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Abstract

The path ranking algorithm (PRA)
has been recently proposed to address
relational classification and retrieval tasks
at large scale. We describe Cor-PRA,
an enhanced system that can model a
larger space of relational rules, including
longer relational rules and a class of
first order rules with constants, while
maintaining scalability. We describe
and test faster algorithms for searching
for these features. A key contribution
is to leverage backward random walks
to efficiently discover these types of
rules. An empirical study is conducted
on the tasks of graph-based knowledge
base inference, and person named entity
extraction from parsed text. Our results
show that learning paths with constants
improves performance on both tasks, and
that modeling longer paths dramatically
improves performance for the named
entity extraction task.

1 Introduction

Structured knowledge about entities and the
relationships between them can be represented
as an edge-typed graph, and relational learning
methods often base predictions on connectivity
patterns in this graph. One such method is the
Path Ranking Algorithm (PRA), a random-walk
based relational learning and inference framework
due to Lao and Cohen (2010b). PRA is highly
scalable compared with other statistical relational
learning approaches, and can therefore be applied
to perform inference in large knowledge bases
(KBs). Several recent works have applied PRA
to link prediction in semantic KBs, as well as
to learning syntactic relational patterns used in
information extraction from the Web (Lao et al.,

2012; Gardner et al., 2013; Gardner et al., 2014;
Dong et al., 2014).

A typical relational inference problem is
illustrated in Figure 1. Having relational
knowledge represented as a graph, it is desired
to infer additional relations of interest between
entity pairs. For example, one may wish to
infer whether an AthletePlaysInLeague relation
holds between nodes HinesWard and NFL. More
generally, link prediction involves queries of the
form: which entities are linked to a source node s
(HinesWard) over a relation of interest r (e.g., r is
AlthletePlaysInLeague)?

PRA gauges the relevance of a target node t
with respect to the source node s and relation r
based on a set of relation paths (i.e., sequences
of edge labels) that connect the node pair. Each
path πi is considered as feature, and the value of
feature πi for an instance (s, t) is the probability of
reaching t from s following path πi. A classifier
is learned in this feature space, using logistic
regression.

PRA’s candidate paths correspond
closely to a certain class of Horn
clauses: for instance, the path π =
〈AthletePlaysForTeam,TeamPlaysInLeague〉,
when used as a feature for the relation
r = AthletePlaysForLeague, corresponds to
the Horn clause

AthletePlaysForTeam(s, z) ∧ TeamPlaysInLeague(z, t)
→ AthletePlaysForLeague(s, t)

One difference between PRA’s features and
more traditional logical inference is that
random-walk weighting means that not all
inferences instantiated by a clause will be given
the same weight. Another difference is that
PRA is very limited in terms of expressiveness.
In particular, inductive logic programming
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Figure 1: An example knowledge graph

(ILP) methods such as FOIL (Quinlan and
Cameron-Jones, 1993) learn first-order Horn
rules that may involve constants. Consider the
following rules as motivating examples.

EmployeedByAgent(s, t) ∧ IsA(t, SportsTeam)
→ AthletePlaysForTeam(s, t)

t = NFL→ AthletePlaysForTeam(s, t)

The first rule includes SportsTeam as a constant,
corresponding to a particular graph node, which
is a the semantic class (hypernym) of the target
node t. The second rule simply assigns NFL
as the target node for the AthletePlaysForTeam
relation; if used probabilistically, this rule can
serve as a prior. Neither feature can be expressed
in PRA, as PRA features are restricted to edge type
sequences.

We are interested in extending the range of
relational rules that can be represented within the
PRA framework, including rules with constants.
A key challenge is that this greatly increases
the space of candidate rules. Knowledge
bases such as Freebase (Bollacker et al., 2008),
YAGO (Suchanek et al., 2007), or NELL (Carlson
et al., 2010a), may contain thousands of predicates
and millions of concepts. The number of features
involving concepts as constants (even if limited
to simple structures such as the example rules
above) will thus be prohibitively large. Therefore,
it is necessary to search the space of candidate
paths π very efficiently. More efficient candidate
generation is also necessary if one attempts to use
a looser bound on the length of candidate paths.

