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Abstract

A standard pipeline for statistical rela-
tional learning involves two steps: one
first constructs the knowledge base (KB)
from text, and then performs the learn-
ing and reasoning tasks using probabilis-
tic first-order logics. However, a key is-
sue is that information extraction (IE) er-
rors from text affect the quality of the KB,
and propagate to the reasoning task. In
this paper, we propose a statistical rela-
tional learning model for joint information
extraction and reasoning. More specifi-
cally, we incorporate context-based entity
extraction with structure learning (SL) in
a scalable probabilistic logic framework.
We then propose a latent context inven-
tion (LCI) approach to improve the per-
formance. In experiments, we show that
our approach outperforms state-of-the-art
baselines over three real-world Wikipedia
datasets from multiple domains; that joint
learning and inference for IE and SL sig-
nificantly improve both tasks; that latent
context invention further improves the re-
sults.

1 Introduction

Information extraction (IE) is often an early stage
in a pipeline that contains non-trivial downstream
tasks, such as question answering (Mollá et al.,
2006), machine translation (Babych and Hartley,
2003), or other applications (Wang and Hua, 2014;
Li et al., 2014). Knowledge bases (KBs) populated
by IE techniques have also been used as an input
to systems that learn rules allowing further infer-
ences to be drawn from the KB (Lao et al., 2011),
a task sometimes called KB completion (Socher et
al., 2013; Wang et al., 2014; West et al., 2014).
Pipelines of this sort frequently suffer from error

cascades, which reduces performance of the full
system1.

In this paper, we address this issue, and pro-
pose a joint model system for IE and KB com-
pletion in a statistical relational learning (SRL)
setting (Sutton and McCallum, 2006; Getoor and
Taskar, 2007). In particular, we outline a system
which takes as input a partially-populated KB and
a set of relation mentions in context, and jointly
learns: 1) how to extract new KB facts from the
relation mentions, and; 2) a set of logical rules that
allow one to infer new KB facts. Evaluation of the
KB facts inferred by the joint system shows that
the joint model outperforms its individual com-
ponents. We also introduce a novel extension of
this model called Latent Context Invention (LCI),
which associates latent states with context features
for the IE component of the model. We show that
LCI further improves performance, leading to a
substantial improvement over prior state-of-the-art
methods for joint relation-learning and IE.

To summarize our contributions:

• We present a joint model for IE and re-
lational learning in a statistical relational
learning setting which outperforms universal
schemas (Riedel et al., 2013), a state-of-the-
art joint method;

• We incorporate latent context into the joint
SRL model, bringing additional improve-
ments.

In next section, we discuss related work. We
describe our approach in Section 3. The details
of the datasets are introduced in Section 4. We
show experimental results in Section 5, discuss in
Section 6, and conclude in Section 7.

1For example, KBP slot filling is known for its com-
plex pipeline, and the best overall F1 scores (Wiegand and
Klakow, 2013; Angeli et al., 2014) for recent competitions
are within the range of 30-40.
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2 Related Work

In NLP, our work clearly aligns with recent work
on joint models of individual text processing tasks.
For example, Finkel and Manning (2009) work on
the problem of joint IE and parsing, where they
use tree representations to combine named entities
and syntactic chunks. Recently, Devlin et al. (De-
vlin et al., 2014) use a joint neural network model
for machine translation, and obtain an impressive
6.3 BLEU point improvement over a hierarchical
phrase-based system.

In information extraction, weak supervi-
sion (Craven et al., 1999; Mintz et al., 2009) is a
common technique for extracting knowledge from
text, without large-scale annotations. In extracting
Infobox information from Wikipedia text, Wu and
Weld (2007; 2010) also use a similar idea. In an
open IE project, Banko et al. (2007) use a seed
KB, and utilize weak supervision techniques to
extend it. Note that weakly supervised extraction
approaches can be noisy, as a pair of entities in
context may be associated with one, none, or
several of the possible relation labels, a property
which complicates the application of distant
supervision methods (Mintz et al., 2009; Riedel et
al., 2010; Hoffmann et al., 2011; Surdeanu et al.,
2012).

