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Abstract

Relation classification is an important se-
mantic processing task for which state-of-
the-art systems still rely on costly hand-
crafted features. In this work we tackle the
relation classification task using a convo-
lutional neural network that performs clas-
sification by ranking (CR-CNN). We pro-
pose a new pairwise ranking loss function
that makes it easy to reduce the impact
of artificial classes. We perform experi-
ments using the the SemEval-2010 Task
8 dataset, which is designed for the task
of classifying the relationship between two
nominals marked in a sentence. Using CR-
CNN, we outperform the state-of-the-art
for this dataset and achieve a F1 of 84.1
without using any costly handcrafted fea-
tures. Additionally, our experimental re-
sults show that: (1) our approach is more
effective than CNN followed by a soft-
max classifier; (2) omitting the representa-
tion of the artificial class Other improves
both precision and recall; and (3) using
only word embeddings as input features is
enough to achieve state-of-the-art results if
we consider only the text between the two
target nominals.

1 Introduction

Relation classification is an important Natural
Language Processing (NLP) task which is nor-
mally used as an intermediate step in many com-
plex NLP applications such as question-answering
and automatic knowledge base construction. Since
the last decade there has been increasing interest
in applying machine learning approaches to this
task (Zhang, 2004; Qian et al., 2009; Rink and
Harabagiu, 2010). One reason is the availability
of benchmark datasets such as the SemEval-2010
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task 8 dataset (Hendrickx et al., 2010), which en-
codes the task of classifying the relationship be-
tween two nominals marked in a sentence. The
following sentence contains an example of the
Component-Whole relation between the nominals
“introduction” and “book”.

The [introduction]., in the [book]e, is a

summary of what is in the text.

Some recent work on relation classification has
focused on the use of deep neural networks with
the aim of reducing the number of handcrafted fea-
tures (Socher et al., 2012; Zeng et al., 2014; Yu et
al., 2014). However, in order to achieve state-of-
the-art results these approaches still use some fea-
tures derived from lexical resources such as Word-
Net or NLP tools such as dependency parsers and
named entity recognizers (NER).

In this work, we propose a new convolutional
neural network (CNN), which we name Classifi-
cation by Ranking CNN (CR-CNN), to tackle the
relation classification task. The proposed network
learns a distributed vector representation for each
relation class. Given an input text segment, the
network uses a convolutional layer to produce a
distributed vector representation of the text and
compares it to the class representations in order
to produce a score for each class. We propose a
new pairwise ranking loss function that makes it
easy to reduce the impact of artificial classes. We
perform an extensive number of experiments using
the the SemEval-2010 Task 8 dataset. Using CR-
CNN, and without the need for any costly hand-
crafted feature, we outperform the state-of-the-art
for this dataset. Our experimental results are ev-
idence that: (1) CR-CNN is more effective than
CNN followed by a softmax classifier; (2) omit-
ting the representation of the artificial class Other
improves both precision and recall; and (3) using
only word embeddings as input features is enough
to achieve state-of-the-art results if we consider
only the text between the two target nominals.
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The remainder of the paper is structured as fol-
lows. Section 2 details the proposed neural net-
work. In Section 3, we present details about the
setup of experimental evaluation, and then de-
scribe the results in Section 4. In Section 5, we
discuss previous work in deep neural networks
for relation classification and for other NLP tasks.
Section 6 presents our conclusions.

2 The Proposed Neural Network

Given a sentence x and two target nouns, CR-CNN
computes a score for each relation class ¢ € C.
For each class ¢ € C, the network learns a dis-
tributed vector representation which is encoded as
a column in the class embedding matrix W elesses,
As detailed in Figure 1, the only input for the net-
work is the tokenized text string of the sentence. In
the first step, CR-CNN transforms words into real-
valued feature vectors. Next, a convolutional layer
is used to construct a distributed vector represen-
tations of the sentence, . Finally, CR-CNN com-
putes a score for each relation class ¢ € C' by per-
forming a dot product between r} and W elasses,

2.1 Word Embeddings

The first layer of the network transforms words
into representations that capture syntactic and
semantic information about the words. Given
a sentence x consisting of N words =z =
{wy,wa, ..., wn}, every word w,, is converted into
a real-valued vector r*». Therefore, the input to
the next layer is a sequence of real-valued vectors
emby = {r*1, r2 . r¥yN}