To achieve this, we propose using backward
random walks. Given target nodes that are
known to be relevant for relation r, we perform
backward random walks (up to finite length `)
originating at these target nodes, where every
graph node c reachable in this random walk
process is considered as a potentially useful
constant. Consequently, the relational paths

that connect nodes c and t are evaluated as
possible random walk features. As we will show,
such paths provide informative class priors for
relational classification tasks.

Concretely, this paper makes the following
contributions. First, we outline and discuss a
new and larger family of relational features that
may be represented in terms of random walks
within the PRA framework. These features
represent paths with constants, expanding the
expressiveness of PRA. In addition, we propose to
encode bi-directional random walk probabilities as
features; we will show that accounting for this sort
of directionality provides useful information about
graph structure.

Second, we describe the learning of this
extended set of paths by means of backward walks
from relevant target nodes. Importantly, the search
and computation of the extended set of features is
performed efficiently, maintaining high scalability
of the framework. Concretely, using backward
walks, one can compute random walk probabilities
in a bi-directional fashion; this means that for
paths of length 2M , the time complexity of path
finding is reduced from O(|V |2M ) to O(|V |M ),
where |V | is the number of edge types in graph.

Finally, we report experimental results for
relational inference tasks in two different domains,
including knowledge base link prediction and
person named entity extraction from parsed
text (Minkov and Cohen, 2008). It is shown
that the proposed extensions allow one to
effectively explore a larger feature space,
significantly improving model quality over
previously published results in both domains. In
particular, incorporating paths with constants
significantly improves model quality on
both tasks. Bi-directional walk probability
computation also enables the learning of longer
predicate chains, and the modeling of long paths
is shown to substantially improve performance
on the person name extraction task. Importantly,
learning and inference remain highly efficient in
both these settings.

2 Related Work

ILP complexity stems from two main
sources—the complexity of searching for
clauses, and of evaluating them. First-order
learning systems (e.g. FOIL, FOCL (Pazzani et
al., 1991)) mostly rely on hill-climbing search,
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i.e., incrementally expanding existing patterns
to explore the combinatorial model space, and
are thus often vulnerable to local maxima. PRA
takes another approach, generating features using
efficient random graph walks, and selecting a
subset of those features which pass precision and
frequency thresholds. In this respect, it resembles
a stochastic approach to ILP used in earlier
work (Sebag and Rouveirol, 1997).The idea of
sampling-based inference and induction has been
further explored by later systems (Kuželka and
Železný, 2008; Kuželka and Železný, 2009).

Compared with conventional ILP or relational
learning systems, PRA is limited to learning
from binary predicates, and applies random-walk
semantics to its clauses. Using sampling
strategies (Lao and Cohen, 2010a), the
computation of clause probabilities can be
done in time that is independent of the knowledge
base size, with bounded error rate (Wang et al.,
2013). Unlike in FORTE and similar systems, in
PRA, sampling is also applied to the induction
path-finding stage. The relational feature
construction problem (or propositionalization)
has previously been addressed in the ILP
community—e.g., the RSD system (Železný and
Lavrač, 2006) performs explicit first-order feature
construction guided by an precision heuristic
function. In comparison, PRA uses precision and
recall measures, which can be readily read off
from random walk results.

Bi-directional search is a popular strategy
in AI, and in the ILP literature. The
Aleph algorithm (Srinivasan, 2001) combines
top-down with bottom-up search of the refinement
graph, an approach inherited from Progol.
FORTE (Richards and Mooney, 1991) was another
early ILP system which enumerated paths via
a bi-directional seach. Computing backward
random walks for PRA can be seen as a particular
way of bi-directional search, which is also
assigned a random walk probability semantics.
Unlike in prior work, we will use this probability
semantics directly for feature selection.

3 Background

We first review the Path Ranking Algorithm
(PRA) as introduced by (Lao and Cohen, 2010b),
paying special attention to its random walk feature
estimation and selection components.

3.1 Path Ranking Algorithm

Given a directed graph G, with nodes N , edges E
and edge types R, we assume that all edges can be
traversed in both directions, and use r−1 to denote
the reverse of edge type r ∈ R. A path type π
is defined as a sequence of edge types r1 . . . r`.
Such path types may be indicative of an extended
relational meaning between graph nodes that are
linked over these paths; for example, the path
〈AtheletePlaysForTeam,TeamPlaysInLeague〉
implies the relationship “the league a certain
player plays for”. PRA encodes P (s→ t;πj), the
probability of reaching target node t starting from
source node s and following path πj , as a feature
that describes the semantic relation between s and
t. Specifically, provided with a set of selected
path types up to length `, P` = {π1, . . . , πm},
the relevancy of target nodes t with respect to the
query node s and the relationship of interest is
evaluated using the following scoring function

score(s, t) =
∑
πj∈P`

θjP (s→ t;πj), (1)

where θ are appropriate weights for the features,
estimated in the following fashion.

