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Abstract

We propose a technique for learning rep-
resentations of parser states in transition-
based dependency parsers. Our primary
innovation is a new control structure for
sequence-to-sequence neural networks—
the stack LSTM. Like the conventional
stack data structures used in transition-
based parsing, elements can be pushed to
or popped from the top of the stack in
constant time, but, in addition, an LSTM
maintains a continuous space embedding
of the stack contents. This lets us formu-
late an efficient parsing model that cap-
tures three facets of a parser’s state: (i)
unbounded look-ahead into the buffer of
incoming words, (ii) the complete history
of actions taken by the parser, and (iii) the
complete contents of the stack of partially
built tree fragments, including their inter-
nal structures. Standard backpropagation
techniques are used for training and yield
state-of-the-art parsing performance.

1 Introduction

Transition-based dependency parsing formalizes
the parsing problem as a series of decisions that
read words sequentially from a buffer and combine
them incrementally into syntactic structures (Ya-
mada and Matsumoto, 2003; Nivre, 2003; Nivre,
2004). This formalization is attractive since the
number of operations required to build any projec-
tive parse tree is linear in the length of the sen-
tence, making transition-based parsing computa-
tionally efficient relative to graph- and grammar-
based formalisms. The challenge in transition-
based parsing is modeling which action should be
taken in each of the unboundedly many states en-
countered as the parser progresses.

This challenge has been addressed by develop-
ment of alternative transition sets that simplify the
modeling problem by making better attachment

decisions (Nivre, 2007; Nivre, 2008; Nivre, 2009;
Choi and McCallum, 2013; Bohnet and Nivre,
2012), through feature engineering (Zhang and
Nivre, 2011; Ballesteros and Nivre, 2014; Chen et
al., 2014; Ballesteros and Bohnet, 2014) and more
recently using neural networks (Chen and Man-
ning, 2014; Stenetorp, 2013).

We extend this last line of work by learning
representations of the parser state that are sensi-
tive to the complete contents of the parser’s state:
that is, the complete input buffer, the complete
history of parser actions, and the complete con-
tents of the stack of partially constructed syn-
tactic structures. This “global” sensitivity to the
state contrasts with previous work in transition-
based dependency parsing that uses only a nar-
row view of the parsing state when constructing
representations (e.g., just the next few incoming
words, the head words of the top few positions
in the stack, etc.). Although our parser integrates
large amounts of information, the representation
used for prediction at each time step is constructed
incrementally, and therefore parsing and training
time remain linear in the length of the input sen-
tence. The technical innovation that lets us do this
is a variation of recurrent neural networks with
long short-term memory units (LSTMs) which we
call stack LSTMs (§2), and which support both
reading (pushing) and “forgetting” (popping) in-
puts.

Our parsing model uses three stack LSTMs: one
representing the input, one representing the stack
of partial syntactic trees, and one representing the
history of parse actions to encode parser states
(§3). Since the stack of partial syntactic trees may
contain both individual tokens and partial syntac-
tic structures, representations of individual tree
fragments are computed compositionally with re-
cursive (i.e., similar to Socher et al., 2014) neural
networks. The parameters are learned with back-
propagation (§4), and we obtain state-of-the-art re-
sults on Chinese and English dependency parsing
tasks (§5).
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2 Stack LSTMs

In this section we provide a brief review of LSTMs
(§2.1) and then define stack LSTMs (§2.2).

Notation. We follow the convention that vectors
are written with lowercase, boldface letters (e.g., v
or vw); matrices are written with uppercase, bold-
face letters (e.g., M, Ma, or Mab), and scalars are
written as lowercase letters (e.g., s or qz). Struc-
tured objects such as sequences of discrete sym-
bols are written with lowercase, bold, italic letters
(e.g., w refers to a sequence of input words). Dis-
cussion of dimensionality is deferred to the exper-
iments section below (§5).

2.1 Long Short-Term Memories

LSTMs are a variant of recurrent neural networks
(RNNs) designed to cope with the vanishing gra-
dient problem inherent in RNNs (Hochreiter and
Schmidhuber, 1997; Graves, 2013). RNNs read
a vector xt at each time step and compute a
new (hidden) state ht by applying a linear map
to the concatenation of the previous time step’s
state ht−1 and the input, and passing this through
a logistic sigmoid nonlinearity. Although RNNs
can, in principle, model long-range dependencies,
training them is difficult in practice since the re-
peated application of a squashing nonlinearity at
each step results in an exponential decay in the er-
ror signal through time. LSTMs address this with
an extra memory “cell” (ct) that is constructed as a
linear combination of the previous state and signal
from the input.

