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Abstract

We study the problem of summarizing
DAGe-structured topic hierarchies over a
given set of documents. Example appli-
cations include automatically generating
Wikipedia disambiguation pages for a
set of articles, and generating candidate
multi-labels for preparing machine learn-
ing datasets (e.g., for text classification,
functional genomics, and image classi-
fication). Unlike previous work, which
focuses on clustering the set of documents
using the topic hierarchy as features, we
directly pose the problem as a submodular
optimization problem on a topic hierarchy
using the documents as features. Desirable
properties of the chosen topics include
document coverage, specificity, topic
diversity, and topic homogeneity, each of
which, we show, is naturally modeled by
a submodular function. Other information,
provided say by unsupervised approaches
such as LDA and its variants, can also be
utilized by defining a submodular function
that expresses coherence between the
chosen topics and this information. We use
a large-margin framework to learn convex
mixtures over the set of submodular
components. We empirically evaluate our
method on the problem of automatically
generating Wikipedia disambiguation
pages using human generated clusterings
as ground truth. We find that our frame-
work improves upon several baselines
according to a variety of standard evalua-
tion metrics including the Jaccard Index,
F1 score and NMI, and moreover, can be
scaled to extremely large scale problems.
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1 Introduction

Several real world machine learning applications
involve hierarchy based categorization of topics
for a set of objects. Objects could be, e.g., a
set of documents for text classification, a set of
genes in functional genomics, or a set of images
in computer vision. One can often define a natural
topic hierarchy to categorize these objects. For
example, in text and image classification problems,
each document or image is assigned a hierarchy
of labels — a baseball page is assigned the labels
“baseball” and “sports.” Moreover, many of these
applications, naturally have an existing topic
hierarchy generated on the entire set of objects
(Rousu et al., 2006; Barutcuoglu et al., 2006; ling
Zhang and hua Zhou, 2007; Silla and Freitas, 2011;
Tsoumakas et al., 2010).

Given a DAG-structured topic hierarchy and a
subset of objects, we investigate the problem of
finding a subset of DAG-structured topics that are
induced by that subset (of objects). This problem
arises naturally in several real world applications.
For example, consider the problem of identifying
appropriate label sets for a collection of articles.
Several existing text collection datasets such as 20
Newsgroup!, Reuters-215782 work with a prede-
fined set of topics. We observe that these topic
names are highly abstract? for the articles catego-
rized under them. On the other hand, techniques
proposed by systems such as Wikipedia Miner
(Milne, 2009) and TAGME (Ferragina and Scaiella,
2010) generate several labels for each article in the
dataset that are highly specific to the article. Col-
lating all labels from all articles to create a label

"http://qwone.com/~jason/20Newsgroups/

http://www.daviddlewis.com/resources/
testcollections/reuters21578/

3Topic Concept is more abstract than the topic Science
which is more abstract than the topicChemistry
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ined (near leaf level) topics

o= Topic-Object association

we show many documents related to Apple. In the

middle, a Wikipedia category hierarchy shown as a topic DAG, links these documents at the leaf level. On
the right, we show the output of our summarization process, which creates a set of summary topics (Plants,

Technology, Companies, Films, Music and Places in
under them.

set for the dataset can result in a large number of
labels and become unmanageable. Our proposed
techniques can summarize such large sets of labels
into a smaller and more meaningful label sets using
a DAG-structured topic hierarchy. This also holds
for image classification problems and datasets like
ImageNet (Deng et al., 2009). We use the term
summarize to highlight the fact that the smaller la-
bel set semantically covers the larger label set. For
example, the topics Physics, Chemistry, and Math-
ematics can be summarized into a topic Science.
A particularly important application of our work
(and the one we use for our evaluations in Section 4)
is the following: Given a collection of articles span-
ning different topics, but with similar titles, auto-
matically generate a disambiguation page for those
titles using the Wikipedia category hierarchy* as a
topic DAG. Disambiguation pages® on Wikipedia
are used to resolve conflicts in article titles that oc-
cur when a title is naturally associated with multi-
ple articles on distinct topics. Each disambiguation
page organizes articles into several groups, where
the articles in each group pertain only to a specific
topic. Disambiguations may be seen as paths in a
hierarchy leading to different articles that arguably
could have the same title. For example, the title
Apple® can refer to a plant, a company, a film, a

4http://en.wikipedla.org/wiki/Help:Categories

5http://en.wikipedia.org/wiki/wikipedia:Disambiguation

*http://en.wikipedia.org/wiki/Apple_
(disambiguation)

554

this example) with the input documents classified

television show, a place, a technology, an album, a
record label, and a newspaper daily. The problem
then, is to organize the articles into multiple groups
where each group contains articles of similar nature
(topics) and has an appropriately discerned group
heading. Figure 1 describes the topic summariza-
tion process for creation of the disambiguation page
for “Apple”.