Given a relation of interest r and a set of
annotated node pairs {(s, t)}, for which it is
known whether r(s, t) holds or not, a training
data set D = {(x, y)} is constructed, where
x is a vector of all the path features for the
pair (s, t)—i.e., the j-th component of x is
P (s → t;πj), and y is a boolean variable
indicating whether r(s, t) is true. We adopt
the closed-world assumption—a set of relevant
target nodes Gi is specified for every example
source node si and relation r, and all other nodes
are treated as negative target nodes. A biased
sampling procedure selects only a small subset of
negative samples to be included in the objective
function (Lao and Cohen, 2010b). The parameters
θ are estimated from both positive and negative
examples using a regularized logistic regression
model.

3.2 PRA Features–Generation and Selection

PRA features are of the form P (s → t;πj),
denoting the probability of reaching target node t,
originating random walk at node s and following
edge type sequence πj . These path probabilities
need to be estimated for every node pair, as part
of both training and inference. High scalability
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is achieved due to efficient path probability
estimation. In addition, feature selection is
applied so as to allow efficient learning and avoid
overfitting.

Concretely, the probability of reaching t from s
following path type π can be recursively defined
as

P (s→ t;π) =
∑
z

P (s→ z;π′)P (z → t; r),

(2)
where r is the last edge type in path π, and π′

is its prefix, such that adding r to π’ gives π.
In the terminal case that π’ is the empty path φ,
P (s → z;φ) is defined to be 1 if s = z, and 0
otherwise. The probability P (z → t; r) is defined
as 1/|r(z)| if r(z, t), and 0 otherwise, where r(z)
is the set of nodes linked to node z over edge
type r. It has been shown that P (s → t;π)
can be effectively estimated using random walk
sampling techniques, with bounded complexity
and bounded error, for all graph nodes that can be
reached from s over path type π (Lao and Cohen,
2010a).

Due to the exponentially large feature space
in relational domains, candidate path features are
first generated using a dedicated particle filtering
path-finding procedure (Lao et al., 2011), which
is informed by training signals. Meaningful
features are then selected using the following
goodness measures, considering path precision
and coverage:

precision(π) =
1
n

∑
i

P (si → Gi;π), (3)

coverage(π) =
∑
i

I(P (si → Gi;π) > 0). (4)

where P (si → Gi;π) ≡ ∑
t∈Gi

P (si → t;π).
The first measure prefers paths that lead to correct
nodes with high average probability. The second
measure reflects the number of queries for which
some correct node is reached over path π. In
order for a path type π to be included in the
PRA model, it is required that the respective
scores pass thresholds, precision(π) ≥ a and
coverage(π) ≥ h, where the thresholds a and h
are tuned empirically using training data.

4 Cor-PRA

We will now describe the enhanced system, which
we call Cor-PRA, for the Constant and Reversed

Path Ranking Algorithm. Our goal is to enrich the
space of relational rules that can be represented
using PRA, while maintaining the scalability of
this framework.

4.1 Backward random walks

We first introduce backward random walks, which
are useful for generating and evaluating the set
of proposed relational path types, including paths
with constants. As discussed in Sec.4.4, the use of
backward random walks also enables the modeling
of long relational paths within Cor-PRA.

A key observation is that the path probability
P (s → t;π) may be computed using forward
random walks (Eq. (2)), or alternatively, it can be
recursively defined in a backward fashion:

P (t← s;π) =
∑
z

P (t← z;π′−1)P (z ← s; r−1)

(5)
where π′−1 is the path that results from removing
the last edge type r in π′. Here, in the terminal
condition that π′−1 = φ, P (t ← z;π′−1) is
defined to be 1 for z = t, and 0 otherwise. In
what follows, the starting point of the random
walk calculation is indicated at the left side of
the arrow symbol; i.e., P (s → t;π) denotes the
probability of reaching t from s computed using
forward random walks, and P (t ← s;π) denotes
the same probability, computed in a backward
fashion.