Word representations are encoded by column
vectors in an embedding matrix W*rd ¢ R4 xIVI
where V is a fixed-sized vocabulary. Each column
Wrd ¢ R?" corresponds to the word embedding
of the ¢-th word in the vocabulary. We transform a
word w into its word embedding 7 by using the
matrix-vector product:

P — erde

where v" is a vector of size |V'| which has value
1 at index w and zero in all other positions. The
matrix W% is a parameter to be learned, and the
size of the word embedding d* is a hyperparame-
ter to be chosen by the user.

2.2  Word Position Embeddings

In the task of relation classification, information
that is needed to determine the class of a relation

X = The [car] left the [plant]

S(:C) _ rxT .Wciasse:s

Figure 1: CR-CNN: a Neural Network for classi-
fying by ranking.

between two target nouns normally comes from
words which are close to the target nouns. Zeng
et al. (2014) propose the use of word position em-
beddings (position features) which help the CNN
by keeping track of how close words are to the tar-
get nouns. These features are similar to the posi-
tion features proposed by Collobert et al. (2011)
for the Semantic Role Labeling task.

In this work we also experiment with the word
position embeddings (WPE) proposed by Zeng et
al. (2014). The WPE is derived from the relative
distances of the current word to the target noun;
and nounsy. For instance, in the sentence shown in
Figure 1, the relative distances of left to car and
plant are -1 and 2, respectively. As in (Collobert
et al., 2011), each relative distance is mapped to
a vector of dimension d“?¢, which is initialized
with random numbers. d“P¢ is a hyperparameter
of the network. Given the vectors wp; and wps for
the word w with respect to the targets noun; and
noung, the position embedding of w is given by
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the concatenation of these two vectors, wpe® =
[wp1, wpa].

In the experiments where word position
embeddings are wused, the word embed-
ding and the word position embedding of
each word are concatenated to form the
input for the convolutional layer, emb, =
{[r*r, wpe™], [r2, wpe™?], ..., [r'*N Jwpe™N]}.

2.3 Sentence Representation

The next step in the NN consists in creating the
distributed vector representation r, for the input
sentence x. The main challenges in this step are
the sentence size variability and the fact that im-
portant information can appear at any position in
the sentence. In recent work, convolutional ap-
proaches have been used to tackle these issues
when creating representations for text segments
of different sizes (Zeng et al., 2014; Hu et al.,
2014; dos Santos and Gatti, 2014) and character-
level representations of words of different sizes
(dos Santos and Zadrozny, 2014). Here, we use
a convolutional layer to compute distributed vec-
tor representations of the sentence. The convo-
lutional layer first produces local features around
each word in the sentence. Then, it combines these
local features using a max operation to create a
fixed-sized vector for the input sentence.

Given a sentence z, the convolutional layer ap-
plies a matrix-vector operation to each window
of size k of successive windows in emb, =
{rwr rw2 L r®N}. Let us define the vector z, €
R?“* as the concatenation of a sequence of k word
embeddings, centralized in the n-th word:

2y = (annf(kfl)/27 “_,ann+(k71)/2)T

In order to overcome the issue of referencing
words with indices outside of the sentence bound-
aries, we augment the sentence with a special

k—1
padding token replicated — times at the be-

ginning and the end.
The convolutional layer computes the j-th ele-
ment of the vector r, € R as follows:

max

[rx]j - 1<n<N

1 1
[ (Wa 6],
where W1 € R¥*4"F is the weight matrix of the
convolutional layer and f is the hyperbolic tangent
function. The same matrix is used to extract local
features around each word window of the given
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sentence. The fixed-sized distributed vector rep-
resentation for the sentence is obtained by using
the max over all word windows. Matrix W and
vector b! are parameters to be learned. The num-
ber of convolutional units d°, and the size of the
word context window k are hyperparameters to be
chosen by the user. It is important to note that d°
corresponds to the size of the sentence representa-
tion.