Lao et al. (2012) learned syntactic rules for find-
ing relations defined by “lexico-semantic” paths
spanning KB relations and text data. Wang et
al. (2015) extends the methods used by Lao et
al. to learn mutually recursive relations. Recently,
Riedel et al. (2013) propose a matrix factoriza-
tion technique for relation embedding, but their
method requires a large amount of negative and
unlabeled examples. Weston et al. (2013) con-
nect text with KB embedding by adding a scoring
term, though no shared parameters/embeddings
are used. All these prior works make use of text
and KBs. Unlike these prior works, our method is
posed in an SRL setting, using a scalable proba-
bilistic first-order logic, and allows learning of re-
lational rules that are mutually recursive, thus al-
lowing learning of multi-step inferences. Unlike
some prior methods, our method also does not re-
quire negative examples, or large numbers of un-
labeled examples.

3 Our Approach

In this section, we first briefly review the se-
mantics, inference, and learning procedures of a

about(X,Z) :- handLabeled(X,Z) # base.
about(X,Z) :- sim(X,Y),about(Y,Z) # prop.
sim(X,Y) :- links(X,Y) # sim,link.
sim(X,Y) :-

hasWord(X,W),hasWord(Y,W),
linkedBy(X,Y,W) # sim,word.

linkedBy(X,Y,W) :- true # by(W).

Table 1: A simple program in ProPPR. See text for
explanation.

newly proposed scalable probabilistic logic called
ProPPR (Wang et al., 2013; Wang et al., 2014).
Then, we describe the joint model for information
extraction and relational learning. Finally, a latent
context invention theory is proposed for enhancing
the performance of the joint model.

3.1 ProPPR: Background
Below we will give an informal description of
ProPPR, based on a small example. More formal
descriptions can be found elsewhere (Wang et al.,
2013).

ProPPR (for Programming with Personalized
PageRank) is a stochastic extension of the logic
programming language Prolog. A simple program
in ProPPR is shown in Table 1. Roughly speak-
ing, the upper-case tokens are variables, and the
“:-” symbol means that the left-hand side (the head
of a rule) is implied by the conjunction of condi-
tions on the right-hand size (the body). In addition
to the rules shown, a ProPPR program would in-
clude a database of facts: in this example, facts
would take the form handLabeled(page,label),
hasWord(page,word), or linkedBy(page1,page2),
representing labeled training data, a document-
term matrix, and hyperlinks, respectively. The
condition “true” in the last rule is “syntactic sugar”
for an empty body.

In ProPPR, a user issues a query, such as
“about(a,X)?”, and the answer is a set of possible
bindings for the free variables in the query (here
there is just one such varable, “X”). To answer the
query, ProPPR builds a proof graph. Each node
in the graph is a list of conditions R1, . . . , Rk that
remain to prove, interpreted as a conjunction. To
find the children of a node R1, . . . , Rk, you look
for either

1. database facts that match R1, in which case
the appropriate variables are bound, and R1

is removed from the list, or;
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Figure 1: A partial proof graph for the query about(a,Z). The upper right shows the link structure between
documents a, b, c, and d, and some of the words in the documents. Restart links are not shown.

2. a rule A ← B1, . . . , Bm with a head A that
matches R1, in which case again the appro-
priate variables are bound, andR1 is replaced
with the body of the rule, resulting in the new
list B1, . . . , Bm, R2, . . . , Rk.

The procedures for “matching” and “appropriately
binding variables” are illustrated in Figure 1.2 An
empty list of conditions (written 2 in the fig-
ure) corresponds to a complete proof of the ini-
tial query, and by collecting the required variable
bindings, this proof can be used to determine an
answer to the initial query.

In Prolog, this proof graph is constructed on-
the-fly in a depth-first, left-to-right way, returning
the first solution found, and backtracking, if re-
quested, to find additional solutions. In ProPPR,
however, we will define a stochastic process on
the graph, which will generate a score for each
node, and hence a score for each answer to the
query. The stochastic process used in ProPPR is
personalized PageRank (Page et al., 1998; Csa-
logny et al., 2005), also known as random-walk-
with-restart. Intuitively, this process upweights
solution nodes that are reachable by many short
proofs (i.e., short paths from the query node.) For-
mally, personalized PageRank is the fixed point of
the iteration

pt+1 = αχv0 + (1− α)Wpt (1)

2The edge annotations will be discussed later.

where p[u] is the weight assigned to u, v0 is
the seed (i.e., query) node, χv0 is a vector with
χv0 [v0] = 1 and χv0 [u] = 0 for u 6= v, and W
is a matrix of transition probabilities, i.e., W [v, u]
is the probability of transitioning from node u to a
child node v. The parameter α is the reset proba-
bility, and the transition probabilities we use will
be discussed below.