4.2 Relational paths with constants

As stated before, we wish to model relational
rules that may include constants, denoting related
entities or concepts. Main questions are, how
can relational rules with constants be represented
as path probability features? and, how can
meaningful rules with constants be generated and
selected efficiently?

In order to address the first question, let
us assume that a set of constant nodes {c},
which are known to be useful with respect to
relation r, has been already identified. The
relationship between each constant c and target
node t may be represented in terms of path
probability features, P (c → t;π). For example,
the rule IsA(t, SportsTeam) corresponds to a path
originating at constant SportsTeam, and reaching
target node t over a direct edge typed IsA−1. Such
paths, which are independent of the source node
s, readily represent the semantic type, or other
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characteristic attributes of relevant target nodes.
Similarly, a feature (c, φ), designating a constant
and an empty path, forms a prior for the target
node identity.

The remaining question is how to identify
meaningful constant features. Apriori, candidate
constants range over all of the graph nodes,
and searching for useful paths that originate
at arbitrary constants is generally intractable.
Provided with labeled examples, we apply the
path-finding procedure for this purpose, where
rather than search for high-probability paths from
source node s to target t, paths are explored in
a backward fashion, initiating path search at the
known relevant target nodes t ∈ Gi per each
labeled query. This process identifies candidate
(c, π) tuples, which give high P (c ← t;π−1)
values, at bounded computation cost. As a second
step, P (c → t;π) feature values are calculated,
where useful path features are selected using the
precision and coverage criteria. Further details are
discussed in Section 4.4.

4.3 Bi-directional Random Walk Features

The PRA algorithm only uses features of the form
P (s → t;π). In this study we also consider
graph walk features in the inverse direction of
the form P (s ← t;π−1). Similarly, we
consider both P (c → t;π) and P (c ← t;π−1).
While these path feature pairs represent the same
logical expressions, the directional random walk
probabilities may greatly differ. For example,
it may be highly likely for a random walker to
reach a target node representing a sports team
t from node s denoting a player over a path π
that describes the functional AthletePlaysForTeam
relation, but unlikely to reach a particular player
node s from the multiplayer team t via the reversed
path π−1.

In general, there are six types of random walk
probabilities that may be modeled as relational
features following the introduction of constant
paths and inverse path probabilities. The random
walk probabilities between s and constant nodes
c, P (s → c;π) and P (s ← c;π), do not directly
affect the ranking of candidate target nodes, so
we do not use them in this study. It is possible,
however, to generate random walk features that
combine these probabilities with random walks
starting or ending with t through conjunction.

Algorithm 1 Cor-PRA Feature Induction1

Input training queries {(si, Gi)}, i = 1...n
for each query (s,G) do

1. Path exploration
(i). Apply path-finding to generate pathsPs up to length
` that originate at si.
(ii). Apply path-finding to generate paths Pt up to
length ` that originate at every ti ∈ Gi.
2. Calculate random walk probabilities:
for each πs ∈ Ps: do

compute P (s→ x;πs) and P (s← x;π−1
s )

end for
for each πt ∈ Pt: do

compute P (G→ x;πt) and P (G← x;π−1
t )

end for
3. Generate constant paths candidates:
for each (x ∈ N,π ∈ Pt) with P (G→ x|πt) > 0 do

propose path feature P (c ← t;π−1
t ) setting c = x,

and update its statistics by coverage += 1.
end for
for each (x ∈ N,π ∈ Pt) with P (G ← x|π−1

t ) > 0
do

propose P (c → t;πt) setting c = x and update its
statistics by coverage += 1

end for
4. Generate long (concatenated) path candidates:
for each (x ∈ N,πs ∈ Ps, πt ∈ Pt) with P (s →
x|πs) > 0 and P (G← x|π−1

