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Abstract

We study the application of word embed-
dings to generate semantic representations
for the domain adaptation problem of re-
lation extraction (RE) in the tree kernel-
based method. We systematically evaluate
various techniques to generate the seman-
tic representations and demonstrate that
they are effective to improve the general-
ization performance of a tree kernel-based
relation extractor across domains (up to
7% relative improvement). In addition,
we compare the tree kernel-based and the
feature-based method for RE in a compat-
ible way, on the same resources and set-
tings, to gain insights into which kind of
system is more robust to domain changes.
Our results and error analysis shows that
the tree kernel-based method outperforms
the feature-based approach.

1 Introduction

Relation Extraction (RE) is an important aspect of
information extraction that aims to discover the
semantic relationships between two entity men-
tions appearing in the same sentence. Previous
research on RE has followed either the kernel-
based approach (Zelenko et al., 2003; Bunescu
and Mooney, 2005; Zhao and Grishman, 2005;
Zhang et al., 2006; Bunescu, 2007; Qian et al.,
2008; Nguyen et al., 2009) or the feature-based ap-
proach (Kambhatla, 2004; Grishman et al., 2005;
Zhou et al., 2005; Jiang and Zhai, 2007a; Chan
and Roth, 2010; Sun et al., 2011). Usually, in
such supervised machine learning systems, it is as-
sumed that the training data and the data to which
the RE system is applied to are sampled inde-
pendently and identically from the same distribu-
tion. This assumption is often violated in reality
and exemplified in the fact that the performance

of the traditional RE techniques degrades signif-
icantly in such a domain mismatch case (Plank
and Moschitti, 2013). To alleviate this perfor-
mance loss, we need to resort to domain adaptation
(DA) techniques to adapt a system trained on some
source domain to perform well on new target do-
mains. We here focus on the unsupervised domain
adaptation (i.e., no labeled target data) and single-
system DA (Petrov and McDonald, 2012; Plank
and Moschitti, 2013), i.e., building a single sys-
tem that is able to cope with different, yet related
target domains.

While DA has been investigated extensively in
the last decade for various natural language pro-
cessing (NLP) tasks, the examination of DA for
RE is only very recent. To the best of our knowl-
edge, there have been only three studies on DA
for RE (Plank and Moschitti, 2013; Nguyen and
Grishman, 2014; Nguyen et al., 2014). Of these,
Nguyen et al. (2014) follow the supervised DA
paradigm and assume some labeled data in the
target domains. In contrast, Plank and Moschitti
(2013) and Nguyen and Grishman (2014) work
on the unsupervised DA. In our view, unsuper-
vised DA is more challenging, but more realistic
and practical for RE as we usually do not know
which target domains we need to work on in ad-
vance, thus cannot expect to possess labeled data
of the target domains. Our current work therefore
focuses on the single-system unsupervised DA.
Besides, note that this setting tries to construct a
single system that can work robustly with differ-
ent but related domains (multiple target domains),
thus being different from most previous studies on
DA (Blitzer et al., 2006; Blitzer et al., 2007) which
have attempted to design a specialized system for
every specific target domain.

Plank and Moschitti (2013) propose to embed
word clusters and latent semantic analysis (LSA)
of words into tree kernels for DA of RE, while
Nguyen and Grishman (2014) studies the appli-
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cation of word clusters and word embeddings for
DA of RE on the feature-based method. Although
word clusters (Brown et al., 1992) have been em-
ployed by both studies to improve the performance
of relation extractors across domains, the appli-
cation of word embeddings (Bengio et al., 2003;
Mnih and Hinton, 2008; Turian et al., 2010) for
DA of RE is only examined in the feature-based
method and never explored in the tree kernel-
based method so far, giving rise to the first ques-
tion we want to address in this paper:

(i) Can word embeddings help the tree kernel-
based methods on DA for RE and more impor-
tantly, in which way can we do it effectively?