All the above mentioned problems can be mod-
eled as the problem of finding the most representa-
tive subset of topic nodes from a DAG-Structured
topic hierarchy. We argue that many formulations
of this problem are natural instances of submodular
maximization, and provide a learning framework
to create submodular mixtures to solve this prob-
lem. A set function f(.) is said to be submodular
if for any element v and sets A C B C V' \ {v},
where V' represents the ground set of elements,
f(AU{v})—f(A) > f(BU{v})—f(B). Thisis
called the diminishing returns property and states,
informally, that adding an element to a smaller
set increases the function value more than adding
that element to a larger set. Submodular func-
tions naturally model notions of coverage and di-
versity in applications, and therefore, a number
of machine learning problems can be modeled as
forms of submodular optimization (Kempe et al.,
2003; Krause and Guestrin, 2005; Narasimhan and
Bilmes, 2004; Iyer et al., 2013; Lin and Bilmes,
2012; Lin and Bilmes, 2010). In this paper, we
investigate structured prediction methods for learn-



ing weighted mixtures of submodular functions to
summarize topics for a collection of objects us-
ing DAG-structured topic hierarchies. Throughout
this paper we use the terms “topic” and “category”
interchangeably.

1.1 Related Work

To the best of our knowledge, the specific problem
we consider here is new. Previous work on identi-
fying topics can be broadly categorized into one of
the following types: a) cluster the objects and then
identify names for the clusters; or b) dynamically
identify topics (including hierarchical) for a set of
objects. LDA (Blei et al., 2003) clusters the docu-
ments and simultaneously produces a set of topics
into which the documents are clustered. In LDA,
each document may be viewed as a mixture of var-
ious topics and the topic distribution is assumed
to have a Dirichlet prior. LDA associates a group
of high probability words to each identified topic.
A name can be assigned to a topic by manually
inspecting the words or using additional algorithms
like (Mei et al., 2007; Maiya et al., 2013). LDA
does not make use of existing topic hierarchies and
correlation between topics. The Correlated Topic
Model (Blei and Lafferty, 2006) induces a correla-
tion structure between topics by using the logistic
normal distribution instead of the Dirichlet. An-
other extension is the hierarchical LDA (Blei et
al., 2004), where topics are joined together in a
hierarchy by using the nested Chinese restaurant
process. Nonparametric extensions of LDA include
the Hierarchical Dirichlet Process (Teh et al., 2006)
mixture model, which allows the number of top-
ics to be unbounded and learnt from data and the
Nested Chinese Restaurant Process which allows
topics to be arranged in a hierarchy whose structure
is learnt from data. In each of these approaches,
unlike our proposed approach, an existing topic
hierarchy is not used, nor is any additional object-
topic information leveraged.

The pachinko allocation model (PAM)(Li and
McCallum, 2006) captures arbitrary, nested, and
possibly sparse correlations between topics using a
DAG. The leaves of the DAG represent individual
words in the vocabulary, while each interior node
represents a correlation among its children, which
may be words or other interior nodes (topics). PAM
learns the probability distributions of words in a
topic, subtopics in a topic, and topics in a document.
We cannot, however, generate a subset of topics
from a large existing topic DAG that can act as
summary topics, using PAM.