t ) > 0 do
propose long path P (s → t;πs.π

−1
t ) and update its

statistics by coverage += 1, and precision +=
P (s→ x|πs)P (G← x|π−1

t )/n.
end for
for each (x ∈ N,πs ∈ Ps, πt ∈ Pt) with P (s ←
x|π−1

s ) > 0 and P (G→ x|πt) > 0 do
propose long path P (s ← t;πt.π

−1
s ) and update its

statistics by coverage += 1, and precision +=
P (s← x|π−1

s )P (G→ x|πt)/n.
end for

end for

4.4 Cor-PRA feature induction and selection

The proposed feature induction procedure is
outlined in Alg. 1. Given labeled node pairs,
the particle-filtering path-finding procedure is first
applied to identify edge type sequences up to
length ` that originate at either source nodes si
or relevant target nodes ti (step 1). Bi-directional
path probabilities are then calculated over these
paths, recording the terminal graph nodes x (step
2). Note that since the set of nodes x may be
large, path probabilities are all computed with
respect to s or t as starting points. As a result
of the induction process, candidate relational
paths involving constants are identified, and are
associated with precision and coverage statistics
(step 3). Further, long paths up to length 2` are
formed between the source and target nodes as the
combination of paths πs from the source side and
path πt from the target side, updating accuracy and
coverage statistics for the concatenated paths πsπt
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(step 4).
Following feature induction, feature selection is

applied. First, random walks are performed for
all the training queries, so as to obtain complete
(rather than sampled) precision and coverage
statistics per path. Then relational paths, which
pass respective tuned thresholds are added to the
model. We found, however, that applying this
strategy for paths with constants often leads to
over-fitting. We therefore select only the top K
constant features in terms of F1

2, where K is
tuned using training examples.

Finally, at test time, random walk probabilities
are calculated for the selected paths, starting from
either s or c nodes per query–since the identity of
relevant targets t is unknown, but rather has to be
revealed.

5 Experiments

In this section, we report the results of applying
Cor-PRA to the tasks of knowledge base inference
and person named entity extraction from parsed
text.

We performed 3-fold cross validation
experiments, given datasets of labeled queries.
For each query node in the evaluation set, a list of
graph nodes ranked by their estimated relevancy
to the query node s and relation r is generated.
Ideally, relevant nodes should be ranked at the
top of these lists. Since the number of correct
answers is large for some queries, we report
results in terms of mean average precision (MAP),
a measure that reflects both precision and recall
(Turpin and Scholer, 2006).

The coverage and precision thresholds of
Cor-PRA were set to h = 2 and a = 0.001
in all of the experiments, following empirical
tuning using a small subset of the training data.
The particle filtering path-finding algorithm was
applied using the parameter setting wg = 106, so
as to find useful paths with high probability and
yet constrain the computational cost.

Our results are compared against the FOIL
algorithm3, which learns first-order horn clauses.
In order to evaluate FOIL using MAP, its candidate
beliefs are first ranked by the number of FOIL
rules they match. We further report results
using Random Walks with Restart (RWR), also

2F1 is the harmonic mean of precision and recall, where
the latter is defined as coverage

total number targets in training queries
3http://www.rulequest.com/Personal/

Table 1: MAP and training time [sec] on KB
inference and NE extraction tasks. consti denotes
constant paths up to length i.

KB inference NE extraction
Time MAP Time MAP

RWR 25.6 0.429 7,375 0.017
FOIL 18918.1 0.358 366,558 0.167
PRA 10.2 0.477 277 0.107
CoR-PRA-no-const 16.7 0.479 449 0.167
CoR-PRA-const2 23.3 0.524 556 0.186
CoR-PRA-const3 27.1 0.530 643 0.316

known as personalized PageRank (Haveliwala,
2002), a popular random walk based graph
similarity measure, that has been shown to be
fairly successful for many types of tasks (e.g.,
(Agirre and Soroa, 2009; Moro et al., 2014)).
Finally, we compare against PRA, which models
relational paths in the form of edge-sequences
(no constants), using only uni-directional path
probabilities, P (s→ t;π).

All experiments were run on a machine with a
16 core Intel Xeon 2.33GHz CPU and 24Gb of
memory. All methods are trained and tested with
the same data splits. We report the total training
time of each method, measuring the efficiency of
inference and induction as a whole.

5.1 Knowledge Base Inference

We first consider relational inference in the
context of NELL, a semantic knowledge base
constructed by continually extracting facts from
the Web (Carlson et al., 2010b). This work uses
a snapshot of the NELL knowledge base graph,
which consists of ∼1.6M edges comprised of
353 edge types, and ∼750K nodes. Following
Lao et al. (2011), we test our approach on 16
link prediction tasks, targeting relations such
as Athlete-plays-in-league, Team-plays-in-league
and Competes-with.