This question is important as word embeddings
are real valued vectors, while the tree kernel-based
methods rely on the symbolic matches or mis-
matches of concrete labels in the parse trees to
compute the kernels. It is unclear at the first glance
how to encode word embeddings into the tree ker-
nels effectively so that word embeddings could
help to improve the generalization performance of
RE. One way is to use word embeddings to com-
pute similarities between words and embed these
similarity scores into the kernel functions, e.g.,
by resembling the method of Plank and Moschitti
(2013) that exploited LSA (in the semantic syntac-
tic tree kernel (SSTK), cf. §2.1). We explore vari-
ous methods to apply word embeddings to gener-
ate the semantic representations for DA of RE and
demonstrate that semantic representations are very
effective to significantly improve the portability of
the relation extractors based on the tree kernels,
bringing us to the second question:

(ii) Between the feature-based method in
Nguyen and Grishman (2014) and the SSTK
method in Plank and Moschitti (2013), which
method is better for DA of RE, given the recent
discovery of word embeddings for both methods?

It is worth noting that besides the approach dif-
ference, these two works employ rather different
resources and settings in their evaluation, mak-
ing it impossible to directly compare their perfor-
mance. In particular, while Plank and Moschitti
(2013) only use the path-enclosed trees induced
from the constituent parse trees as the represen-
tation for relation mentions, Nguyen and Grish-
man (2014) include a rich set of features extracted
from multiple resources such as constituent trees,
dependency trees, gazetteers, semantic resources
in the representation. Besides, Plank and Mos-

chitti (2013) consider the direction of relations in
their evaluation (i.e, distinguishing between rela-
tion classes and their inverses) but Nguyen and
Grishman (2014) disregard this relation direction.
Finally, we note that although both studies evalu-
ate their systems on the ACE 2005 dataset, they
actually have different dataset partitions. In order
to overcome this limitation, we conduct an eval-
uation in which the two methods are directed to
use the same resources and settings, and are thus
compared in a compatible manner to achieve an in-
sight on their effectiveness for DA of RE. In fact,
the problem of incompatible comparison is unfor-
tunately very common in the RE literature (Wang,
2008; Plank and Moschitti, 2013) and we believe
there is a need to tackle this increasing confusion
in this line of research. Therefore, this is actu-
ally the first attempt to compare the two methods
(tree kernel-based and feature-based) on the same
settings. To ease the comparison for future work
and circumvent the Zigglebottom pitfall (Pedersen,
2008), the entire setup and package is available.1

2 Relation Extraction Approaches

In the following, we introduce the two relation ex-
traction systems further examined in this study.

2.1 Tree kernel-based Method

In the tree kernel-based method (Moschitti, 2006;
Moschitti, 2008; Plank and Moschitti, 2013), a
relation mention (the two entity mentions and
the sentence containing them) is represented
by the path-enclosed tree (PET), the smallest
constituency-based subtree including the two tar-
get entity mentions (Zhang et al., 2006). The syn-
tactic tree kernel (STK) is then defined to compute
the similarity between two PET trees (where tar-
get entities are marked) by counting the common
sub-trees, without enumerating the whole frag-
ment space (Moschitti, 2006; Moschitti, 2008).
STK is then applied in the support vector ma-
chines (SVMs) for RE. The major limitation of
STK is its inability to match two trees that share
the same substructure, but involve different though
semantically related terminal nodes (words). This
is caused by the hard matches between words,
and consequently between sequences containing
them. For instance, in the following example taken
from Plank and Moschitti (2013), the two frag-
ments “governor from Texas” and “head of Mary-

1https://bitbucket.org/nycphre/limo-re
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land” would not match in STK although they have
very similar syntactic structures and basically con-
vey the same relationship.

Plank and Moschitti (2013) propose to resolve
this issue for STK using the semantic syntac-
tic tree kernel (SSTK) (Bloehdorn and Moschitti,
2007) and apply it to the domain adaptation prob-
lem of RE. The two following techniques are uti-
lized to activate the SSTK: (i) replace the part-of-
speech nodes in the PET trees by the new ones
labeled by the word clusters of the corresponding
terminals (words); (ii) replace the binary similar-
ity scores between words (i.e, either 1 or 0) by
the similarities induced from the latent semantic
analysis (LSA) of large corpus. The former gener-
alizes the part-of-speech similarity to the seman-
tic similarity on word clusters; the latter, on the
other hand, allows soft matches between words
that have the same latent semantic but differ in
symbolic representation. Both techniques empha-
size the invariants of word semantics in different
domains, thus being helpful to alleviate the vocab-
ulary difference across domains.