2.4 Class embeddings and Scoring

Given the distributed vector representation of the
input sentence x, the network with parameter set
0 computes the score for a class label ¢ € C by
using the dot product

sg (x)c _ T; [WclasseS]c

where TW¢@s5es is an embedding matrix whose
columns encode the distributed vector representa-
tions of the different class labels, and [WW<lasses],
is the column vector that contains the embedding
of the class c. Note that the number of dimensions
in each class embedding must be equal to the size
of the sentence representation, which is defined by
d®. The embedding matrix W @55¢5 is a parame-
ter to be learned by the network. It is initialized
by randomly sampling each value from an uniform

6
distribution: U (—r, ), where r = m

2.5 Training Procedure

Our network is trained by minimizing a pairwise
ranking loss function over the training set . The
input for each training round is a sentence x and
two different class labels y* € C and ¢= € O,
where y is a correct class label for x and ¢~ is
not. Let sg(z),+ and sy(z).- be respectively the
scores for class labels y* and ¢~ generated by the
network with parameter set §. We propose a new
logistic loss function over these scores in order to
train CR-CNN:

L = log(1+ exp(y(m* — Se(w)gﬁ)) 1)
+ log(1 + exp(y(m™ + sp(x).-))

where m™ and m™ are margins and ~ is a scal-
ing factor that magnifies the difference between
the score and the margin and helps to penalize
more on the prediction errors. The first term in
the right side of Equation 1 decreases as the score
sg(z),+ increases. The second term in the right



side decreases as the score sy(x).— decreases.
Training CR-CNN by minimizing the loss func-
tion in Equation 1 has the effect of training to give
scores greater than m™ for the correct class and
(negative) scores smaller than —m ™ for incorrect
classes. In our experiments we set v to 2, m™ to
2.5 and m™ to 0.5. We use L2 regularization by
adding the term 3||6]|? to Equation 1. In our ex-
periments we set § to 0.001. We use stochastic
gradient descent (SGD) to minimize the loss func-
tion with respect to 6.

Like some other ranking approaches that only
update two classes/examples at every training
round (Weston et al., 2011; Gao et al., 2014), we
can efficiently train the network for tasks which
have a very large number of classes. This is an
advantage over softmax classifiers.

On the other hand, sampling informative nega-
tive classes/examples can have a significant impact
in the effectiveness of the learned model. In the
case of our loss function, more informative nega-
tive classes are the ones with a score larger than
—m~ . The number of classes in the relation clas-
sification dataset that we use in our experiments is
small. Therefore, in our experiments, given a sen-
tence = with class label y, the incorrect class ¢~
that we choose to perform a SGD step is the one
with the highest score among all incorrect classes
c” argmax  Sg(z)e.

c € C; ctyt

For tasks where the number of classes is large,
we can fix a number of negative classes to be con-
sidered at each example and select the one with
the largest score to perform a gradient step. This
approach is similar to the one used by Weston et
al. (2014) to select negative examples.

We use the backpropagation algorithm to com-
pute gradients of the network. In our experi-
ments, we implement the CR-CNN architecture
and the backpropagation algorithm using Theano
(Bergstra et al., 2010).

2.6 Special Treatment of Artificial Classes

In this work, we consider a class as artificial if it is
used to group items that do not belong to any of the
actual classes. An example of artificial class is the
class Other in the SemEval 2010 relation classifi-
cation task. In this task, the artificial class Other
is used to indicate that the relation between two
nominals does not belong to any of the nine rela-
tion classes of interest. Therefore, the class Other
is very noisy since it groups many different types
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of relations that may not have much in common.

An important characteristic of CR-CNN is that
it makes it easy to reduce the effect of artificial
classes by omitting their embeddings. If the em-
bedding of a class label c is omitted, it means that
the embedding matrix T/¢5¢s does not contain
a column vector for c. One of the main benefits
from this strategy is that the learning process fo-
cuses on the “natural” classes only. Since the em-
bedding of the artificial class is omitted, it will not
influence the prediction step, i.e., CR-CNN does
not produce a score for the artificial class.

In our experiments with the SemEval-2010 rela-
tion classification task, when training with a sen-
tence x whose class label y = Other, the first
term in the right side of Equation 1 is set to
zero. During prediction time, a relation is clas-
sified as Other only if all actual classes have neg-
ative scores. Otherwise, it is classified with the
class which has the largest score.