LSTM cells process inputs with three multi-
plicative gates which control what proportion of
the current input to pass into the memory cell (it)
and what proportion of the previous memory cell
to “forget” (ft). The updated value of the memory
cell after an input xt is computed as follows:

it = σ(Wixxt + Wihht−1 + Wicct−1 + bi)
ft = σ(Wfxxt + Wfhht−1 + Wfcct−1 + bf )
ct = ft � ct−1+

it � tanh(Wcxxt + Wchht−1 + bc),

where σ is the component-wise logistic sig-
moid function, and � is the component-wise
(Hadamard) product.

The value ht of the LSTM at each time step is
controlled by a third gate (ot) that is applied to the
result of the application of a nonlinearity to the

memory cell contents:

ot = σ(Woxxt + Wohht−1 + Wocct + bo)
ht = ot � tanh(ct).

To improve the representational capacity of
LSTMs (and RNNs generally), LSTMs can be
stacked in “layers” (Pascanu et al., 2014). In these
architectures, the input LSTM at higher layers at
time t is the value of ht computed by the lower
layer (and xt is the input at the lowest layer).

Finally, output is produced at each time step
from the ht value at the top layer:

yt = g(ht),

where g is an arbitrary differentiable function.

2.2 Stack Long Short-Term Memories

Conventional LSTMs model sequences in a left-
to-right order.1 Our innovation here is to augment
the LSTM with a “stack pointer.” Like a conven-
tional LSTM, new inputs are always added in the
right-most position, but in stack LSTMs, the cur-
rent location of the stack pointer determines which
cell in the LSTM provides ct−1 and ht−1 when
computing the new memory cell contents.

In addition to adding elements to the end of the
sequence, the stack LSTM provides a pop oper-
ation which moves the stack pointer to the previ-
ous element (i.e., the previous element that was
extended, not necessarily the right-most element).
Thus, the LSTM can be understood as a stack im-
plemented so that contents are never overwritten,
that is, push always adds a new entry at the end of
the list that contains a back-pointer to the previous
top, and pop only updates the stack pointer.2 This
control structure is schematized in Figure 1.

By querying the output vector to which the stack
pointer points (i.e., the hTOP), a continuous-space
“summary” of the contents of the current stack
configuration is available. We refer to this value
as the “stack summary.”

What does the stack summary look like? In-
tuitively, elements near the top of the stack will

1Ours is not the first deviation from a strict left-to-
right order: previous variations include bidirectional LSTMs
(Graves and Schmidhuber, 2005) and multidimensional
LSTMs (Graves et al., 2007).

2Goldberg et al. (2013) propose a similar stack construc-
tion to prevent stack operations from invalidating existing ref-
erences to the stack in a beam-search parser that must (effi-
ciently) maintain a priority queue of stacks.
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Figure 1: A stack LSTM extends a conventional left-to-right LSTM with the addition of a stack pointer
(notated as TOP in the figure). This figure shows three configurations: a stack with a single element (left),
the result of a pop operation to this (middle), and then the result of applying a push operation (right).
The boxes in the lowest rows represent stack contents, which are the inputs to the LSTM, the upper rows
are the outputs of the LSTM (in this paper, only the output pointed to by TOP is ever accessed), and the
middle rows are the memory cells (the ct’s and ht’s) and gates. Arrows represent function applications
(usually affine transformations followed by a nonlinearity), refer to §2.1 for specifics.

influence the representation of the stack. How-
ever, the LSTM has the flexibility to learn to ex-
tract information from arbitrary points in the stack
(Hochreiter and Schmidhuber, 1997).

Although this architecture is to the best of
our knowledge novel, it is reminiscent of the
Recurrent Neural Network Pushdown Automa-
ton (NNPDA) of Das et al. (1992), which added an
external stack memory to an RNN. However, our
architecture provides an embedding of the com-
plete contents of the stack, whereas theirs made
only the top of the stack visible to the RNN.

3 Dependency Parser

We now turn to the problem of learning represen-
tations of dependency parsers. We preserve the
standard data structures of a transition-based de-
pendency parser, namely a buffer of words (B)
to be processed and a stack (S) of partially con-
structed syntactic elements. Each stack element
is augmented with a continuous-space vector em-
bedding representing a word and, in the case of
S, any of its syntactic dependents. Additionally,
we introduce a third stack (A) to represent the his-
tory of actions taken by the parser.3 Each of these
stacks is associated with a stack LSTM that pro-
vides an encoding of their current contents. The
full architecture is illustrated in Figure 3, and we
will review each of the components in turn.