2.2 Feature-based Method

In the feature-based method (Zhou et al., 2005;
Sun et al., 2011; Nguyen and Grishman, 2014), re-
lation mentions are first transformed into rich fea-
ture vectors that capture various characteristics of
the relation mentions (i.e, lexicon, syntax, seman-
tics etc). The resulting vectors are then fed into the
statistical classifiers such as Maximum Entropy
(MaxEnt) to perform classification for RE.

The main reason for the performance loss of
the feature-based systems on new domains is the
behavioral changes of the features when domains
shift. Some features might be very informative in
the source domain but become less relevant in the
target domains. For instance, some words, that
are very indicative in the source domain might
not appear in the target domains (lexical sparsity).
Consequently, the models putting high weights on
such words (features) in the source domain will
fail to perform well on the target domains. Nguyen
and Grishman (2014) address this problem for the
feature-based method in DA of RE by introduc-
ing word embeddings as additional features. The
rationale is based on the fact that word embed-
dings are low dimensional and real valued vec-
tors, capturing latent syntactic and semantic prop-
erties of words (Bengio et al., 2003; Mnih and

Hinton, 2008; Turian et al., 2010). The embed-
dings of symbolically different words are often
close to each other if they have similar semantic
and syntactic functions. This again helps to mit-
igate the lexical sparsity or the vocabulary differ-
ence between the domains and has proven helpful
for, amongst others, the feature-based method in
DA of RE.

2.3 Tree Kernel-based vs Feature-based

The feature-based method explicitly encapsulates
the linguistic intuition and domain expertise for
RE into the features, while the tree kernel-based
method avoids the complicated feature engineer-
ing and implicitly encode the features into the
computation of the tree kernels. Which method
is better for DA of RE?

In order to ensure the two methods (Plank and
Moschitti, 2013; Nguyen and Grishman, 2014) are
compared compatibly on the same resources, we
make sure the two systems have access to the same
amount of information. Thus, we follow Plank
and Moschitti (2013) and use the PET trees (be-
side word clusters and word embeddings) as the
only resource the two methods can exploit.

For the feature-based method, we utilize all
the features extractable from the PET trees that
are standardly used in the state-of-the-art feature-
based systems for DA of RE (Nguyen and Gr-
ishman, 2014). Specifically, the feature set em-
ployed in this paper (denoted by FET) includes:
the lexical features, i.e., the context words, the
head words, the bigrams, the number of words,
the lexical path, the order of mention (Zhou et al.,
2005; Sun et al., 2011); and the syntactic features,
i.e., the path connecting the two mentions in PET
and the unigrams, bigrams, trigrams along this
path (Zhou et al., 2005; Jiang and Zhai, 2007a).

Hypothesis: Assuming identical settings and
resources, we hypothesize that the tree kernel-
based method is better than the feature-based
method for DA of RE. This is motivated because
of at least two reasons: (i) the tree kernel-based
method implicitly encodes a more comprehen-
sive feature set (involving all the sub-trees in the
PETs), thus potentially captures more domain-
independent features to be useful for DA of RE;
(ii) the tree kernel-based method avoids the in-
clusion of fine-tuned and domain-specific features
originated from the excessive feature engineer-
ing (i.e., hand-designing feature sets based on the
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linguistic intuition for specific domains) of the
feature-based method.

3 Word Embeddings & Tree Kernels

In this section, we first give the intuition that
guides us in designing the proposed methods. In
particular, one limitation of the syntactic seman-
tic tree kernel presented in Plank and Moschitti
(2013) (§2.1) is that semantics is highly tied to
syntax (the PET trees) in the kernel computation,
limiting the generalization capacity of semantics
to the extent of syntactic matches. If two rela-
tion mentions have different syntactic structures,
the two relation mentions will not match, although
they share the same semantic representation and
express the same relation class. For instance, the
two fragments “Tom is the CEO of the company”
and “the company, headed by Tom” express the
same relationship between “Tom” and “company”
based on the semantics of their context words,
but cannot be matched in SSTK as their syntac-
tic structures are different. In such a case, it is
desirable to have a representation of relation men-
tions that is grounded on the semantics of the con-
text words and reflects the latent semantics of the
whole relation mentions. This representation is
expected to be general enough to be effective on
different domains. Once the semantic representa-
tion of relation mentions is established, we can use
it in conjunction with the traditional tree kernels
to extend their coverage. The benefit is mutual as
both semantics and syntax help to generalize rela-
tion mentions to improve the recall, but also con-
strain each other to support precision. This is the
basic idea of our approach, which we compare to
the previous methods.

