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Abstract

We present structured perceptron training for neural
network transition-based dependency parsing. We
learn the neural network representation using a gold
corpus augmented by a large number of automat-
ically parsed sentences. Given this fixed network
representation, we learn a final layer using the struc-
tured perceptron with beam-search decoding. On
the Penn Treebank, our parser reaches 94.26% un-
labeled and 92.41% labeled attachment accuracy,
which to our knowledge is the best accuracy on
Stanford Dependencies to date. We also provide in-
depth ablative analysis to determine which aspects
of our model provide the largest gains in accuracy.

1 Introduction

Syntactic analysis is a central problem in lan-
guage understanding that has received a tremen-
dous amount of attention. Lately, dependency
parsing has emerged as a popular approach to this
problem due to the availability of dependency tree-
banks in many languages (Buchholz and Marsi,
2006; Nivre et al., 2007; McDonald et al., 2013)
and the efficiency of dependency parsers.
Transition-based parsers (Nivre, 2008) have
been shown to provide a good balance between
efficiency and accuracy. In transition-based pars-
ing, sentences are processed in a linear left to
right pass; at each position, the parser needs to
choose from a set of possible actions defined by
the transition strategy. In greedy models, a classi-
fier is used to independently decide which transi-
tion to take based on local features of the current
parse configuration. This classifier typically uses
hand-engineered features and is trained on indi-
vidual transitions extracted from the gold transi-
tion sequence. While extremely fast, these greedy
models typically suffer from search errors due to
the inability to recover from incorrect decisions.
Zhang and Clark (2008) showed that a beam-
search decoding algorithm utilizing the structured
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perceptron training algorithm can greatly improve
accuracy. Nonetheless, significant manual fea-
ture engineering was required before transition-
based systems provided competitive accuracy with
graph-based parsers (Zhang and Nivre, 2011), and
only by incorporating graph-based scoring func-
tions were Bohnet and Kuhn (2012) able to exceed
the accuracy of graph-based approaches.

In contrast to these carefully hand-tuned ap-
proaches, Chen and Manning (2014) recently
presented a neural network version of a greedy
transition-based parser. In their model, a feed-
forward neural network with a hidden layer is used
to make the transition decisions. The hidden layer
has the power to learn arbitrary combinations of
the atomic inputs, thereby eliminating the need for
hand-engineered features. Furthermore, because
the neural network uses a distributed representa-
tion, it is able to model lexical, part-of-speech
(POS) tag, and arc label similarities in a contin-
uous space. However, although their model out-
performs its greedy hand-engineered counterparts,
it is not competitive with state-of-the-art depen-
dency parsers that are trained for structured search.

In this work, we combine the representational
power of neural networks with the superior search
enabled by structured training and inference, mak-
ing our parser one of the most accurate depen-
dency parsers to date. Training and testing on
the Penn Treebank (Marcus et al., 1993), our
transition-based parser achieves 93.99% unlabeled
(UAS) / 92.05% labeled (LAS) attachment accu-
racy, outperforming the 93.22% UAS / 91.02%
LAS of Zhang and McDonald (2014) and 93.27
UAS / 91.19 LAS of Bohnet and Kuhn (2012).
In addition, by incorporating unlabeled data into
training, we further improve the accuracy of our
model to 94.26% UAS / 92.41% LAS (93.46%
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UAS /91.49% LAS for our greedy model).

In our approach we start with the basic structure
of Chen and Manning (2014), but with a deeper ar-
chitecture and improvements to the optimization
procedure. These modifications (Section 2) in-
crease the performance of the greedy model by as
much as 1%. As in prior work, we train the neu-
ral network to model the probability of individual
parse actions. However, we do not use these prob-
abilities directly for prediction. Instead, we use
the activations from all layers of the neural net-
work as the representation in a structured percep-
tron model that is trained with beam search and
early updates (Section 3). On the Penn Treebank,
this structured learning approach significantly im-
proves parsing accuracy by 0.8%.

An additional contribution of this work is an
effective way to leverage unlabeled data. Neu-
ral networks are known to perform very well in
the presence of large amounts of training data;
however, obtaining more expert-annotated parse
trees is very expensive. To this end, we generate
large quantities of high-confidence parse trees by
parsing unlabeled data with two different parsers
and selecting only the sentences for which the
two parsers produced the same trees (Section 3.3).
This approach is known as “tri-training” (Li et
al., 2014) and we show that it benefits our neu-
ral network parser significantly more than other
approaches. By adding 10 million automatically
parsed tokens to the training data, we improve the
accuracy of our parsers by almost ~1.0% on web
domain data.

