model, so the back
propagation algorithm can only reach a local op-
timum. In our “Supervised” system the starting
points are randomly initialized in the parameter
space, so it only reaches local optimum. In com-
parison, our ‘“Pretrain-Finetune” system gets to
see large amount of automatically parsed data, and
initializes the starting points with the pre-trained
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Type System Fy
Supervised*I 89.4
Ours  pretrain-Finetune*} 90.7
Collins (1999) 88.2
Charniak (2000) 89.5
Henderson (2003)* 88.8
Petrov and Klein (2007) 90.1

ST Carreras et al. (2008) 91.1
Zhu et al. (2013)% 90.4
Huang et al. (2010) 91.6
Collobert (2011)* 89.1
SE " Zhuetal. 2013)f 91.3
Henderson (2004)* 90.1
Charniak and Johnson (2005) 91.5
McClosky et al. (2006) 92.3
RE  Huang (2008) 91.7
Socher et al. (2013)* 90.4

Table 6: Comparing with the state-of-the-art sys-
tems on English test set. * marks neural network
based systems. I marks shift-reduce parsing sys-
tems.

parameters. So it finds a much better local opti-
mum than the “Supervised” system. Comparing
our “Pretrain-Finetune” system with all the state-
of-the-art systems, we see our system surpass all
the other systems. Although our system only uti-
lizes some basic primitive units (in Table 1(a)),
it still outperforms Wang and Xue (2014)’s shift-
reduce parsing system which uses more complex
structural features and semi-supervised word clus-
ter features. Therefore, our model can simultane-
ously learn an effective feature representation and
make accurate parsing predictions for Chinese.

Table 6 presents the performance of our systems
as well as the state-of-the-art systems on the En-
glish test set. Our “Pretrain-Finetune” system still
achieves much better performance than the “Su-
pervised” system, although the gap is smaller than
that of Chinese. Our “Pretrain-Finetune” system
also outperforms all other neural network based
systems (systems marked with *). Although our
system does not outperform all the state-of-the-art
systems, the performance is comparable to most
of them. So our model is also effective for English
parsing.

4.5 Cross Domain Evaluation

In this subsection, we examined the robustness of
our model by evaluating it on data sets from var-
ious domains. We use the Berkeley Parser as our
baseline parser, and trained it on our training set.
For Chinese, we performed our experiments on
the cross domain data sets from Chinese Treebank
8.0 (Xue et al., 2013). It consists of six domains:
newswire (nw), magazine articles (mz), broadcast
news (bn), broadcast conversation (bc), weblogs
(wb) and discussion forums (df). Since all of the
mz domain data is already included in our train-
ing set, we only selected sample sentences from
the other five domains as the test sets 7, and made
sure these test sets had no overlap with our tree-
bank training, development and test sets. Note
that we did not use any data from these five do-
mains for training or development. The models
are still the ones described in the previous sub-
section. The results are presented in Table 7. Al-
though our “Supervised” model got slightly worse
performance than the Berkeley Parser (Petrov and
Klein, 2007), as shown in Table 5, it outper-
formed the Berkeley Parser on the cross-domain
data sets. This suggests that the learned fea-
tures can better adapt to cross-domain situations.
Compared with the Berkeley Parser, on average
our “Pretrain-Finetune” model is 3.4 percentage
points better in terms of parsing accuracy, and
3.2 percentage points better in terms of POS tag-
ging accuracy. We also presented the performance
of our pre-trained model (“Only-Pretrain”). We
found the “Only-Pretrain” model performs poorly
on this cross-domain data sets. But even pre-
training based on this less than competitive model,
our “Pretrain-Finetune” model achieves signifi-
cant improvement over the “Supervised” model.
So the Pre-Train strategy is crucial to our model.
For English, we performed our experiments on
the cross-domain data sets from OntoNote 5.0
(Weischedel et al., 2013), which consists of nw,
mz, bn, bc, wb, df and telephone conversations
(tc). We also performed experiments on the SMS
domain, using data annotated by the LDC for
the DARPA BOLT Program. We randomly se-
lected 300 sentences for each domain as the test
sets °. Table 8 presents our experimental results.
To save space, we only presented the results of
our “Pretrain-Finetune” model and the Berkeley