Table 1 reports MAP results and training times
for all of the evaluated methods. The maximum
path length of RWR, PRA, and CoR-PRA are set
to 3 since longer path lengths do not result in better
MAPs. As shown, RWR performance is inferior to
PRA; unlike the other approaches, RWR is merely
associative and does not involve path learning.
PRA is significantly faster than FOIL due to its
particle filtering approach in feature induction
and inference. It also results in a better MAP
performance due to its ability to combine random
walk features in a discriminative model.
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Figure 2: Path finding time (a) and MAP (b)
for the KB inference (top) and name extraction
(bottom) tasks. A marker iF + jB indicates the
maximum path exploration depth i from query
node s and j from target node t–so that the
combined path length is up to i+ j. No paths with
constants were used.

Table 1 further displays the evaluation results of
several variants of CoR-PRA. As shown, modeling
features that encode random walk probabilities
in both directions (CoR-PRA-no-const), yet no
paths with constants, requires longer training
times, but results in slightly better performance
compared with PRA. Note that for a fixed path
length, CoR-PRA has “forward” features of the
form P (s → t;π), the probability of reaching
target node t from source node s over path π
(similarly to PRA), as well as backward features
of the form P (s ← t;π−1), the probability of
reaching s from t over the backward path π−1.
As mentioned earlier these probabilities are not the
same; for example, a player usually plays for one
team, whereas a team is linked to many players.

Performance improves significantly, however,
when paths with constants are further added. The
table includes our results using constant paths
up to length ` = 2 and ` = 3 (denoted as
CoR-PRA-const`). Based on tuning experiments
on one fold of the data, K = 20 top-rated constant
paths were included in the models.4 We found
that these paths provide informative class priors;

4MAP performance peaked at roughly K = 20, and
gradually decayed as K increased.

Table 2: Example paths with constants learnt for
the knowledge base inference tasks. (φ denotes
empty paths.)

Constant path Interpretation
r=athletePlaysInLeague
P (mlb→ t;φ) Bias toward MLB.
P (boston braves→ t; The leagues played by〈

athleteP laysForTeam−1, Boston Braves university
athletePlaysInLeague〉) team members.

r=competesWith
P (google→ t;φ) Bias toward Google.
P (google→ t; Companies which compete
〈competesWith, competesWith〉)with Google’s competitors.

r=teamPlaysInLeague
P (ncaa→ t;φ) Bias toward NCAA.
P (boise state→ t; The leagues played by Boise
〈teamPlaysInLeague〉) State university teams.

example paths and their interpretation are included
in Table 2.

Figure 2(a) shows the effect of increasing the
maximal path length on path finding and selection
time. The leftmost (blue) bars show baseline
performance of PRA, where only forward random
walks are applied. It is clearly demonstrated that
the time spent on path finding grows exponentially
with `. Due to memory limitations, we were
able to execute forward-walk models only up to
4 steps. The bars denoted by iF + jB show
the results of combining forward walks up to
length i with backward walks of up to j = 1 or
j = 2 steps. Time complexity using bidirectional
random walks is dominated by the longest path
segment (either forward or backward)—e.g., the
settings 3F , 3F +1B, 3F +2B have similar time
complexity. Using bidirectional search, we were
able to consider relational paths up to length 5.
Figure 2(b) presents MAP performance, where it
is shown that extending the maximal explored path
length did not improve performance in this case.
This result indicates that meaningful paths in this
domain are mostly short. Accordingly, path length
was set to 3 in the respective main experiments.

5.2 Named Entity Extraction

We further consider the task of named entity
extraction from a corpus of parsed texts, following
previous work by Minkov and Cohen (2008).

In this case, an entity-relation graph schema is
used to represent a corpus of parsed sentences,
as illustrated in Figure 3. Graph nodes denoting
word mentions (in round edged boxes) are linked
over edges typed with dependency relations. The
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parsed sentence structures are connected via nodes
that denote word lemmas, where every word
lemma is linked to all of its mentions in the
corpus via the special edge type W . We represent
part-of-speech tags as another set of graph nodes,
where word mentions are connected to the relevant
tag over POS edge type.