3The A stack is only ever pushed to; our use of a stack
here is purely for implementational and expository conve-
nience.

3.1 Parser Operation

The dependency parser is initialized by pushing
the words and their representations (we discuss
word representations below in §3.3) of the input
sentence in reverse order onto B such that the first
word is at the top of B and the ROOT symbol is at
the bottom, and S and A each contain an empty-
stack token. At each time step, the parser com-
putes a composite representation of the stack states
(as determined by the current configurations of B,
S, andA) and uses that to predict an action to take,
which updates the stacks. Processing completes
whenB is empty (except for the empty-stack sym-
bol), S contains two elements, one representing
the full parse tree headed by the ROOT symbol and
the other the empty-stack symbol, andA is the his-
tory of operations taken by the parser.

The parser state representation at time t, which
we write pt, which is used to is determine the tran-
sition to take, is defined as follows:

pt = max {0,W[st;bt;at] + d} ,

where W is a learned parameter matrix, bt is
the stack LSTM encoding of the input buffer B,
st is the stack LSTM encoding of S, at is the
stack LSTM encoding of A, d is a bias term, then
passed through a component-wise rectified linear
unit (ReLU) nonlinearity (Glorot et al., 2011).4

Finally, the parser state pt is used to compute

4In preliminary experiments, we tried several nonlineari-
ties and found ReLU to work slightly better than the others.

336



overhasty
an decision was

amod

REDUCE-LEFT(amod)

SHIFT

|{z} |{z}

|{z}
…

SH
IFT
RE
D-L

(am
od
)

…

made

S B

A

; ;

pt

root

TO
PTOP

TOP

Figure 2: Parser state computation encountered while parsing the sentence “an overhasty decision was
made.” Here S designates the stack of partially constructed dependency subtrees and its LSTM encod-
ing; B is the buffer of words remaining to be processed and its LSTM encoding; and A is the stack
representing the history of actions taken by the parser. These are linearly transformed, passed through a
ReLU nonlinearity to produce the parser state embedding pt. An affine transformation of this embedding
is passed to a softmax layer to give a distribution over parsing decisions that can be taken.

the probability of the parser action at time t as:

p(zt | pt) =
exp

(
g>zt

pt + qzt

)∑
z′∈A(S,B) exp

(
g>z′pt + qz′

) ,
where gz is a column vector representing the (out-
put) embedding of the parser action z, and qz is
a bias term for action z. The set A(S,B) repre-
sents the valid actions that may be taken given the
current contents of the stack and buffer.5 Since
pt = f(st,bt,at) encodes information about all
previous decisions made by the parser, the chain
rule may be invoked to write the probability of any
valid sequence of parse actions z conditional on
the input as:

p(z | w) =
|z|∏
t=1

p(zt | pt). (1)

3.2 Transition Operations

Our parser is based on the arc-standard transition
inventory (Nivre, 2004), given in Figure 3.

5In general, A(S, B) is the complete set of parser actions
discussed in §3.2, but in some cases not all actions are avail-
able. For example, when S is empty and words remain in B,
a SHIFT operation is obligatory (Sartorio et al., 2013).

Why arc-standard? Arc-standard transitions
parse a sentence from left to right, using a stack
to store partially built syntactic structures and
a buffer that keeps the incoming tokens to be
parsed. The parsing algorithm chooses an action
at each configuration by means of a score. In
arc-standard parsing, the dependency tree is con-
structed bottom-up, because right-dependents of a
head are only attached after the subtree under the
dependent is fully parsed. Since our parser recur-
sively computes representations of tree fragments,
this construction order guarantees that once a syn-
tactic structure has been used to modify a head, the
algorithm will not try to find another head for the
dependent structure. This means we can evaluate
composed representations of tree fragments incre-
mentally; we discuss our strategy for this below
(§3.4).

3.3 Token Embeddings and OOVs

To represent each input token, we concatenate
three vectors: a learned vector representation for
each word type (w); a fixed vector representa-
tion from a neural language model (w̃LM), and a
learned representation (t) of the POS tag of the to-
ken, provided as auxiliary input to the parser. A
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Figure 3: Parser transitions indicating the action applied to the stack and buffer and the resulting stack
and buffer states. Bold symbols indicate (learned) embeddings of words and relations, script symbols
indicate the corresponding words and relations.

linear map (V) is applied to the resulting vector
and passed through a component-wise ReLU,

x = max {0,V[w; w̃LM; t] + b} .