3.1 Methods

We propose to utilize word embeddings of the con-
text words as the principal components to obtain
semantic representations for relation mentions in
the tree kernel-based methods. Besides more tra-
ditional approaches to exploit word embeddings,
we investigate representations that go beyond the
word level and use compositionality embeddings
for domain adaptation for the first time.

In general, suppose we are able to acquire an
additional real-valued vector Vi from word embed-
dings to semantically represent a relation mention
Ri (along with the PET tree Ti), leading to the new
representation of Ri = (Ti, Vi). The new kernel

function in this case is then defined by:

Knew(Ri, Rj) = (1− α)SSTK(Ti, Tj) + αKvec(Vi, Vj)

where Kvec(Vi, Vj) is some standard vector ker-
nel like the polynomial kernels. α is a trade-off
parameter and indicates whether the system at-
tributes more weight to the traditional SSTK or the
new semantic kernel Kvec.

In this work, we consider the following meth-
ods to obtain the semantic representation Vi from
the word embeddings of the context words of Ri

(assuming d is the dimensionality of the word em-
beddings):

HEAD: Vi = the concatenation of the word em-
beddings of the two entity mention heads of Ri.
This representation is inherited from Nguyen and
Grishman (2014) that only examine embeddings
at the word level separately for the feature-based
method without considering the compositionality
embeddings of relation mentions. The dimension-
ality of HEAD is 2d.

According to the principle of compositional-
ity (Werning et al., 2006; Baroni and Zamparelli,
2010; Paperno et al., 2014), the meaning of a com-
plex expression is determined by the meanings of
its components and the rules to combine them. We
study the following two compositionality embed-
dings for relation mentions that can be generated
from the embeddings of the context words:

PHRASE: Vi = the mean of the embeddings
of the words contained in the PET tree Ti of
Ri. Although this composition is simple, it is in
fact competitive to the more complicated methods
based on recursive neural networks (Socher et al.,
2012b; Blacoe and Lapata, 2012; Sterckx et al.,
2014) on representing phrase semantics.

TREE: This is motivated by the training of re-
cursive neural networks (Socher et al., 2012a) for
semantic compositionality and attempts to aggre-
gate the context words embeddings syntactically.
In particular, we compute an embedding for every
node in the PET tree in a bottom-up manner. The
embeddings of the leaves are the embeddings of
the words associated with them while the embed-
dings of the internal nodes are the means of the
embeddings of their children nodes. We use the
embeddings of the root of the PET tree to represent
the relation mention in this case. Both PHRASE
and TREE have d dimensions.

It is also interesting to examine combinations of
these three representations (cf., Table 1).
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SIM: Finally, for completeness, we experi-
ment with a more obvious way to introduce
word embeddings into tree kernels, resembling
more closely the approach of Plank and Moschitti
(2013). In particularly, the SIM method simply
replaces the similarity scores between word pairs
obtained from LSA by the cosine similarities be-
tween the word embeddings to be used in the
SSTK kernel.

4 Experiments

4.1 Dataset, Resources and Parameters

We use the word clusters trained by Plank and
Moschitti (2013) on the ukWaC corpus (Baroni
et al., 2009) with 2 billion words, and the C&W
word embeddings from Turian el al. (2010)2 with
50 dimensions following Nguyen and Grishman
(2014). In order to make the comparisons com-
patible, we introduce word embeddings into the
tree kernel by extending the package provided by
Plank and Moschitti (2013), which uses the Char-
niak parser to obtain the constituent trees, the
SVM-light-TK for the SSTK kernel in SVM, the
directional relation classes, etc. We utilize the de-
fault vector kernel in the SVM-light-TK package
(d=3). For the feature-based method, we apply the
MaxEnt classifier in the MALLET3 package with
the L2 regularizer on the hierarchical architecture
for relation extraction as in Nguyen and Grishman
(2014).

Following prior work, we evaluate the sys-
tems on the ACE 2005 dataset which involves 6
domains: broadcast news (bn), newswire (nw),
broadcast conversation (bc), telephone conversa-
tion (cts), weblogs (wl) and usenet (un). The union
of bn and nw (news) is used as the source domain
while bc, cts and wl play the role of the target do-
mains. We take half of bc as the only target de-
velopment set, and use the remaining data and do-
mains for testing. The dataset partition is exactly
the same as in Plank and Moschitti (2013). As
described in their paper, the target domains quite
differ from the source domain in the relation dis-
tributions and vocabulary.