3 Experimental Setup

3.1 Dataset and Evaluation Metric

We use the SemEval-2010 Task 8 dataset to per-
form our experiments. This dataset contains
10,717 examples annotated with 9 different rela-
tion types and an artificial relation Other, which
is used to indicate that the relation in the exam-
ple does not belong to any of the nine main rela-
tion types. The nine relations are Cause-Effect,
Component-Whole, Content-Container, Entity-
Destination, Entity-Origin, Instrument-Agency,
Member-Collection, Message-Topic and Product-
Producer. Each example contains a sentence
marked with two nominals e; and ey, and the
task consists of predicting the relation between
the two nominals taking into consideration the di-
rectionality. That means that the relation Cause-
Effect(el,e2) is different from the relation Cause-
Effect(e2,el), as shown in the examples below.
More information about this dataset can be found
in (Hendrickx et al., 2010).

The [war]., resulted in other collateral imperial
[conquests]., as well. = Cause-Effect(el,e2)

The [burst]c, has been caused by water hammer

[pressure]e2. = Cause-Effect(e2,el)

The SemEval-2010 Task 8 dataset is already
partitioned into 8,000 training instances and 2,717
test instances. We score our systems by using the
SemEval-2010 Task 8 official scorer, which com-
putes the macro-averaged Fl-scores for the nine



actual relations (excluding Other) and takes the di-
rectionality into consideration.

3.2 Word Embeddings Initialization

The word embeddings used in our experiments are
initialized by means of unsupervised pre-training.
We perform pre-training using the skip-gram NN
architecture (Mikolov et al., 2013) available in
the word2vec tool. We use the December 2013
snapshot of the English Wikipedia corpus to train
word embeddings with word2vec. We prepro-
cess the Wikipedia text using the steps described
in (dos Santos and Gatti, 2014): (1) removal of
paragraphs that are not in English; (2) substitu-
tion of non-western characters for a special char-
acter; (3) tokenization of the text using the to-
kenizer available with the Stanford POS Tagger
(Toutanova et al., 2003); (4) removal of sentences
that are less than 20 characters long (including
white spaces) or have less than 5 tokens. (5) lower-
case all words and substitute each numerical digit
by a 0. The resulting clean corpus contains about
1.75 billion tokens.

3.3 Neural Network Hyper-parameter

We use 4-fold cross-validation to tune the neu-
ral network hyperparameters. Learning rates in
the range of 0.03 and 0.01 give relatively simi-
lar results. Best results are achieved using be-
tween 10 and 15 training epochs, depending on
the CR-CNN configuration. In Table 1, we show
the selected hyperparameter values. Additionally,
we use a learning rate schedule that decreases the
learning rate A according to the training epoch {.
The learning rate for epoch ¢, \;, is computed us-

ing the equation: Ay = 7

Parameter | Parameter Name Value
d¥ Word Emb. size 400
dwre Word Pos. Emb. size 70
d° Convolutinal Units 1000
k Context Window size 3
A Initial Learning Rate | 0.025

Table 1: CR-CNN Hyperparameters
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4 Experimental Results

4.1 Word Position Embeddings and Input
Text Span

In the experiments discussed in this section we as-
sess the impact of using word position embeddings
(WPE) and also propose a simpler alternative ap-
proach that is almost as effective as WPEs. The
main idea behind the use of WPEs in relation clas-
sification task is to give some hint to the convo-
lutional layer of how close a word is to the target
nouns, based on the assumption that closer words
have more impact than distant words.

Here we hypothesize that most of the informa-
tion needed to classify the relation appear between
the two target nouns. Based on this hypothesis,
we perform an experiment where the input for the
convolutional layer consists of the word embed-
dings of the word sequence {we, — 1, ..., we, + 1}
where e; and ey correspond to the positions of the
first and the second target nouns, respectively.