This mapping can be shown schematically as in
Figure 4.

overhasty JJUNK decision NNdecision

x2 x3

t2 t3w2w̃LM
2 w̃LM

3 w3

Figure 4: Token embedding of the words decision,
which is present in both the parser’s training data
and the language model data, and overhasty, an
adjective that is not present in the parser’s training
data but is present in the LM data.

This architecture lets us deal flexibly with out-
of-vocabulary words—both those that are OOV in
both the very limited parsing data but present in
the pretraining LM, and words that are OOV in
both. To ensure we have estimates of the OOVs in
the parsing training data, we stochastically replace
(with p = 0.5) each singleton word type in the
parsing training data with the UNK token in each
training iteration.

Pretrained word embeddings. A veritable cot-
tage industry exists for creating word embeddings,
meaning numerous pretraining options for w̃LM
are available. However, for syntax modeling prob-
lems, embedding approaches which discard order
perform less well (Bansal et al., 2014); therefore
we used a variant of the skip n-gram model in-
troduced by Ling et al. (2015), named “structured
skip n-gram,” where a different set of parameters
is used to predict each context word depending on
its position relative to the target word. The hy-
perparameters of the model are the same as in the
skip n-gram model defined in word2vec (Mikolov

et al., 2013), and we set the window size to 5, used
a negative sampling rate to 10, and ran 5 epochs
through unannotated corpora described in §5.1.

3.4 Composition Functions
Recursive neural network models enable complex
phrases to be represented compositionally in terms
of their parts and the relations that link them
(Socher et al., 2011; Socher et al., 2013c; Her-
mann and Blunsom, 2013; Socher et al., 2013b).
We follow this previous line of work in embed-
ding dependency tree fragments that are present in
the stack S in the same vector space as the token
embeddings discussed above.

A particular challenge here is that a syntactic
head may, in general, have an arbitrary number
of dependents. To simplify the parameterization
of our composition function, we combine head-
modifier pairs one at a time, building up more
complicated structures in the order they are “re-
duced” in the parser, as illustrated in Figure 5.
Each node in this expanded syntactic tree has a
value computed as a function of its three argu-
ments: the syntactic head (h), the dependent (d),
and the syntactic relation being satisfied (r). We
define this by concatenating the vector embed-
dings of the head, dependent and relation, apply-
ing a linear operator and a component-wise non-
linearity as follows:

c = tanh (U[h;d; r] + e) .

For the relation vector, we use an embedding of
the parser action that was applied to construct the
relation (i.e., the syntactic relation paired with the
direction of attachment).

4 Training Procedure

We trained our parser to maximize the conditional
log-likelihood (Eq. 1) of treebank parses given
sentences. Our implementation constructs a com-
putation graph for each sentence and runs forward-
and backpropagation to obtain the gradients of this
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Figure 5: The representation of a depen-
dency subtree (above) is computed by re-
cursively applying composition functions to
〈head,modifier, relation〉 triples. In the case of
multiple dependents of a single head, the recur-
sive branching order is imposed by the order of
the parser’s reduce operations (below).

objective with respect to the model parameters.
The computations for a single parsing model were
run on a single thread on a CPU. Using the dimen-
sions discussed in the next section, we required
between 8 and 12 hours to reach convergence on a
held-out dev set.6

Parameter optimization was performed using
stochastic gradient descent with an initial learn-
ing rate of η0 = 0.1, and the learning rate was
updated on each pass through the training data as
ηt = η0/(1 + ρt), with ρ = 0.1 and where t is the
number of epochs completed. No momentum was
used. To mitigate the effects of “exploding” gra-
dients, we clipped the `2 norm of the gradient to 5
before applying the weight update rule (Sutskever
et al., 2014; Graves, 2013). An `2 penalty of
1× 10−6 was applied to all weights.

Matrix and vector parameters were initialized
with uniform samples in ±√6/(r + c), where r
and c were the number of rows and columns in the
structure (Glorot and Bengio, 2010).

Dimensionality. The full version of our parsing
model sets dimensionalities as follows. LSTM
hidden states are of size 100, and we use two lay-
ers of LSTMs for each stack. Embeddings of the
parser actions used in the composition functions
have 16 dimensions, and the output embedding
size is 20 dimensions. Pretained word embeddings
have 100 dimensions (English) and 80 dimensions
(Chinese), and the learned word embeddings have

6Software for replicating the experiments is available
from https://github.com/clab/lstm-parser.