In this graph, task-specific word similarity
measures can be derived based on the
lexico-syntactic paths that connect word
types (Minkov and Cohen, 2014). The task
defined in the experiments is to retrieve a ranked
list of person names given a small set of seeds.
This task is implemented in the graph as a query,
where we let the query distribution be uniform
over the given seeds (and zero elsewhere). That
is, our goal is to find target nodes that are related
to the query nodes over the relation r =similar-to,
or, coordinate-term. We apply link prediction in
this case with the expected result of generating
a ranked list of graph nodes, which is populated
with many additional person names. The named
entity extraction task we consider is somewhat
similar to the one adopted by FIGER (Ling
and Weld, 2012), in that a finer-grain category
is being assigned to proposed named entities.
Our approach follows however set expansion
settings (Wang and Cohen, 2007), where the goal
is to find new instances of the specified type from
parsed text.

In the experiments, we use the training set
portion of the MUC-6 data set (MUC, 1995),
represented as a graph of 153k nodes and 748K
edges. We generated 30 labeled queries, each
comprised of 4 person names selected randomly
from the person names mentioned in the data
set. The MUC corpus is fully annotated with
entity names, so that relevant target nodes (other
person names) were readily sampled. Extraction
performance was evaluated considering the tagged
person names, which were not included in the
query, as the correct answer set. The maximum
path length of RWR, PRA, and CoR-PRA are set
to 6 due to memory limitation.

Table 1 shows that PRA is much faster
than RWR or FOIL on this data set, giving
competitive MAP performance to FOIL. RWR
is generally ineffective on this task, because
similarity in this domain is represented by a
relatively small set of long paths, whereas
RWR express local node associations in the
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Figure 3: Part of a typed graph representing a
corpus of parsed sentences.

Table 3: Highly weighted paths with constants
learnt for the person name extraction task.

Constant path Interpretation
P (said← t; W−1, nsubj, W ) The subjects of ‘said’ or ‘say’
P (says← t; W−1, nsubj, W ) are likely to be a person name.
P (vbg ← t; POS−1, nsubj, W ) Subjects, proper nouns, and
P (nnp← t; POS−1, W ) nouns with apposition or
P (nn← t; POS−1, appos−1, W ) possessive constructions, are
P (nn← t; POS−1, poss, W ) likely to be person names.

graph (Minkov and Cohen, 2008). Modeling
inverse path probabilities improves performance
substantially, and adding relational features with
constants boosts performance further. The
constant paths learned encode lexical features, as
well as provide useful priors, mainly over different
part-of-speech tags. Example constant paths that
were highly weighted in the learned models and
their interpretation are given in Table 3.

Figure 2(c) shows the effect of modeling long
relational paths using bidirectional random walks
in the language domain. Here, forward path
finding was applied to paths up to length 5 due
to memory limitation. The figure displays the
results of exploring paths up to a total length of
6 edges, performing backward search from the
target nodes of up to j = 1, 2, 3 steps. MAP
performance (Figure 2(d)) using paths of varying
lengths shows significant improvements as the
path length increases. Top weighted long features
include:
P (s→ t;W−1, conj and−1,W,W−1, conj and,W )

P (s→ t;W−1, nn,W,W−1, appos−1,W )

P (s→ t;W−1, appos,W,W−1, appos−1,W )

These paths are similar to the top ranked paths
found in previous work (Minkov and Cohen,
2008). In comparison, their results on this dataset
using paths of up to 6 steps measured 0.09 in
MAP. Our results reach roughly 0.16 in MAP due
to modeling of inverse paths; and, when constant
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paths are incorporated, MAP reaches 0.32.
Interestingly, in this domain, FOIL generates

fewer yet more complex rules, which are
characterised with low recall and high precision,
such as: W (B,A) ∧ POS(B,nnp) ∧ nsubj(D,B) ∧
W (D, said) ∧ appos(B,F ) → person(A). Note
that subsets of these rules, namely, POS(B,nnp),
nsubj(D,B) ∧ W (D, said) and appos(B,F )
have been discovered by PRA as individual
features assigned with high weights (Table 3).
This indicates an interesting future work, where
products of random walk features can be used to
express their conjunctions.

6 Conclusion

We have introduced CoR-PRA, extending an
existing random walk based relational learning
paradigm to consider relational paths with
constants, bi-directional path features, as well
as long paths. Our experiments on knowledge
base inference and person name extraction tasks
show significant improvements over previously
published results, while maintaining efficiency.
An interesting future direction is to use products
of these random walk features to express their
conjunctions.
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