In Table 2 we compare the results of different
CR-CNN configurations. The first column indi-
cates whether the full sentence was used (Yes) or
whether the text span between the target nouns
was used (No). The second column informs if
the WPEs were used or not. It is clear that the
use of WPE:s is essential when the full sentence is
used, since F1 jumps from 74.3 to 84.1. This ef-
fect of WPEs is reported by (Zeng et al., 2014). On
the other hand, when using only the text span be-
tween the target nouns, the impact of WPE is much
smaller. With this strategy, we achieve a F1 of §2.8
using only word embeddings as input, which is a
result as good as the previous state-of-the-art F1 of
83.0 reported in (Yu et al., 2014) for the SemEval-
2010 Task 8 dataset. This experimental result also
suggests that, in this task, the CNN works better
for short texts.

All experiments reported in the next sections
use CR-CNN with full sentence and WPEs.

Full Word

Sentence | Position Prec. Rec. FI
Yes Yes 83.7 84.7 84.1
No Yes 83.3 839 835
No No 834 823 82.8
Yes No 78.1 715 743

Table 2: Comparison of different CR-CNN con-
figurations.



4.2 Impact of Omitting the Embedding of the
artificial class Other

In this experiment we assess the impact of omit-
ting the embedding of the class Other. As we
mentioned above, this class is very noisy since it
groups many different infrequent relation types.
Its embedding is difficult to define and therefore
brings noise into the classification process of the
natural classes. In Table 3 we present the results
comparing the use and omission of embedding
for the class Other. The two first lines of results
present the official F1, which does not take into
account the results for the class Other. We can see
that by omitting the embedding of the class Other
both precision and recall for the other classes im-
prove, which results in an increase of 1.4 in the
F1. These results suggest that the strategy we use
in CR-CNN to avoid the noise of artificial classes
is effective.

[f)sfec?:;:eodt;l;;g Class | Prec. Rec. Fl1
No All 83.7 84.7 84.1
Yes All 813 84.3 82.7
No Other | 52.0 48.7 50.3
Yes Other | 60.1 48.7 53.8

Table 3: Impact of not using an embedding for the
artificial class Other.

In the two last lines of Table 3 we present the
results for the class Other. We can note that
while the recall for the cases classified as Other
remains 48.7, the precision significantly decreases
from 60.1 to 52.0 when the embedding of the class
Other is not used. That means that more cases
from natural classes (all) are now been classified
as Other. However, as both the precision and the
recall of the natural classes increase, the cases that
are now classified as Other must be cases that are
also wrongly classified when the embedding of the
class Other is used.

4.3 CR-CNN versus CNN+Softmax

In this section we report experimental results com-
paring CR-CNN with CNN+Softmax. In order
to do a fair comparison, we’ve implemented a
CNN+Softmax and trained it with the same data,
word embeddings and WPEs used in CR-CNN.
Concretely, our CNN+Softmax consists in getting
the output of the convolutional layer, which is the
vector 7, in Figure 1, and giving it as input for
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a softmax classifier. We tune the parameters of
CNN+Softmax by using a 4-fold cross-validation
with the training set. Compared to the hyperpa-
rameter values for CR-CNN presented in Table 1,
the only difference for CNN+Softmax is the num-
ber of convolutional units d¢, which is set to 400.

In Table 4 we compare the results of CR-
CNN and CNN+Softmax. CR-CNN outperforms
CNN+Softmax in both precision and recall, and
improves the F1 by 1.6. The third line in Ta-
ble 4 shows the result reported by Zeng et al.
(2014) when only word embeddings and WPEs
are used as input to the network (similar to our
CNN+Softmax). We believe that the word embed-
dings employed by them is the main reason their
result is much worse than that of CNN+Softmax.
We use word embeddings of size 400 while they
use word embeddings of size 50, which were
trained using much less unlabeled data than we
did.

Neural Net. Prec. Rec. F1
CR-CNN 83.7 84.7 84.1
CNN-+SoftMax 82.1 83.1 825
CNN+SoftMax i i 739

(Zeng et al., 2014) )

Table 4: Comparison of results of CR-CNN and
CNN+Softmax.