Like Prolog, ProPPR’s proof graph is also con-
structed on-the-fly, but rather than using depth-
first search, we use PageRank-Nibble, a fast ap-
proximate technique for incrementally exploring a
large graph from a an initial “seed” node (Ander-
sen et al., 2008). PageRank-Nibble takes a param-
eter ε and will return an approximation p̂ to the
personalized PageRank vector p, such that each
node’s estimated probability is within ε of correct.

We close this background section with some fi-
nal brief comments about ProPPR.

Scalability. ProPPR is currently limited in that
it uses memory to store the fact databases, and the
proof graphs constructed from them. ProPPR uses
a special-purpose scheme based on sparse matrix
representations to store facts which are triples,
which allows it to accomodate databases with hun-
dreds of millions of facts in tens of gigabytes.

With respect to run-time, ProPPR’s scalabil-
ity is improved by the fast approximate inference
scheme used, which is often an order of mag-
nitude faster than power iteration for moderate-
sized problems (Wang et al., 2013). Experimen-
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Figure 2: The data generation example as described in subsection 3.2.

tation and learning are also sped up because with
PageRank-Nibble, each query is answered using a
“small”—size O( 1

αε)—proof graph. Many opera-
tions required in learning and experimentation can
thus be easily parallized on a multi-core machine,
by simply distributing different proof graphs to
different threads.

Parameter learning. Personalized PageRank
scores are defined by a transition probability
matrix W , which is parameterized as follows.
ProPPR allows “feature generators” to be attached
to its rules, as indicated by the code after the hash-
tags in the example program.3 Since edges in the
proof graph correspond to rule matches, the edges
can also be labeled by features, and a weighted
combination of these features can be used to de-
fine a total weight for each edge, which finally can
be normalized used to define the transition matrix
W . Learning can be used to tune these weights to
data; ProPPR’s learning uses a parallelized SGD
method, in which inference on different examples
is performed in different threads, and weight up-

3For instance, when matching the rule “sim(X,Y) :-
links(X,Y)” to a condition such as “sim(a,X)” the two fea-
tures “sim” and “link” are generated; likewise when match-
ing the rule “linkedBy(X,Y,W) :- true” to the condition
“linkedBy(a,c,sprinter)” the feature “by(sprinter)” is gener-
ated.

dates are synchronized.

Structure learning. Prior work (Wang et al.,
2014) has studied the problem of learning a
ProPPR theory, rather than simply tuning parame-
ters in an existing theory, a process called structure
learning (SL). In particular, Wang et al. (2014)
propose a scheme called the structural gradient
which scores rules in some (possibly large) user-
defined space R of potential rules, which can be
viewed as instantiations of rule templates, such as
the ones shown in the left-hand side of Table 2.

For completeness, we will summarize briefly
the approach used in (Wang et al., 2014). The
space of potential rulesR is defined by a “second-
order abductive theory”, which conceptually is an
interpreter that constructs proofs using all rules in
R. Each rule template is mapped to two clauses
in the interpreter: one simulates the template (for
any binding), and one “abduces” the specific bind-
ing (facts) from the KB. Associated with the use
of the abductive rule is a feature corresponding to
a particular binding for the template. The gradient
of these features indicates which instantiated rules
can be usefully added to the theory. More details
can be found in (Wang et al., 2014).
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Rule template ProPPR clause
Structure learning
(a) P(X,Y) :- R(X,Y) interp(P,X,Y) :- interp0(R,X,Y),abduce if(P,R).

abduce if(P,R) :- true # f if(P,R).
(b) P(X,Y) :- R(Y,X) interp(P,X,Y) :- interp0(R,Y,X),abduce ifInv(P,R).

abduce ifInv(P,R) :- true # f ifInv(P,R).
(c) P(X,Y) :- R1(X,Z),R2(Z,Y) interp(P,X,Y) :- interp0(R1,X,Z),interp0(R2,Z,Y),

abduce chain(P,R1,R2).
abduce chain(P,R1,R2) :- true # f chain(P,R1,R2).

base case for SL interpreter interp0(P,X,Y) :- rel(R,X,Y).
insertion point for learned rules interp0(P,X,Y) :- any rules learned by SL.