32 dimensions. Part of speech embeddings have
12 dimensions.

These dimensions were chosen based on in-
tuitively reasonable values (words should have
higher dimensionality than parsing actions, POS
tags, and relations; LSTM states should be rela-
tively large), and it was confirmed on development
data that they performed well.7 Future work might
more carefully optimize these parameters; our re-
ported architecture strikes a balance between min-
imizing computational expense and finding solu-
tions that work.

5 Experiments

We applied our parsing model and several varia-
tions of it to two parsing tasks and report results
below.

5.1 Data
We used the same data setup as Chen and Manning
(2014), namely an English and a Chinese parsing
task. This baseline configuration was chosen since
they likewise used a neural parameterization to
predict actions in an arc-standard transition-based
parser.

• For English, we used the Stanford Depen-
dencency (SD) treebank (de Marneffe et al.,
2006) used in (Chen and Manning, 2014)
which is the closest model published, with
the same splits.8 The part-of-speech tags
are predicted by using the Stanford Tagger
(Toutanova et al., 2003) with an accuracy
of 97.3%. This treebank contains a negligi-
ble amount of non-projective arcs (Chen and
Manning, 2014).

• For Chinese, we use the Penn Chinese Tree-
bank 5.1 (CTB5) following Zhang and Clark
(2008),9 with gold part-of-speech tags which
is also the same as in Chen and Manning
(2014).

Language model word embeddings were gener-
ated, for English, from the AFP portion of the En-
glish Gigaword corpus (version 5), and from the
complete Chinese Gigaword corpus (version 2),

7We did perform preliminary experiments with LSTM
states of 32, 50, and 80, but the other dimensions were our
initial guesses.

8Training: 02-21. Development: 22. Test: 23.
9Training: 001–815, 1001–1136. Development: 886–

931, 1148–1151. Test: 816–885, 1137–1147.
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as segmented by the Stanford Chinese Segmenter
(Tseng et al., 2005).

5.2 Experimental configurations
We report results on five experimental configu-
rations per language, as well as the Chen and
Manning (2014) baseline. These are: the full
stack LSTM parsing model (S-LSTM), the stack
LSTM parsing model without POS tags (−POS),
the stack LSTM parsing model without pretrained
language model embeddings (−pretraining), the
stack LSTM parsing model that uses just head
words on the stack instead of composed represen-
tations (−composition), and the full parsing model
where rather than an LSTM, a classical recurrent
neural network is used (S-RNN).

5.3 Results
Following Chen and Manning (2014) we exclude
punctuation symbols for evaluation. Tables 1 and
2 show comparable results with Chen and Man-
ning (2014), and we show that our model is better
than their model in both the development set and
the test set.

Development Test
UAS LAS UAS LAS

S-LSTM 93.2 90.9 93.1 90.9
−POS 93.1 90.4 92.7 90.3
−pretraining 92.7 90.4 92.4 90.0
−composition 92.7 89.9 92.2 89.6
S-RNN 92.8 90.4 92.3 90.1
C&M (2014) 92.2 89.7 91.8 89.6

Table 1: English parsing results (SD)

Dev. set Test set
UAS LAS UAS LAS

S-LSTM 87.2 85.9 87.2 85.7
−composition 85.8 84.0 85.3 83.6
−pretraining 86.3 84.7 85.7 84.1
−POS 82.8 79.8 82.2 79.1
S-RNN 86.3 84.7 86.1 84.6
C&M (2014) 84.0 82.4 83.9 82.4

Table 2: Chinese parsing results (CTB5)

5.4 Analysis
Overall, our parser substantially outperforms the
baseline neural network parser of Chen and Man-
ning (2014), both in the full configuration and

in the various ablated conditions we report. The
one exception to this is the −POS condition for
the Chinese parsing task, which in which we un-
derperform their baseline (which used gold POS
tags), although we do still obtain reasonable pars-
ing performance in this limited case. We note
that predicted POS tags in English add very lit-
tle value—suggesting that we can think of parsing
sentences directly without first tagging them. We
also find that using composed representations of
dependency tree fragments outperforms using rep-
resentations of head words alone, which has im-
plications for theories of headedness. Finally, we
find that while LSTMs outperform baselines that
use only classical RNNs, these are still quite capa-
ble of learning good representations.