HSLDA (Perotte et al., 2011) introduces a hierar-
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chically supervised LDA model to infer hierarchi-
cal labels for a document. It assumes an existing
label hierarchy in the form of a tree. The model
infers one or more labels such that, if a label [ is
inferred as relevant to a document, then all the la-
bels from [ to the root of the tree are also inferred
as relevant to the document. Our approach differs
from HSLDA since: (1) we use the label hierarchy
to infer a set of labels for a group of documents; (2)
we do not enforce the label hierarchy to be a tree
as it can be a DAG; and (3) generalizing HSLDA
to use a DAG structured hierarchy and infer labels
for a group of documents (e.g., combining into one
big document) also may not help in solving our
problem. HSLDA will apply a// the relevant labels
to the documents as per the classifier that it learns
for every label. Moreover, the “root” label is al-
ways applied and it is very likely that many labels
near the top level of the label hierarchy are also
classified as relevant to the group of documents.

Wei and James (Bi and Kwok, 2011) present
a hierarchical multi-label classification algorithm
that can be used on both tree and DAG structured
hierarchies. They formulate a search for the opti-
mal consistent multi-label as the finding of the best
subgraph in a tree/DAG. In our approach, we as-
sume, individual documents are already associated
with one or more topics and we find a consistent
label set for a group of documents using the DAG
structured topic hierarchy.

Medelyan et al. (Medelyan et al., 2008) and
Ferragina et al. (Ferragina and Scaiella, 2010) de-
tect topics for a document using Wikipedia article
names and category names as the topic vocabulary.
These systems are able to extract signals from a text
document and identify Wikipedia articles and/or
categories that optimally match the document and
assign those article/category names as topics for the
document. When run on a large collection of docu-
ments, these approaches generate enormous num-
bers of topics, a problem our proposed approach
addresses.

1.2 Our Contributions

While most prior work discussed above focuses
on the underlying set of documents, (e.g., by
clustering documents), we focus directly on the
topics. In particular, we formulate the problem
as subset selection on the set of topics within
a DAG while simultaneously considering the
documents to be categorized. Our method can
scale to the colossal size of the DAG (1 million
topics and 3 million correlation links between
topics in Wikipedia). Moreover, our approach can



naturally incorporate outputs from many of the
aforementioned algorithms. Our approach is based
on submodular maximization and mixture learning,
which has been successfully used in applications
such as document summarization (Lin, 2012) and
image summarization (Tschiatschek et al., 2014),
but has never been applied to topic identification
tasks or, more generally, DAG summarization.

We introduce a family of submodular functions
to identify an appropriate set of topics from a DAG
structured hierarchy of topics for a group of docu-
ments. We characterize this topic appropriateness
through a set of desirable properties such as cov-
erage, diversity, specificity, clarity, and relevance.
Each of the submodular function components we
consider are monotone, thereby ensuring a near op-
timal performance obtainable via a simple greedy
algorithm for optimization.”. We also show how
our technique naturally embodies outputs of other
algorithms such as LDA, clustering, and classifi-
cations. Finally, we utilize a large margin formu-
lation for learning mixtures of these submodular
functions, and show how we can optimally learn
them from training data.

Our approach demonstrates how to utilize the
features collectively in the document space and the
topic space to infer a set of topics. From an em-
pirical perspective, we introduce and evaluate our
approach on a dataset of around 8000 disambigua-
tions that was extracted from Wikipedia and subse-
quently cleaned using the methods described in the
experimentation section. We show that our learn-
ing framework outperforms many of the baselines,
and is practical enough to be used on large corpora.

2 Problem Formulation

Let G (V, E) be the DAG structured topic hierarchy
with V' topics. These topics are observed to have a
parent child (isa) relationship forming a DAG. Let
D be the set of documents that are associated with
one or more of these topics. The middle portion
of Figure 1 depicts a topic hierarchy with associ-
ated documents. The association links between the
documents and topics can be hard or soft. In case
of a hard link, a document is attached to a set of
topics. Examples include multi-labeled documents.
In case of a soft link, a document is associated with
a topic with some degree of confidence (or prob-
ability). Furthermore, if a document is attached
to a topic £, we assume that all the ancestor top-
ics of ¢ are also relevant for that document. This

7 A simple greedy algorithm (Nemhauser et al., 1978) ob-
tains a 1 — 1/e approximation guarantee for monotone sub-
modular function maximization
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assumption has been employed in earlier works
(Blei et al., 2004; Bi and Kwok, 2011; Rousu et
al., 2006) as well. Given a budget of K, our objec-
tive is to choose a set of K topics from V', which
best describe the documents in D. The notion of
best describing topics is characterized through a set
of desirable properties - coverage, diversity, speci-
ficity, clarity, relevance and fidelity - that K topics
have to satisfy. The submodular functions that we
introduce in the next section ensure these proper-
ties are satisfied. Formally, we solve the following
discrete optimization problem:

S* € argmax w; fi(S) (D
SCV:|S|I<K ZZ:

where, f; are monotone submodular mixture com-
ponents and w; > 0 are the weights associated with
those mixture components. Set S* is the summary
topics scored best.