4.4 Comparison with the State-of-the-art

In Table 5 we compare CR-CNN results with
results recently published for the SemEval-2010
Task 8 dataset. Rink and Harabagiu (2010) present
a support vector machine (SVM) classifier that is
fed with a rich (traditional) feature set. It ob-
tains an F1 of 82.2, which was the best result
at SemEval-2010 Task 8. Socher et al. (2012)
present results for a recursive neural network
(RNN) that employs a matrix-vector representa-
tion to every node in a parse tree in order to com-
pose the distributed vector representation for the
complete sentence. Their method is named the
matrix-vector recursive neural network (MVRINN)
and achieves a F1 of 82.4 when POS, NER and
WordNet features are used. In (Zeng et al., 2014),
the authors present results for a CNN+Softmax
classifier which employs lexical and sentence-
level features. Their classifier achieves a F1 of
82.7 when adding a handcrafted feature based on
the WordNet. Yu et al. (2014) present the Factor-



based Compositional Embedding Model (FCM),
which achieves a F1 of 83.0 by deriving sentence-
level and substructure embeddings from word em-
beddings utilizing dependency trees and named
entities.

As we can see in the last line of Table 5, CR-
CNN using the full sentence, word embeddings
and WPEs outperforms all previous reported re-
sults and reaches a new state-of-the-art F1 of 84.1.
This is a remarkable result since we do not use
any complicated features that depend on external
lexical resources such as WordNet and NLP tools
such as named entity recognizers (NERs) and de-
pendency parsers.

We can see in Table 5 that CR-CNN! also
achieves the best result among the systems that
use word embeddings as the only input features.
The closest result (80.6), which is produced by the
FCM system of Yu et al. (2014), is 2.2 F1 points
behind CR-CNN result (82.8).

4.5 Most Representative Trigrams for each
Relation

In Table 6, for each relation type we present the
five trigrams in the test set which contributed the
most for scoring correctly classified examples.
Remember that in CR-CNN, given a sentence x
the score for the class ¢ is computed by sg(x). =
ry[Welasses) . In order to compute the most rep-
resentative trigram of a sentence x, we trace back
each position in 7 to find the trigram responsible
for it. For each trigram ¢, we compute its particular
contribution for the score by summing the terms
in score that use positions in 7, that trace back to
t. The most representative trigram in x is the one
with the largest contribution to the improvement of
the score. In order to create the results presented
in Table 6, we rank the trigrams which were se-
lected as the most representative of any sentence
in decreasing order of contribution value. If a tri-
gram appears as the largest contributor for more
than one sentence, its contribuition value becomes
the sum of its contribution for each sentence.

We can see in Table 6 that for most classes, the
trigrams that contributed the most to increase the
score are indeed very informative regarding the re-
lation type. As expected, different trigrams play
an important role depending on the direction of
the relation. For instance, the most informative tri-

IThis is the result using only the text span between the
target nouns.
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gram for Entity-Origin(el,e2) is “away from the”,
while reverse direction of the relation, Entity-
Origin(e2,el) or Origin-Entity, has “the source
of” as the most informative trigram. These re-
sults are a step towards the extraction of meaning-
ful knowledge from models produced by CNNs.

5 Related Work

Over the years, various approaches have been
proposed for relation classification (Zhang, 2004;
Qian et al., 2009; Hendrickx et al., 2010; Rink and
Harabagiu, 2010). Most of them treat it as a multi-
class classification problem and apply a variety of
machine learning techniques to the task in order to
achieve a high accuracy.

Recently, deep learning (Bengio, 2009) has be-
come an attractive area for multiple applications,
including computer vision, speech recognition and
natural language processing. Among the different
deep learning strategies, convolutional neural net-
works have been successfully applied to different
NLP task such as part-of-speech tagging (dos San-
tos and Zadrozny, 2014), sentiment analysis (Kim,
2014; dos Santos and Gatti, 2014), question classi-
fication (Kalchbrenner et al., 2014), semantic role
labeling (Collobert et al., 2011), hashtag predic-
tion (Weston et al., 2014), sentence completion
and response matching (Hu et al., 2014).

Some recent work on deep learning for relation
classification include Socher et al. (2012), Zeng
et al. (2014) and Yu et al. (2014). In (Socher et
al., 2012), the authors tackle relation classification
using a recursive neural network (RNN) that as-
signs a matrix-vector representation to every node
in a parse tree. The representation for the com-
plete sentence is computed bottom-up by recur-
sively combining the words according to the syn-
tactic structure of the parse tree Their method is
named the matrix-vector recursive neural network
(MVRNN).