Effect of beam size. Beam search was deter-
mined to have minimal impact on scores (abso-
lute improvements of ≤ 0.3% were possible with
small beams). Therefore, all results we report
used greedy decoding—Chen and Manning (2014)
likewise only report results with greedy decoding.
This finding is in line with previous work that gen-
erates sequences from recurrent networks (Grefen-
stette et al., 2014), although Vinyals et al. (2015)
did report much more substantial improvements
with beam search on their “grammar as a foreign
language” parser.10

6 Related Work

Our approach ties together several strands of pre-
vious work. First, several kinds of stack memories
have been proposed to augment neural architec-
tures. Das et al. (1992) proposed a neural network
with an external stack memory based on recur-
rent neural networks. In contrast to our model, in
which the entire contents of the stack are summa-
rized in a single value, in their model, the network
could only see the contents of the top of the stack.
Mikkulainen (1996) proposed an architecture with
a stack that had a summary feature, although the
stack control was learned as a latent variable.

A variety of authors have used neural networks
to predict parser actions in shift-reduce parsers.
The earliest attempt we are aware of is due to
Mayberry and Miikkulainen (1999). The resur-
gence of interest in neural networks has resulted

10Although superficially similar to ours, Vinyals et al.
(2015) is a phrase-structure parser and adaptation to the de-
pendency parsing scenario would have been nontrivial. We
discuss their work in §6.
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in in several applications to transition-based de-
pendency parsers (Weiss et al., 2015; Chen and
Manning, 2014; Stenetorp, 2013). In these works,
the conditioning structure was manually crafted
and sensitive to only certain properties of the state,
while we are conditioning on the global state ob-
ject. Like us, Stenetorp (2013) used recursively
composed representations of the tree fragments
(a head and its dependents). Neural networks
have also been used to learn representations for
use in chart parsing (Henderson, 2004; Titov and
Henderson, 2007; Socher et al., 2013a; Le and
Zuidema, 2014).

LSTMs have also recently been demonstrated
as a mechanism for learning to represent parse
structure.Vinyals et al. (2015) proposed a phrase-
structure parser based on LSTMs which operated
by first reading the entire input sentence in so as
to obtain a vector representation of it, and then
generating bracketing structures sequentially con-
ditioned on this representation. Although super-
ficially similar to our model, their approach has
a number of disadvantages. First, they relied on
a large amount of semi-supervised training data
that was generated by parsing a large unanno-
tated corpus with an off-the-shelf parser. Sec-
ond, while they recognized that a stack-like shift-
reduce parser control provided useful information,
they only made the top word of the stack visible
during training and decoding. Third, although it
is impressive feat of learning that an entire parse
tree be represented by a vector, it seems that this
formulation makes the problem unnecessarily dif-
ficult.

Finally, our work can be understood as a pro-
gression toward using larger contexts in parsing.
An exhaustive summary is beyond the scope of
this paper, but some of the important milestones
in this tradition are the use of cube pruning to ef-
ficiently include nonlocal features in discrimina-
tive chart reranking (Huang and Chiang, 2008),
approximate decoding techniques based on LP re-
laxations in graph-based parsing to include higher-
order features (Martins et al., 2010), and random-
ized hill-climbing methods that enable arbitrary
nonlocal features in global discriminative parsing
models (Zhang et al., 2014). Since our parser is
sensitive to any part of the input, its history, or its
stack contents, it is similar in spirit to the last ap-
proach, which permits truly arbitrary features.

7 Conclusion

We presented stack LSTMs, recurrent neural net-
works for sequences, with push and pop opera-
tions, and used them to implement a state-of-the-
art transition-based dependency parser. We con-
clude by remarking that stack memory offers in-
triguing possibilities for learning to solve general
information processing problems (Mikkulainen,
1996). Here, we learned from observable stack
manipulation operations (i.e., supervision from a
treebank), and the computed embeddings of final
parser states were not used for any further predic-
tion. However, this could be reversed, giving a de-
vice that learns to construct context-free programs
(e.g., expression trees) given only observed out-
puts; one application would be unsupervised pars-
ing. Such an extension of the work would make
it an alternative to architectures that have an ex-
plicit external memory such as neural Turing ma-
chines (Graves et al., 2014) and memory networks
(Weston et al., 2015). However, as with those
models, without supervision of the stack opera-
tions, formidable computational challenges must
be solved (e.g., marginalizing over all latent stack
operations), but sampling techniques and tech-
niques from reinforcement learning have promise
here (Zaremba and Sutskever, 2015), making this
an intriguing avenue for future work.
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