It is easy to find massive (i.e., size in the order of
million) DAG structured topic hierarchies in prac-
tice. Wikipedia’s category hierarchy consists of
more than 1M categories (topics) arranged hierar-
chically. In fact, they form a cyclic graph (Zesch
and Gurevych, 2007). However, we can convert it
to a DAG by eliminating the cycles as described
in the supplementary material. YAGO (Suchanek
et al., 2007) and Freebase (Bollacker et al., 2008)
are other instances of massive topic hierarchies.
The association of the documents with the existing
topic hierarchy is also well studied. Systems such
as WikipediaMiner (Milne, 2009), TAGME (Fer-
ragina and Scaiella, 2010) and several annotation
systems such as (Dill et al., 2003; Mihalcea and
Csomai, 2007; Bunescu and Pasca, 2006) attach
topics from Wikipedia (and other catalogs) to the
documents by establishing the hard or soft links
mentioned above.

Our goal is the following: Given a (ground set)
collection V' of topics organized in a pre-existing
hierarchical DAG structure, and a collection D of
documents, chose a size K € Z, representative
subset of topics. Our approach is distinct from
earlier work (e.g., (Kanungo et al., 2002; Blei et
al., 2003)) where typically only a set of documents
is classified and categorized in some way. We next
provide a few definitions needed later in the paper.

Definition 1: Transitive Cover I'): A topic ¢ is
said to cover a set of documents I'(¢), called the
transitive cover of the topic t, if for all documents
i € T'(t), either 7 is associated directly with topic
t or with any of the descendant topics of ¢ in the
topic DAG. A natural extension of this definition to
a set of topics 7' is defined as I'(T") = UerI'(¢).



Definition 2: Truncated Transitive Cover (I'“):
This is a transitive cover of topic ¢, but with the
limitation that the path length between a docu-
ment and the topic ¢ is not more than «. Hence,
[r(8)] < [T()].

While our problem is closely related to cluster-
ing approaches, which consider the set of docu-
ments directly, there are some crucial differences.
In particular, we focus on producing a clustering of
documents where clusters are encouraged to honor
a pre-defined DAG structured topic hierarchy. Ex-
isting agglomerative clustering algorithms focusing
on the coverage of documents may not produce the
desired clustering. To understand this, consider six
documents d1, d2 ...d6 to be grouped into three
clusters. There may be multiple ways to do this de-
pending upon multiple aggregation paths present in
the topic DAG: ((d1, d2), (d3, d4), (d5, d6)) or ((d1,
d2, d3), (d4, d5), (d6)) or ((d1, d2, d3, d4), (d5),
(d6)) or something else. Hence, we need more
stringent measures to prefer one clustering over
the others. Our work addresses this with a variety
of quality criteria (coverage, diversity, specificity,
clarity, relevance and fidelity, which are explained
later in this paper) that are organically derived from
well established submodular functions. And, most
importantly, we learn the right mixture of these
qualities to be enforced from the data itself. Fur-
thermore, our approach also generalizes these clus-
tering approaches, since one of the components in
our mixture of submodular functions is defined via
these unsupervised approaches, and maps a given
clustering to a set of topics in the hierarchy.

3 Submodular Components and
Learning

Summarization is the task of extracting information
from a source that is both small in size but still
representative. Our problem is different from
traditional summarization tasks since we have an
underlying DAG as a topic hierarchy that we wish
to summarize in response to a subset of documents.
Thus, a critical part of our problem is to take the
graph structure into account while creating the
summaries. Below, we identify properties we wish
our summaries to posses.

Coverage: A summary set of topics should
cover most of the documents. A document is said
to be covered by a topic if there exists a path from
the topic, going through intermediary descendant
topics, to the document, i.e., the document is within
the transitive cover of the topic.