4.2 Word Embeddings for Tree Kernel

We investigate the effectiveness of different se-
mantic representations (§3.1) in tree kernels by

2
http://metaoptimize.com/projects/wordreprs/

3
http://mallet.cs.umass.edu/
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Figure 1: α vs F-measure on PET+HEAD+PHRASE

taking the PET tree as the baseline4, and evaluate
the performance of the representations when com-
bined with the baseline on the bc development set.

Method P R F1
PET (Plank and Moschitti, 2013) 52.2 41.7 46.4
PET+SIM 39.4 37.2 38.3
PET+HEAD 60.4 44.9 51.5
PET+PHRASE 58.4 40.7 48.0
PET+TREE 59.8 42.2 49.5
PET+HEAD+PHRASE 63.2 46.2 53.4
PET+HEAD+TREE 61.0 45.7 52.3
PET+PHRASE+TREE 59.2 42.4 49.4
PET+HEAD+PHRASE+TREE 60.8 45.2 51.9

Table 1: Performance on the bc dev set for PET. Best com-
bination (HEAD+PHRASE) is denoted WED in Table 2

Table 1 shows the results. The main conclusions
include:

(i) The substitution of LSA similarity scores
with the word embedding cosine similarities
(SIM) does not help to improve the performance
of the tree kernel method.

(ii) When employed independently, both the
word level embeddings (HEAD) and the compo-
sitionality embeddings (PHRASE, TREE) are ef-
fective for the tree kernel-based method on DA for
RE, showing a slight advantage for HEAD.

(iii) Thus, the compositionality embeddings
PHRASE and TREE seem to capture different
information with respect to the word level em-
beddings HEAD. We expect the combination of
HEAD with either PHRASE or TREE to further
improve performance. This is the case when
adding one of them at a time. PHRASE and TREE
seem to capture similar information, combining all
(last row in Table 1) is not the overall best sys-
tem. The best performance is achieved when the
HEAD and PHRASE embeddings are utilized at

4By using their system we obtained the same results.
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nw+bn (in-dom.) bc cts wl
# System: P: R: F1: P: R: F1: P: R: F1: P: R: F1:
1 PET (Plank and Moschitti, 2013) 50.6 42.1 46.0 51.2 40.6 45.3 51.0 37.8 43.4 35.4 32.8 34.0
2 PET+WED 55.8 48.7 52.0 57.3 45.7 50.8 54.0 38.1 44.7 40.1 36.5 38.2
3 PET WC 55.4 44.6 49.4 54.3 41.4 47.0 55.9 37.1 44.6 40.0 32.7 36.0
4 PET WC+WED 56.3 48.2 51.9 57.0 44.3 49.8 56.1 38.1 45.4 40.7 36.1 38.2
5 PET LSA 52.3 44.1 47.9 51.4 41.7 46.0 49.7 36.5 42.1 38.1 36.5 37.3
6 PET LSA+WED 55.2 48.5 51.6 58.8 45.8 51.5 54.1 38.1 44.7 40.9 38.5 39.6
7 PET+PET WC 55.0 46.5 50.4 54.4 43.4 48.3 54.1 38.1 44.7 38.4 34.5 36.3
8 PET+PET WC+WED 56.3 50.3 53.1 57.5 46.6 51.5 55.6 39.8 46.4 41.5 37.9 39.6
9 PET+PET LSA 52.7 46.6 49.5 53.9 45.2 49.2 49.9 37.6 42.9 37.9 38.3 38.1
10 PET+PET LSA+WED 55.5 49.9 52.6 56.8 45.8 50.8 52.5 38.6 44.5 41.6 39.3 40.5
11 PET+PET WC+PET LSA 55.1 45.9 50.1 55.3 43.1 48.5 53.1 37.0 43.6 39.9 35.8 37.8
12 PET+PET WC+PET LSA+WED 55.0 48.8 51.7 58.5 47.3 52.3 52.6 38.8 44.7 42.3 38.9 40.5

Table 2: In-domain (first column) and out-of-domain performance (columns two to four) on ACE 2005. Systems of the rows
not in gray come from Plank and Moschitti (2013) (the baselines). WED means HEAD+PHRASE.

the same time, reaching an F1 of 53.4% (compared
to 46.4% of the baseline) on the development set.