Information extraction
(d) R(X,Y) :- link(X,Y,W), interp(R,X,Y) :- link(X,Y,W),abduce indicates(W,R).

indicates(W,R). abduce indicates(W,R) :- true #f ind1(W,R).
(e) R(X,Y) :- link(X,Y,W1), interp(R,X,Y) :- link(X,Y,W1),link(X,Y,W2),

link(X,Y,W2), abduce indicates(W1,W2,R).
indicates(W1,W2,R). abduce indicates(W1,W2,R) :- true #f ind2(W1,W2,R).

Latent context invention
(f) R(X,Y) :- latent(L), interp(R,X,Y) :- latent(L),link(X,Y,W),abduce latent(W,L,R).

link(X,Y,W), abduce latent(W,L,R) :- true #f latent1(W,L,R).
indicates(W,L,R)

(g) R(X,Y) :- latent(L1),latent(L2) interp(R,X,Y) :- latent(L1),latent(L2),link(X,Y,W),
link(X,Y,W), abduce latent(W,L1,L2,R).
indicates(W,L1,L2,R) abduce latent(W,L1,L2,R) :- true #f latent2(W,L1,L2,R).

Table 2: The ProPPR template and clauses for joint structure learning and information extraction.

3.2 Joint Model for IE and SRL

Dataset Generation The KBs and text used in
our experiments were derived from Wikipedia.
Briefly, we choose a set of closely-related pages
from a hand-selected Wikipedia list. These pages
define a set of entities E , and a set of commonly-
used Infobox relations R between these entities
define a KB. The relation mentions are hyperlinks
between the pages, and the features of these rela-
tion mentions are words that appear nearby these
links. This information is encoded in a single rela-
tion link(X,Y,W), which indicates that there is hy-
perlink between Wikipedia pages X to Y which
is near the context word W . The Infobox relation
triples are stored in another relation, rel(R,X,Y). 4

Figure 2 shows an example. We first find the
“European royal families” to find a list of enti-

4In more detail, the extraction process was as follows. (1)
We used a DBpedia dump of categories and hyperlink struc-
ture to find pages in a category; sometimes, this included
crawling a supercategory page to find categories and then en-
tities. (2) We used the DBpedia hyperlink graph to find the
target entity pages, downloaded the most recent (2014) ver-
sion of each of these pages, and collected relevant hyperlinks
and anchor text, together with 80 characters of context to ei-
ther side.

ties E . This list contains the page “Louis VI of
France”, the source entity, which contains an out-
link to the target entity page “Philip I of France”.
On the source page, we can find the following text:
“Louis was born in Paris, the son of Philip I and
his first wife, Bertha of Holland.” From Infobox
data, we also may know of a relationship between
the source and target entities: in this case, the tar-
get entity is the parent of the source entity.

Theory for Joint IE and SL The structure learn-
ing templates we used are identical to those used
in prior work (Wang et al., 2014), and are summa-
rized by the clauses (a-c) in Table 2. In the tem-
plates in the left-hand side of the table, P , R, R1
and R2 are variables in the template, which will
be bound to specific relations found to be useful
in prediction. (The interpreter rules on the right-
hand side are provided for completeness, and can
be ignored by readers not deeply familiar with the
work of (Wang et al., 2014).)

The second block of the table contains the tem-
plates used for IE. For example, to understand
template (d), recall that the predicate link in-
dicates a hyperlink from Wikipedia page X to
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Y , which includes the context word W between
two entities X and Y . The abductive predicate
abduce indicates activates a feature template, in
which we learn the degree of association of a con-
text word and a relation from the training data.
These rules essentially act as a trainable classi-
fier which classifies entity pairs based on the hy-
perlinks they that contain them, and classifies the
hyperlinks according to the relation they reflect,
based on context-word features.

Notice that the learner will attempt to tune word
associations to match the gold rel facts used as
training data, and that doing this does not require
assigning labels to individual links, as would be
done in a traditional distant supervision setting:
instead these labels are essentially left latent in this
model. Similar to “deep learning” approaches, the
latent assignments are provided not by EM, but by
hill-climbing search in parameter space.

A natural extension to this model is to add a
bilexical version of this classifier in clause (e),
where we learn a feature which conjoins word
W1, word W2, and relation R.