Diversity: Summaries should be as diverse as
possible, i.e., each summary topic should cover

a unique set of documents. When a document is
covered by more than one topic, that document is
redundantly covered, e.g., “Finance” and “Banking’
would be unlikely members of the same summary.

Summary qualities also involve “quality”
notions, including:

Specificity/Clarity/Relevance/Coherence:
These quality measures help us choose a set of
topics that are neither too abstract nor overly
specific. They ensure that the topics are clear
and relevant to the documents that they represent.
When additional information such as clustering
(from LDA or other sources) and tagging (manual)
documents is available, these quality criteria
encourage the chosen topics to show resemblance
(coherence) to those clustering/tagging in terms of
transitive cover of documents they produce.

In the below, we define a variety of submodular
functions that capture the above properties, and we
then describe a large margin learning framework
for learning convex mixtures of such components.

’

3.1 Submodular Components

3.1.1 Coverage Based Functions

Coverage components capture “coverage” of a set
of documents.

Weighted Set Cover Function: Given a set of
categories, S C V, define I'(S) as the set of docu-
ments covered — for each topic s € S, T'(s) C D
represents the documents covered by topic s and
I'(S) = UsesI'(s). The weighted set cover func-
tion, defined as f(S) = >_ jep(s) wa = w(I'(S)),
assigns weights to the documents based on
their relative importance (e.g., in Wikipedia
disambiguation, the different documents could be
ranked based on their priority).

Feature-based Functions: This class of
function represents coverage in feature space.
Given a set of categories S C V, and a set of
features U, define m,,(.S) as the score associated
with the set of categories S for feature u € U.
The feature set could represent, for example, the
documents, in which case m,,(S) represents the
number of times document u is covered by the
set S. U could also represent more complicated
features. For example, in the context of Wikipedia
disambiguation, U could represent TFIDF features
over the documents. Feature based are then
defined as f(S) = > ,cpy ¥(mu(S)), where 1 is
a concave (e.g., the square root) function. This
function class has been successfully used in several
applications (Kirchhoff and Bilmes, 2014; Wei et
al., 2014a; Wei et al., 2014b).
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3.1.2 Similarity based Functions

Similarity functions are defined through a simi-
larity matrix S = {s;j}; jev. Given categories
t1,j € V, similarity s;; in our case can be defined
as s;; = |I'(4)NT'(j)], i.e the number of documents
commonly covered by both ¢ and j.

Facility Location: The facility location func-
tion, defined as f(S) = ) ..y max;eg s;5, is a
natural model for k-medoids and exemplar based
clustering, and has been used in several summariza-
tion problems (Tschiatschek et al., 2014; Wei et al.,
2014a).

Penalty based diversity: A similarity ma-
trix may be used to express a form of coverage
of a set S but that is then penalized with a re-
dundancy term, as in the following difference:
f(S) = Yievjes Sii — Aies 2jes, Sij (Lin
and Bilmes, 2011)). Here A € [0, 1]. This function
is submodular, but is not in general monotone, and
has been used in document summarization (Lin and
Bilmes, 2011), as a dispersion function (Borodin
et al., 2012), and in image summarization (Tschi-
atschek et al., 2014).

3.1.3 Quality Control (QC) Functions

QC functions ensure a quality criteria is met by a
set S of topics. We define the quality score of the
set S as Fy (S) = > cqfq(s), where f,(s) is
the quality score of topic s for quality q. Therefore,
F, (S) is a modular function in S. We investigate
three types of quality control functions: Topic
Specificity, Topic Clarity, and Topic Relevance.

Topic Specificity: The farther a topic is from
the root of the DAG, the more specific it becomes.
Topics higher up in the hierarchy are abstract and
less specific. We therefore prefer topics low in the
DAG, but lower topics also have less coverage. We
define fopecificity (5) = Sp Where sy, is the height of
topic s in the DAG. The root topic has height zero
and the “height” increases as we move down the
DAG in Figure 1.

Topic Clarity: Topic clarity is the fraction of
descendant topics that cover one or more docu-
ments. If a topic has many descendant topics that
do not cover any documents, it has less clarity. For-

Z iescendants( s [[F(t)>0]]
mally, felarity(s) = tETdescin;;n)tS( ol , where [.]

is the indicator function.