The results in Table 1 are obtained using the
trade-off parameter α = 0.7. Figure 1 addi-
tionally shows the variation of the performance
with changing α (for the best system on dev, i.e.,
for the representation PET+HEAD+PHRASE).
As we can see, the performance for α > 0.5 is
in general better, suggesting a preference for the
semantic representation over the syntactic repre-
sentation in DA for RE. The performance reaches
its peak when the suitable amounts of semantics
and syntax are combined (i.e, α = 0.7).

In the following experiments, we use the
embedding combination (HEAD+PHRASE) with
α = 0.7 for the tree kernels, denoted WED.

4.3 Domain Adaptation Experiments

In this section, we examine the semantic rep-
resentation for DA of RE in the tree kernel-
based method. In particular, we take the sys-
tems using the PET trees, word clusters and LSA
in Plank and Moschitti (2013) as the baselines
and augment them with the embeddings WED =
HEAD+PHRASE. We report the performance of
these augmented systems in Table 2 for the two
scenarios: (i) in-domain: both training and test-
ing are performed on the source domain via 5-fold
cross validation and (ii) out-of-domain: models
are trained on the source domain but evaluated on
the three target domains. To summarize, we find:

First, word embeddings seem to subsume word
clusters in the tree kernel-based method (compar-
ing rows 2 and 4, and except domain cts) while
word embeddings and LSA actually encode dif-
ferent information (comparing rows 2 and 6 for

the out-of-domain experiments) and their combi-
nation would be helpful for DA of RE.

Second, regarding composite kernels, given
word embeddings, the addition of the baseline ker-
nel (PET) is in general useful for the augmented
kernels PET WC and PET LSA (comparing rows
4 and 8, rows 6 and 10) although it is less pro-
nounced for PET LSA.

Third and most importantly, for all the systems
in Plank and Moschitti (2013) (the baselines) and
for all the target domains, whether word clusters
and LSA are utilized or not, we consistently wit-
ness the performance improvement of the base-
lines when combined with word embedding (com-
paring systems X and X+WED where X is some
baseline system). The best out-of-domain perfor-
mance is achieved when word embeddings are em-
ployed in conjunction with the composite kernels
(PET+PET WC+PET LSA for the target domains
bc and wl, and PET+PET WC for the target do-
main cts). To be more concrete, the best system
with word embeddings (row 12 in Table 2) signif-
icantly outperforms the best system in Plank and
Moschitti (2013) with p < 0.05, an improvement
of 3.7%, 1.1% and 2.7% on the target domains bc,
cts and wl respectively, demonstrating the bene-
fit of word embeddings for DA of RE in the tree
kernel-based method.

4.4 Tree Kernel-based vs Feature-based DA
of RE

This section aims to compare the tree kernel-based
method in Plank and Moschitti (2013) and the
feature-based method in Nguyen and Grishman
(2014) for DA of RE on the same settings (i.e,
same dataset partition, the same pre-processing
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nw+bn (in-dom.) bc cts wl
System: P: R: F1: P: R: F1: P: R: F1: P: R: F1:
Tree kernel-based:
PET+PET WC+HEAD+PHRASE 56.3 50.3 53.1 57.5 46.6 51.5 55.6 39.8 46.4 41.5 37.9 39.6
Feature-based:
FET+WC+HEAD 44.5 51.0 47.5 46.5 49.3 47.8 44.5 40.0 42.1 35.4 39.5 37.3
FET+WC+TREE 44.4 50.2 47.1 46.4 48.7 47.6 43.7 40.3 41.9 32.7 36.7 34.6
FET+WC+HEAD+PHRASE 44.9 51.6 48.0 46.0 49.1 47.5 45.2 41.5 43.3 34.7 39.2 36.8
FET+WC+HEAD+TREE 45.1 51.0 47.8 46.9 48.4 47.6 43.8 39.5 41.5 34.7 38.8 36.6

Table 3: Tree kernel-based in Plank and Moschitti (2013) vs feature-based in Nguyen and Grishman (2014). All the compar-
isons between the tree kernel-based method and the feature-based method in this table are significant with p < 0.05.

procedure, the same model of directional relation
classes, the same PET trees for tree kernels and
feature extraction, the same word clusters and the
same word embeddings). We first evaluate the
feature-based system with different combinations
of embeddings (i.e, HEAD, PHRASE and TREE)
on the bc development set. Based on the evalua-
tion results, we then discuss the effect of the se-
mantic representations on the feature-based sys-
tem and the tree kernel-based system, and then
compare the performance of the two methods
when they are augmented with their best corre-
sponding embedding combinations.