Combining the clauses from (a) to (e), we de-
rive a hybrid theory for joint SL and IE: the struc-
ture learning section involves a second-order prob-
abilistic logic theory, where it searches the rela-
tional KB to form plausible first-order relational
inference clauses. The information extraction sec-
tion from (d) to (e) exploits the distributional sim-
ilarity of contextual words for each relation, and
extracts relation triples from the text, using distant
supervision and latent labels for relation mentions
(which in our case are hyperlinks). Training this
theory as a whole trains it to perform joint reason-
ing to facts for multiple relations, based on rela-
tions that are known (from the partial KB) or in-
ferred from the IE part of the theory. Both param-
eters for the IE portion of the theory and inference
rules between KB relations are learned.5

Latent Context Invention Note that so far both
the IE clauses (d-e) are fully observable: there
are no latent predicates or variables. Recent
work (Riedel et al., 2013) suggests that learning
latent representations for words improves perfor-
mance in predicting relations. Perhaps this is be-
cause such latent representations can better model
the semantic information in surface forms, which
are often ambiguous.

5In in addition to finding rules which instantiate the tem-
plates, weights on these rules are also learned.

We call our method latent context invention
(LCI), and it is inspired from literature in predi-
cate invention (Kok and Domingos, 2007).6 LCI
applies the idea of predicate invention to the con-
text space: instead of inventing new predicates, we
now invent a latent context property that captures
the regularities among the similar relational lex-
ical items. To do this, we introduce some addi-
tional rules of the form latent(1) :- true, latent(2)
:- true, etc, and allow the learner to find appro-
priate weights for pairing these arbitrarily-chosen
values with specific words. This is implemented
by template (f) in Table 2. Adding this to the joint
theory means that we will learn to map surface-
level lexical items (words) to the “invented” latent
context values and also to relation.

Another view of LCI is that we are learning a la-
tent embedding of words jointly with relations. In
template (f) we model a single latent dimension,
but to model higher-dimensional latent variables,
we can add the clauses such as (g), which con-
structs a two-dimensional latent space. Below we
will call this variant method hLCI.

4 Datasets

Using the data generation process that we de-
scribed in subsection 3.2, we extract two datasets
from the supercategories of “European royal fam-
ilies” and “American people of English descent,
and third geographic dataset using three lists: “List
of countries by population”, “List of largest cities
and second largest cities by country” and “List of
national capitals by population”.

For the royal dataset, we have 2,258 pages
with 67,483 source-context-target mentions, and
we use 40,000 for training, and 27,483 for test-
ing. There are 15 relations7. In the Amer-
ican dataset, we have 679 pages with 11,726
mentions, and we use 7,000 for training, and
4,726 for testing. This dataset includes 30 re-
lations8. As for the Geo dataset, there are 497

6To give some background on this nomenclature, we note
that the SL method is inspired by Cropper and Muggleton’s
Metagol system (Cropper and Muggleton, 2014), which in-
cludes predicate invention. In principle predicates could be
invented by SL, by extending the interpreter to consider “in-
vented” predicate symbols as binding to its template vari-
ables (e.g., P and R); however, in practice invented predi-
cates leads to close dependencies between learned rules, and
are highly sensitive to the level of noise in the data.

7birthPlace, child, commander, deathPlace, keyPerson,
knownFor, monarch, parent, partner, predecessor, relation,
restingPlace, spouse, successor, territory

8architect, associatedBand, associatedMusicalArtist, au-
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pages with 43,475 mentions, and we use 30,000
for training, and 13,375 for testing. There are
10 relations9. The datasets are freely available
for download at http://www.cs.cmu.edu/
˜yww/data/jointIE+Reason.zip.

5 Experiments

To evaluate these methods, we use the setting of
Knowledge Base completion (Socher et al., 2013;
Wang et al., 2014; West et al., 2014). We ran-
domly remove a fixed percentage of facts in a
training knowledge base, train the learner from
the partial KB, and use the learned model to pre-
dict facts in the test KB. KB completion is a well-
studied task in SRL, where multiple relations are
often needed to fill in missing facts, and thus
reconstruct the incomplete KB. Following prior
work (Riedel et al., 2013; Wang et al., 2013), we
use mean average precision (MAP) as the evalua-
tion metric.