SThe selected sentences can be downloaded from
http://www.cs.brandeis.edu/ xuen/publications.html
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Only-Pretrain ~ Supervised Pretrain-Finetune BerkeleyParser
domain  Fj POS F, POS Ky POS F POS
bc 61.6 81.1 729 902 749 91.2 68.2 86.4
bn — — 782 932 80.8 94.2 78.3 91.2
df 65.6 845 762 91.7 785 92.6 75.9 90.3
nw 720 86.1 821 952 85.0 95.8 82.9 93.6
wb 654 815 746 895 769 90.2 73.8 86.7
average 662 833 76.8 92.0 79.2 92.8 75.8 89.6

Table 7: Cross-domain performance for Chinese. The “Only-Pretrain” model cannot successfully parse
some sentences in bn domain, so we didn’t give the numbers.

Pretrain-Finetune BerkeleyParser

Domain F} POS Fi POS
bc 77.7 92.2 76.0 91.1
bn 88.1 95.4 88.2 95.0
df 82.5 93.3 79.4 92.4
nw 89.6 95.3 86.2 94.6
wb 83.3 93.1 82.0 91.2
sms 79.2 85.8 74.6 85.3
tc 74.2 88.0 71.1 87.6
average 82.1 91.9 79.6 91.0

Table 8: Cross-domain performance for English.

Parser. Except for the slightly worse performance
on the bn domain, our model outperformed the
Berkeley Parser on all the other domains. While
our model is only 0.6 percentage point better than
the Berkeley Parser (Petrov and Klein, 2007) when
evaluated on the standard Penn TreeBank test set
(Table 6), our parser is 2.5 percentage points bet-
ter on average on the cross domain data sets. So
our parser is also very robust for English on cross-
domain data sets.

5 Related Work

There has been some work on feature optimization
in dependency parsing, but most prior work in this
area is limited to selecting an optimal subset of
features from a set of candidate features (Nilsson
and Nugues, 2010; Ballesteros and Bohnet, 2014).
Lei et al. (2014) proposed to learn features for de-
pendency parsing automatically. They first repre-
sented all possible features with a multi-way ten-
sor, and then transformed it into a low-rank tensor
as the final features that are actually used by their
system. However, to obtain competitive perfor-
mance, they had to combine the learned features

with traditional hand-crafted features. Chen and
Manning (2014) proposed to learn a dense fea-
ture vector for transition-based dependency pars-
ing via neural networks. Their model had to learn
POS tag embeddings and dependency label em-
beddings first, and then induced the dense feature
vector based on these embeddings. Comparing
with their method, our model is much simpler. Our
model learned features directly based on the orig-
inal form of primitive units.

There have also been some attempts to use
neural networks for constituent parsing. Hender-
son (2003) presented the first neural network for
broad coverage parsing. Later, he also proposed
to rerank k-best parse trees with a neural net-
work model which achieved state-of-the-art per-
formance (Henderson, 2004). Collobert (2011)
designed a recurrent neural network model to con-
struct parse tree by stacks of sequences labeling,
but its final performance is significantly lower than
the state-of-the-art performance. Socher et al.
(2013) built a recursive neural network for con-
stituent parsing. However, rather than performing
full inference, their model can only score parse
candidates generated from another parser. Our
model also requires a parser to generate training
samples for pre-training. However, our system is
different in that, during testing, our model per-
forms full inference with no need of other parsers.
Vinyals et al. (2014) employed a Long Short-Term
Memory (LSTM) neural network for parsing. By
training on a much larger hand-annotated data set,
their performance reached 91.6% for English.

6 Conclusion

In this paper, we proposed to learn features via
a neural network model. By taking as input the
primitive units, our neural network model learns
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feature representations in the hidden layer and
made parsing predictions based on the learned fea-
tures in the output layer. By employing the back-
propagation algorithm, our model simultaneously
induced features and learned prediction model pa-
rameters. We show that our model achieved signif-
icant improvement from pretraining on a substan-
tial amount of pre-parsed data. Evaluated on stan-
dard data sets, our model outperformed all state-
of-the-art parsers on Chinese and all neural net-
work based models on English. We also show
that our model is particularly effective on cross-
domain tasks for both Chinese and English.
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