System P R F1
B 51.2 49.4 50.3
B+HEAD 55.8 52.4 54.0
B+PHRASE 50.7 46.2 48.4
B+TREE 53.6 51.1 52.3
B+HEAD+PHRASE 53.2 50.1 51.6
B+HEAD+TREE 54.9 51.4 53.1
B+PHRASE+TREE 50.7 48.4 49.5
B+HEAD+PHRASE+TREE 52.7 49.4 51.0

Table 4: Performance of the feature-based method (dev).

Table 4 presents the evaluation results on the bc
development for the feature-based system where
B is the baseline feature set consisting of FET
and word clusters (WC) (Nguyen and Grishman,
2014).

The Role of Semantic Representations Con-
sidering Table 4 for the feature-based method and
Table 1 for the tree kernel-based method, we see
that when combined with the HEAD embeddings,
the compositionality embedding TREE is more ef-
fective for the feature-based method, in contrast to
the tree kernel-based method, where the PHRASE
embeddings are better. This can be partly ex-
plained by the fact that the tree kernel-based
method emphasizes the syntactic structure of the
relation mentions, while the feature-based method
exploits the sequential structure more. Conse-

quently, the syntactic semantics of TREE are more
helpful for the feature-based method, whereas the
sequential semantics of PHRASE are more useful
for the tree kernel-based method.

Performance Comparison The three best em-
bedding combinations for the feature-based sys-
tem in Table 4 are (listed by performance order):
(HEAD), (HEAD+TREE) and (TREE), where
(HEAD) is also the best word level method em-
ployed in Nguyen and Grishman (2014). In
order to enable a fairer and clearer evaluation,
when doing comparison, we use both the three
best embedding combinations in the feature-
based method and the best embedding combina-
tion (HEAD+PHRASE) in the tree kernel-based
method. In the tree kernel-based method, we do
not employ the LSA information as it comes in the
form of similarity scores between pairs of words,
and it is not clear how to encode this information
into the feature-based method effectively. Finally,
we utilize the composite kernel for its demon-
strated effectiveness in Section 4.3.

The most important observation from the ex-
perimental results (shown in Table 3) is that over
all the target domains, the tree kernel-based sys-
tem is significantly better than the feature-based
systems with p < 0.05 (assuming the same re-
sources and settings mentioned above). In fact,
there are large margins between the tree kernel-
based and the feature-based methods in this case
(i.e, about 3.7% for bc, 3.1% for cts and 2.3% for
wl), clearly confirming the hypothesis about the
advantage of the tree kernel-based method over
the feature-based method on DA for RE in Section
2.3.

5 Analysis

This section analyzes the output of the systems to
gain more insights into their operation.
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Word Embeddings for the Tree-kernel based
Method We focus on the comparison of the best
model in Plank and Moschitti (2013) (row 11
in Table 2) (called P) with the same model but
augmented with the embedding WED (row 12 in
Tabel 2) (called P+WED). One of the most inter-
esting insights is that the embedding WED helps
to semantically generalize the phrases connecting
the two target entity mentions beyond the syntactic
constraints. For instance, model P fails to discover
the relation between “Chuck Hagel” and “Viet-
nam” in the sentence (of the target domain bc):
“Sergeant Chuck Hagel was seriously wounded
twice in Vietnam.” (i.e, it returns the NONE re-
lation as the prediction) as the substructure asso-
ciated with “seriously wounded twice” does not
appear with any relation in the source domain.
Model P+WED, on the other hand, correctly pre-
dicts the PHYS (Located) relation between the
two entities as the PHRASE embedding of “Chuck
Hagel was seriously wounded twice in Vietnam.”
(phrase X1) is very close to the embedding of the
source domain phrase: “Stewart faces up to 30
years in prison” (phrase X2) (annotated with the
PHYS relation between “Stewart” and “prison”).