Topic Relevance: A topic is considered to be
better related to a document if the number of hops
needed to reach the document from that topic is
lower. Given any set A C D of document, and
any topic s € V, we can define frelevance (S]A) =
argming {a : A C T%(s)}.
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QC Functions As Barrier Modular Mixtures:
We introduce a modular function for every QC
function as follows

o 1  if the height of topic s is at least a

Fipecitcey (5) = {O otherwise
for every possible value of a.. This creates a sub-
modular mixture with as many components as the
number of possible values of «.. In our experiments
with Wikipedia, we had « varying from 1 to 120
stepping by 1, adding 120 modular mixture compo-
nents. Similarly, we define,

8 . 1 if the clarity of topic s is at least 3

Jotry (5) = {O otherwise
for every possible (discretized to make it count-
ably finite) value of 3. And,

T evance (8) = feov (|17 (s)), where feoy () is
the coverage submodular function and s|X indi-
cates coverage of a topic s over a set of documents
X. All these functions (modular and submodular
terms) are added as mixture components in our
learning framework to learn suitable weights for
them. We then use these weights in our inference
procedure to obtain a subset of topics as described
in 3.2. We show from our experiments that this
approach performs better than all other approaches
and baselines.

3.1.4 Fidelity Functions

A function representing the fidelity of a set .S to
another reference set R is one that gets a large value
when the set .S represents the set R. Such a function
scores inferred topics high when it resembles a
reference set of topics and/or item clusters. The
reference set in this case can be produced from
other algorithms such as k-means, LDA and its
variants or from a manually tagged corpus. Next
we describe one such fidelity function.

Topic Coherence: This function scores a set
of topics S high when the transitive cover (Def-
inition 1) produced by the topics in S resembles
the clusters of documents produced by an external
source (k-means, LDA or manual). Given an exter-
nal source that clusters the documents, producing T’
clusters Ly, Lo, ..., Lt (for T topics), topic coher-
ence is defined as: f(S) = >, o maxpes Wi

where wy; = harmonicmean(wi ,»wh,) and
p_ I0WNL g — DL
wkvt - D(R)] and wk,t - L. - Note that,

wz , = 0and wgt > 0 are the precision on recall
of the resemblance and wy, ; is the F1 measure. If
the transitive cover of topics in S resembles the
reference clusters L; exactly, we attain maximum
coherence (or fidelity). As the resemblance dimin-
ishes, the score decreases. The above function f(.5)
is monotone submodular.



3.1.5 Mixture of Submodular Components:

Given the different classes of submodular functions
above, we construct our submodular scoring func-
tions F,(-) as a convex combinations of these dif-

ferent submodular functions f1, fo,..., fin, above.
In other words,
m
Fu(8) = wifi(9), )
i=1

where w = (wi,...,wn), w; > 0,>,w; = 1.
The components f; are submodular and assumed to
be normalized: i.e., f;(0)) = 0, and f;(V) = 1 for
monotone functions and maxacy fi(A4) < 1 for
non-monotone functions. A simple way to normal-
ize a monotone submodular function is to define
the component as f;(S)/fi(V). This ensures that
the components are compatible with each other.
Obviously, the merit of the scoring function F,,(-)
depends on the selection of the components.

3.2 Large Margin Learning

We optimize the weights w of the scoring func-
tion F,(+) in a large-margin structured prediction
framework. In this setting, we assume we have
training data in the form of pairs of a set of docu-
ments, and a human generated summary as a set
of topics. For example, in the case of Wikipedia
disambiguation, we use the human generated dis-
ambiguation pages as the ground truth summary.
We represent the set of ground-truth summaries as
S = {51,52,---,Sn}. In large margin training,
the weights are optimized such that ground-truth
summaries S are separated from competitor sum-
maries by a loss-dependent margin:

Fu(S) > Fu(S)+ L(S), VS€S, S eY\S, 3
where L£(-) is the loss function, and where )
is a structured output space (for example )
is the set of summaries that satisfy a certain
budget B, ie, Y = {5 C V : |S'] < B}).
We assume the loss to be normalized,
0 < L(S") <1,VS" C V, to ensure that mixture
and loss are calibrated. Equation (3) can be stated
as Fw(S) 2> maxgrey [Fw(SI) + E(S/)] VS eS8
which is called loss-augmented inference. We

introduce slack variables and minimize the
regularized sum of slacks (Lin and Bilmes, 2012):

min Z |:max [Fw(Sl) + E(Sl)] — Fu(9)

w20, [lw|[1=1 5 LSy
A
+ 3 lhwll3, “4)

where the non-negative orthant constraint, w > 0,
ensures that the final mixture is submodular. Note
a 2-norm regularizer is used on top of a 1-norm
constraint |w||; = 1 which we interpret as a prior

to encourage higher entropy, and thus more diverse
mixture distributions. Tractability depends on the
choice of the loss function. The parameters w
are learnt using stochastic gradient descent as in
(Tschiatschek et al., 2014).

3.3 Loss Functions

A natural choice of loss functions for our case can
be derived from cluster evaluation metrics. Every
inferred topic s induces a subset of documents,
namely the transitive cover I' (s) of s. We compare
these clusters with the clusters induced from the
true topics in the training set and compute the loss.

In this paper, we use the Jaccard Index (JI) as a
loss function. Let S be the inferred topics and T’
be the true topics. The Jaccard loss is defined as

I(s)NT
Ejaccard(sv T) =1- % ZSES maXger %’
where £ = |S| = |T| is the number of topics.

When the clustering produced by the inferred and
the true topics are similar, Jaccard loss is 0. When
they are completely dissimilar, the loss is maxi-
mum, i.e., 1. Jaccard loss is a modular function.

3.4 Inference Algorithm: Greedy

Having learnt the weights for the mixture
components, the resulting function F,(S) =
Yo, wifi(S) is a submodular function. In the
case when the individual components are them-
selves monotone (all our functions in fact are),
F,,(S) can be optimized by the accelerated greedy
algorithm (Minoux, 1978). Thanks to submodu-
larity, we can obtain near optimal solutions very
efficiently. In case the functions are all monotone
submodular, we can guarantee that the solution is
within 1 — 1/e factor from the optimal solution.

4 Experimental Results

To validate our approach, we make use of
Wikipedia category structure as a topic DAG and
apply our technique to the task of automatic
generation of Wikipedia disambiguation pages.
We pre-processed the category graph to elimi-
nate the cycles in order to make it a DAG. Each
Wikipedia disambiguation page is manually created
by Wikipedia editors by grouping a collection of
Wikipedia articles into several groups. Each group
is then assigned a name, which serves as a topic for
the group. Typically, a disambiguation page segre-
gates around 20-30 articles into 5-6 groups. Our
goal is to measure how accurately we can recre-
ate the groups for a disambiguation page and label
them, given only the collection of articles men-
tioned in that disambiguation page (when actual
groupings and labels are hidden).
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4.1 Datasets

We parsed the contents of Wikipedia disambigua-
tion pages and extracted disambiguation page
names, article groups and group names. We col-
lected about 8000 disambiguation pages that had
at least four groups on them. Wikipedia category
structure is used as the topic DAG. We eliminated
few administrative categories such as “Hidden Cat-
egories”, “Articles needing cleanup”, and the like.
The final DAG had about 1M topics and 3M links.

4.2 Evaluation Metrics

Every group of articles on the Wikipedia disam-
biguation page is assigned a name by the editors.
Unfortunately, these names may not correspond to
the Wikipedia category (topic) names. For exam-
ple, one of the groups on the “Matrix” disambigua-
tion page has a name “Business and government”
and there is no Wikipedia category by that name.
However, the group names generated by our (and
baseline) method are from the Wikipedia categories
(which forms our topic DAG). In addition, there
can be multiple relevant names for a group. For
example, a group on a disambiguation page may
be called “Calculus”, but an algorithm may rightly
generate “Vector Calculus”. Hence we cannot eval-
uate the accuracy of an algorithm just by matching
the generated group names to those on the disam-
biguation page. To alleviate this problem, we adopt
cluster-based evaluation metrics. We treat every
group of articles generated by an algorithm under a
topic for a disambiguation page as a cluster of arti-
cles. These are considered as inferred clusters for a
disambiguation page. We compare them against the
actual grouping of articles on the Wikipedia disam-
biguation page by treating those groups as true clus-
ters. We can now adopt Jaccard Index, F1-measure,
and NMI (Normalized Mutual Information) based
cluster evaluation metrics described in (Manning
et al., 2008). For each disambiguation page in the
test set, we compute every metric score and then
average it over all the disambiguation pages.