Zeng et al. (2014) propose an approach for re-
lation classification where sentence-level features
are learned through a CNN, which has word em-
bedding and position features as its input. In par-
allel, lexical features are extracted according to
given nouns. Then sentence-level and lexical fea-
tures are concatenated into a single vector and
fed into a softmax classifier for prediction. This
approach achieves state-of-the-art performance on
the SemEval-2010 Task 8 dataset.

Yu et al. (2014) propose a Factor-based Com-



Classifier Feature Set F1
SVM POS, prefixes, morphological, WordNet, dependency parse,
(Rink and Harabagiu, 2010) | Levin classes, ProBank, FrameNet, NomLex-Plus, 82.2
Google n-gram, paraphrases, TextRunner
RNN word embeddings 74.8
(Socher et al., 2012) word embeddings, POS, NER, WordNet 77.6
MVRNN word embeddings 79.1
(Socher et al., 2012) word embeddings, POS, NER, WordNet 82.4
word embeddings 69.7
CNN-+Softmax word embeddings, word position embeddings, 827
(Zeng et al., 2014) word pair, words around word pair, WordNet '
FCM word embeddings 80.6
(Yuet al., 2014) word embeddings, dependency parse, NER 83.0
word embeddings 82.8
CR-CNN word embeddings, word position embeddings 84.1

Table 5: Comparison with results published in the literature.

Relation (el,e2)

(e2,el)

Cause-Effect

el resulted in, el caused a, had caused
the, poverty cause e2, caused a e2

e2 caused by, was caused by, are
caused by, been caused by, e2 from el

Component-Whole

el of the, of the e2, part of the,
in the €2, el on the

e2’sel, withits el, e2 has a,
e2 comprises the, e2 with el

Content-Container

was in a, was hidden in, were in a,
was inside a, was contained in

e2 full of, e2 with el, e2 was full,
e2 contained a, e2 with cold

Entity-Destination

el into the, el into a, el to the,
was put inside, imported into the

Entity-Origin

away from the, derived from a, had
left the, derived from an, el from the

the source of, e2 grape el,
e2 butter el

Instrument-Agency

are used by, el for €2, is used by,
trade for e2, with the e2

with a el, by using el, e2 finds a,
e2 with a, e2, who

Member-Collection

of the €2, in the e2, of this e2,
the political e2, el collected in

e2 of el, of wild el, of elven el,
e2 of different, of 0000 el

Message-Topic

el is the, el asserts the, el that the,
on the €2, el inform about

described in the, discussed in the,
featured in numerous, discussed
in cabinet, documented in two,

Product-Producer

el by the, by a e2, of the e2,
by the e2, from the e2

e2 of the, e2 has constructed, e2 ’s el,
e2 came up, e2 who created

Table 6: List of most representative trigrams for each relation type.

positional Embedding Model (FCM) by deriving
sentence-level and substructure embeddings from
word embeddings, utilizing dependency trees and
named entities. It achieves slightly higher accu-
racy on the same dataset than (Zeng et al., 2014),
but only when syntactic information is used.

There are two main differences between the ap-
proach proposed in this paper and the ones pro-
posed in (Socher et al., 2012; Zeng et al., 2014; Yu
et al., 2014): (1) CR-CNN uses a pair-wise rank-
ing method, while other approaches apply multi-
class classification by using the softmax function
on the top of the CNN/RNN; and (2) CR-CNN
employs an effective method to deal with artificial
classes by omitting their embeddings, while other
approaches treat all classes equally.

633

6 Conclusion

In this work we tackle the relation classification
task using a CNN that performs classification by
ranking. The main contributions of this work are:
(1) the definition of a new state-of-the-art for the
SemEval-2010 Task 8 dataset without using any
costly handcrafted features; (2) the proposal of a
new CNN for classification that uses class embed-
dings and a new rank loss function; (3) an effective
method to deal with artificial classes by omitting
their embeddings in CR-CNN; (4) the demonstra-
tion that using only the text between target nomi-
nals is almost as effective as using WPEs; and (5)
a method to extract from the CR-CNN model the
most representative contexts of each relation type.
Although we apply CR-CNN to relation classifica-
tion, this method can be used for any classification
task.
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