5.1 Baselines

To understand the performance of our joint model,
we compare with three prior methods. Struc-
ture Learning (SL) includes the second-order re-
lation learning templates (a-c) from Table 2. In-
formation Extraction (IE) includes only tem-
plates (d) and (e). Markov Logic Networks
(MLN) is the Alchemy’s implementation10 of
Markov Logic Networks (Richardson and Domin-
gos, 2006), using the first-order clauses learned
from SL method11. We used conjugate gradient
weight learning (Lowd and Domingos, 2007) with
10 iterations. Finally, Universal Schema is a
state-of-the-art matrix factorization based univer-
sal method for jointly learning surface patterns and
relations. We used the code and parameter settings
for the best-performing model (NFE) from (Riedel
et al., 2013).

As a final baseline method, we considered
a simpler approach to clustering context words,

thor, birthPlace, child, cinematography, deathPlace, direc-
tor, format, foundationOrganisation, foundationPerson, in-
fluenced, instrument, keyPerson, knownFor, location, mus-
icComposer, narrator, parent, president, producer, relation,
relative, religion, restingPlace, spouse, starring, successor,
writer

9archipelago, capital, country, daylightSavingTimeZone,
largestSettlement, leaderTitle, mottoFor, timeZone, twinCity,
twinCountry

10http://alchemy.cs.washington.edu/
11We also experimented with Alchemy’s structure learn-

ing, but it was not able to generate results in 24 hours.

which we called Text Clustering, which used the
following template:

R(X,Y) :-
clusterID(C),link(X,Y,W),
cluster(C,W),related(R,W).

Here surface patterns are grouped to form latent
clusters in a relation-independent fashion.

5.2 The Effectiveness of the Joint Model
Our experimental results are shown in 3. The left-
most part of the table concerns the Royal dataset.
We see that the universal schema approach out-
performs the MLN baseline in most cases, but
ProPPR’s SL method substantially improves over
MLN’s conjugated gradient learning method, and
the universal schema approach. This is perhaps
surprising, as the universal schema approach is
also a joint method: we note that in our datasets,
unlike the New York Times corpus used in (Riedel
et al., 2013), large numbers of unlabeled examples
are not available. The unigram and bilexical IE
models in ProPPR also perform well—better than
SL on this data. The joint model outperforms the
baselines, as well as the separate models. The dif-
ference is most pronounced when the background
KB gets noisier: the improvement with 10% miss-
ing setting is about 1.5 to 2.3% MAP, while with
50% missing data, the absolute MAP improve-
ment is from 8% to 10%.

In the next few columns of Table 3, we show the
KB completion results for the Geo dataset. This
dataset has fewer relations, and the most com-
mon one is country. The overall MAP scores are
much higher than the previous dataset. MLN’s re-
sults are good, but still generally below the uni-
versal schema method. On this dataset, the uni-
versal schema method performs better than the IE
only model for ProPPR in most settings. However,
the ProPPRjoint model still shows large improve-
ments over individual models and the baselines:
the absolute MAP improvement is 22.4%.

Finally, in the rightmost columns of Table 3,
we see that the overall MAP scores for the Ameri-
can dataset are relatively lower than other datasets,
perhaps because it is the smallest of the three.
The universal schema approach consistently out-
performs the MLN model, but not ProPPR. On this
dataset the SL-only model in ProPPR outperforms
the IE-only models; however, the joint models still
outperform individual ProPPR models from 1.5%
to 6.4% in MAP.
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Royal Geo American
% missing 10% 20% 30% 40% 50% 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%
Baselines
MLN 60.8 43.7 44.9 38.8 38.8 80.4 79.2 68.1 66.0 68.0 54.0 56.0 51.2 41.0 13.8
Universal Schema 48.2 53.0 52.9 47.3 41.2 82.0 84.0 75.7 77.0 65.2 56.7 51.4 55.9 54.7 51.3
SL 79.5 77.2 74.8 65.5 61.9 83.8 80.4 77.1 72.8 67.2 73.1 70.0 71.3 67.1 61.7
IE only
IE (U) 81.3 78.5 76.4 75.7 70.6 83.9 79.4 73.1 71.6 65.2 63.4 61.0 60.2 61.4 54.4
IE (U+B) 81.1 78.1 76.2 75.5 70.3 84.0 79.5 73.3 71.6 65.3 64.3 61.2 61.1 62.1 55.7
Joint
SL+IE (U) 82.8 80.9 79.1 77.9 78.6 89.5 89.4 89.3 88.1 87.6 74.0 73.3 73.7 70.5 68.0
SL+IE (U+B) 83.4 82.0 80.7 79.7 80.3 89.6 89.6 89.5 88.4 87.7 74.6 73.5 74.2 70.9 68.4