4.3 Methods Compared

We validated our approach by comparing against
several baselines described below. We also com-
pared two variations of our approach as described
next. For each of these cases (baselines and two
variations) we generated and compared the metrics
(Jaccard Index, F1-measure and NMI) as described
in the previous section.

KMgocs: K-Means algorithm run on articles as
TF-IDF vectors of words. The number of clus-
ters K is set to the number of true clusters on the

Wikipedia disambiguation page.

KMedgocs: K-Medoids algorithm with articles
as TF-IDF vectors of words. The number of clus-
ters are set as in KMgocs.

KMedygpics: K-Medoids run on topics as TF-
IDF vectors of words. The words for each topic
is taken from the articles that are in the transitive
cover of the topic.

LDAgocs: LDA algorithm with the number of
topics set to the number of true clusters on the
Wikipedia disambiguation page. Each article is
then grouped under the highest probability topic.

SMMLy: This is the submodular mixture
learning case explained in section 3.1.5. Here we
consider a mixture of all the submodular functions
governing coverage, diversity, fidelity and QC func-
tions. However, we exclude the similarity based
functions described in section 3.1.2. Coverage
based functions have a time complexity of O (n)
whereas similarity based functions are O (n?). By
excluding similarity based functions, we can com-
pare the quality of the results with and without
O(n?) functions. We learn the mixture weights
from the training set and use them during infer-
ence on the test set to subset K topics through the
submodular maximization (Equation 1).

SMMLgy+sim: This case is similar to SMML.y
except that, we include similarity based submodu-
lar mixture components. This makes the inference
time complexity O (n2)

We do not compare against HSLDA, PAM and
few other techniques cited in the related work sec-
tions because they do not produce a subset of K
summary topics — these are not directly compara-
ble with our work.

4.4 Evaluation Results

We show that the submodular mixture learning
and maximization approaches, i.e., SMML.y, and
SMML ov+sim outperform other approaches in vari-
ous metrics. In all these experiments, we performed
5 fold cross validation to learn the parameters from
80% of the disambiguation pages and evaluated on
the rest of the 20%, in each fold.

In Figure 2a we summarize the results of the
comparison of the methods mentioned above on
Jaccard Index, F1 measure and NMI. Our pro-
posed techniques SMML.,, and SMMLqy.4sim Out-
perform other techniques consistently.

In Figures 2b and 2¢ we measure the number
of test instances (i.e., disambiguation queries) in
which each of the algorithms dominate (win) in
evaluation metrics. In 60% of the disambiguation
queries, SMML,, and SMMLoy+sim approaches
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Figure 2: Comparison of techniques

produce higher JI, F1 and NMI than all other meth-
ods. This indicates that the clusters of articles pro-
duced by our technique resembles the clusters of
articles present on the disambiguation page better
than other techniques.

From Figures 2b and 2c it is clear that O (n) time
complexity based submodular mixture functions
(SMML,,) perform on par with O (n2) based
functions (SMMLqv+sim ), but at a greatly reduced
execution time, demonstrating the sufficiency of
O (n) functions for our task. On the average, for
each disambiguation query, SMML,, took around
40 seconds (over 1M topics and 3M edges DAG) to
infer the topics, whereas SMMLqy+sim took around
35 minutes. Both these experiments were carried
on a machine with 32 GB RAM, Eight-Core AMD
Opteron(tm) Processor 2427.

5 Conclusions

We investigated a problem of summarizing topics
over a massive topic DAG such that the summary
set of topics produced represents the objects in
the collection. This representation is characterized
through various classes of submodular (and mono-
tone) functions that captured coverage, similarity,
diversity, specificity, clarity, relevance and fidelity

of the topics. Currently we assume that the number
of topics K is given as an input to our algorithm. It
would be an interesting future problem to estimate
the value of K automatically in our setting. As fu-
ture work, we also plan to extend our techniques to
produce a hierarchical summary of topics and scale
it across heterogeneous collection of objects (from
different domains) to bring all of them under the
same topic DAG and investigate interesting cases
thereon.
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