In fact, X2 is only the 9th closest phrase in
the source domain of X1. The closest phrase of
X1 in the source domain is X3: the phrase be-
tween “Iraqi soldiers” and “herself” in the sen-
tence “The Washington Post is reporting she shot
several Iraqi soldiers before she was captured
and she was shot herself , too.”. However, as the
syntactical structure of X1 is more similar to X2’s,
and is remarkably different from X3 as well as the
other closest phrases (ranked from 2nd to 8th), the
new kernel function Knew would still prefer X2
due to its trade-off between syntax and semantics.

Tree Kernel-based vs Feature-based From the
analysis of the systems in Table 3, we find that,
among others, the tree kernel-based method im-
proves the precision significantly via the seman-
tic and syntactic refinement it maintains. Let us
consider the following phrase of the target domain
bc: “troops have dislodged stubborn Iraqi sol-
diers” (called Y1). The feature-based systems in
Table 3 incorrectly predict the ORG-AFF relation
(Employment or Membership) between “Iraqi sol-
diers” and “troops”. This is mainly due to the high
weights of the features linking the words “troop”
and “soldiers” with the relation type ORG-AFF in
the feature-based models, which is, in turn, orig-

inated from the high correlation of these words
and the relation type in the training data of the
source domain (domain bias). The tree kernel-
based model in Table 3 successfully recognizes the
NONE relation in this case. A closer examination
shows that the phrase with the closest embedding
to Y1 in the source domain is Y2: “Iraqi soldiers
abandoned their posts”,5 which is annotated with
the NONE relation between “Iraqi soldiers” and
“their posts”. As the syntactic structure of Y2 is
also very similar to Y1, it is not surprising that Y1
is closest to Y2 in the new kernel function, conse-
quently helping the tree kernel-based method work
correctly in this case.

6 Related work

Word embeddings are only applied to RE recently.
Socher et al. (2012b) use word embeddings as in-
put for matrix-vector recursive neural networks in
relation classification while Zeng et al. (2014),
and Nguyen and Grishman (2015) employ word
embeddings in the framework of convolutional
neural networks for relation classification and ex-
traction, respectively. Sterckx et al. (2014) uti-
lize word embeddings to reduce noise of training
data in distant supervision. Kuksa et al. (2010)
present a string kernel for bio-relation extraction
with word embeddings, and Yu et al. (2014; 2015)
study the factor-based compositional embedding
models. However, none of this work examines
word embeddings for tree kernels as well as do-
main adaptation as we do.

Regarding DA, in the unsupervised DA setting,
Huang and Yates (2010) attempt to learn multi-
dimensional feature representations while Blitzer
et al. (2006) introduce structural correspondence
learning. Daumé (2007) proposes an easy adapta-
tion framework (EA) while Xiao and Guo (2013)
present a log-bilinear language adaptation tech-
nique in the supervised DA setting. Unfortunately,
all of this work assumes some prior (in the form of
either labeled or unlabeled data) on the target do-
mains for the sequential labeling tasks, in contrast
to our single-system unsupervised DA setting for
relation extraction. An alternative method that is
also popular to DA is instance weighting (Jiang
and Zhai, 2007b). However, as shown by Plank
and Moschitti (2013), instance weighting is not

5The full sentence is: “After today’s air strikes, Iraqi sol-
diers abandoned their posts and surrendered to Kurdish fight-
ers.”.
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very useful for DA of RE.

7 Conclusion

In order to improve the generalization of rela-
tion extractors, we propose to augment the seman-
tic syntactic tree kernels with the semantic rep-
resentation of relation mentions, generated from
the word embeddings of the context words. The
method demonstrates strong promise for the DA
of RE, i.e, it significantly improves the best sys-
tem of Plank and Moschitti (2013) (up to 7% rela-
tive improvement). Moreover, we perform a com-
patible comparison between the tree kernel-based
method and the feature-based method on the same
settings and resources, which suggests that the tree
kernel-based method (Plank and Moschitti, 2013)
is better than the feature-based method (Nguyen
and Grishman, 2014) for DA of RE. An error anal-
ysis is conducted to get a deeper comprehension of
the systems. Our future plan is to investigate other
syntactic and semantic structures (such as depen-
dency trees, abstract meaning representation etc)
for DA of RE, as well as continue the comparison
between the kernel-based method and the feature-
based method when they are allowed to exploit
more resources.
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