Joint + Latent
Joint + Clustering 83.5 82.3 81.2 80.2 80.7 89.8 89.6 89.5 88.8 88.4 74.6 73.9 74.4 71.5 69.7
Joint + LCI 83.5 82.5 81.5 80.6 81.1 89.9 89.8 89.7 89.1 89.0 74.6 74.1 74.5 72.3 70.3
Joint + LCI + hLCI 83.5 82.5 81.7 81.0 81.3 89.9 89.7 89.7 89.6 89.5 74.6 74.4 74.6 73.6 72.1

Table 3: The MAP results for KB completion on three datasets. U: unigram. B: bigram. Best result in
each column is highlighted in bold.

The averaged training runtimes on an ordinary
PC for unigram joint model on the above Royal,
Geo, American datasets are 38, 36, and 29 sec-
onds respectively, while the average testing times
are 11, 10, and 9 seconds. For bilexical joint mod-
els, the averaged training times are 25, 10, and 10
minutes respectively, whereas the testing times are
111, 28, and 26 seconds respectively.

5.3 The Effectiveness of LCI

Finally we consider the latent context invention
(LCI) approach. The last three rows of Table 3
show the performances of LCI and hHCI. We com-
pare it here with the best previous approach, the
joint IE + SL model, and text clustering approach.

For the Royal dataset, first, the LCI and hLCI
models clearly improve over joint IE and SL. In
noisy conditions of missing 50% facts, the biggest
improvement of LCI/hLCI is 2.4% absolute MAP.

From the Geo dataset, we see that the joint mod-
els and joint+latent models have similar perfor-
mances in relatively clean conditions (10%-30%)
facts missing. However, in noisy conditions, we
the LCI and hLCI model has an advantage of be-
tween 1.5% to 1.8% in absolute MAP.

Finally, the results for the American dataset
show a consistent trend: again, in noisy condi-
tions (missing 40% to 50% facts), the latent con-
text models outperform the joint IE + SL models
by 2.9% and 3.7% absolute MAP scores.

Although the LCI approach is inspired by pred-
icate invention in inductive logic programming,
our result is also consistent with theories of gen-
eralized latent variable modeling in probabilis-
tic graphical models and statistics (Skrondal and

Rabe-Hesketh, 2004): modeling hidden variables
helps take into account the measurement (observa-
tion) errors (Fornell and Larcker, 1981) and results
in a more robust model.

6 Discussions

Compared to state-of-the-art joint models (Riedel
et al., 2013) that learn the latent factor represen-
tations, our method gives strong improvements in
performance on three datasets with various set-
tings. Our model is also trained to retrieve a target
entity from a relation name plus a source entity,
and does not require large samples of unlabeled or
negative examples in training.

Another advantage of the ProPPR model is that
they are explainable. For example, below are the
features with the highest weights after joint learn-
ing from the Royal dataset, written as predicates
or rules:

indicates(“mother”,parent)
indicates(“king”,parent)
indicates(“spouse”,spouse)
indicates(“married”,spouse)
indicates(“succeeded”,successor)
indicates(“son”,successor)

parent(X,Y) :- successor(Y,X)
successor(X,Y) :- parent(Y,X)
spouse(X,Y) :- spouse(Y,X)
parent(X,Y) :- predecessor(X,Y)
successor(Y,X) :- spouse(X,Y)
predecessor(X,Y) :- parent(X,Y)

Here we see that our model is able to learn that the
keywords “mother” and “king” that are indicators
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of the relation parent, that the keywords “spouse”
and “married” indicate the relation spouse, and the
keywords “succeeded” and “son” indicate the re-
lation successor. Interestingly, our joint model is
also able to learn the inverse relation successor for
the relation parent, as well as the similar relational
predicate predecessor for parent.

7 Conclusions

In this paper, we address the issue of joint infor-
mation extraction and relational inference. To be
more specific, we introduce a holistic probabilis-
tic logic programming approach for fusing IE con-
texts with relational KBs, using locally groundable
inference on a joint proof graph. We then propose
a latent context invention technique that learns
relation-specific latent clusterings for words. In
experiments, we show that joint modeling for IE
and SRL improves over prior state-of-the-art base-
lines by large margins, and that the LCI model
outperforms various fully baselines on three real-
world Wikipedia dataset from different domains.
In the future, we are interested in extending these
techniques to also exploit unlabeled data.
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