We provide an extensive exploration of our
model in Section 5 through ablative analysis and
other retrospective experiments. One of the goals
of this work is to provide guidance for future re-
finements and improvements on the architecture
and modeling choices we introduce in this paper.

Finally, we also note that neural network repre-
sentations have a long history in syntactic parsing
(Henderson, 2004; Titov and Henderson, 2007,
Titov and Henderson, 2010); however, like Chen
and Manning (2014), our network avoids any re-
current structure so as to keep inference fast and
efficient and to allow the use of simple backprop-
agation to compute gradients. Our work is also
not the first to apply structured training to neu-
ral networks (see e.g. Peng et al. (2009) and Do
and Artires (2010) for Conditional Random Field
(CRF) training of neural networks). Our paper ex-
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Figure 1: Schematic overview of our neural network model.
Atomic features are extracted from the i’th elements on the
stack (s;) and the buffer (b;); Ic; indicates the i’th leftmost
child and rc; the i’th rightmost child. We use the top two
elements on the stack for the arc features and the top four
tokens on stack and buffer for words, tags and arc labels.

tends this line of work to the setting of inexact
search with beam decoding for dependency pars-
ing; Zhou et al. (2015) concurrently explored a
similar approach using a structured probabilistic
ranking objective. Dyer et al. (2015) concurrently
developed the Stack Long Short-Term Memory
(S-LSTM) architecture, which does incorporate
recurrent architecture and look-ahead, and which
yields comparable accuracy on the Penn Treebank
to our greedy model.

2 Neural Network Model

In this section, we describe the architecture of our
model, which is summarized in Figure 1. Note that
we separate the embedding processing to a distinct
“embedding layer” for clarity of presentation. Our
model is based upon that of Chen and Manning
(2014) and we discuss the differences between our
model and theirs in detail at the end of this section.
We use the arc-standard (Nivre, 2004) transition
system.

2.1 Input layer

Given a parse configuration ¢ (consisting of a stack
s and a buffer b), we extract a rich set of dis-
crete features which we feed into the neural net-
work. Following Chen and Manning (2014), we
group these features by their input source: words,
POS tags, and arc labels. The features extracted



for each group are represented as a sparse F X V
matrix X, where V is the size of the vocabulary
of the feature group and F is the number of fea-
tures. The value of element Xy, is 1 if the f’th
feature takes on value v. We produce three in-
put matrices: Xyorg for words features, X, for
POS tag features, and Xjupe for arc labels, with
Fyord = Frag = 20 and Fiape) = 12 (Figure 1).

For all feature groups, we add additional special
values for “ROOT” (indicating the POS or word of
the root token), “NULL” (indicating no valid fea-
ture value could be computed) or “UNK” (indicat-
ing an out-of-vocabulary item).

2.2 Embedding layer

The first learned layer hg in the network trans-
forms the sparse, discrete features X into a dense,
continuous embedded representation. For each
feature group X,, we learn a V; X D, embedding
matrix E, that applies the conversion:

hy = [X,E, | g € {word, tag, label}], (D)
where we apply the computation separately for
each group g and concatenate the results. Thus,
the embedding layer has E = }, FyD, outputs,
which we reshape to a vector hg. We can choose
the embedding dimensionality D for each group
freely. Since POS tags and arc labels have much
smaller vocabularies, we show in our experiments
(Section 5.1) that we can use smaller Dy, and
Duapel, without a loss in accuracy.

2.3 Hidden layers

We experimented with one and two hidden layers
composed of M rectified linear (Relu) units (Nair
and Hinton, 2010). Each unit in the hidden layers
is fully connected to the previous layer:
h; = max{0, W;h,_; + b;}, 2)
where W is a M| X E weight matrix for the first
hidden layer and W; are M; X M;_; matrices for all
subsequent layers. The weights b; are bias terms.
Relu layers have been well studied in the neural
network literature and have been shown to work
well for a wide domain of problems (Krizhevsky
et al., 2012; Zeiler et al., 2013). Through most of
development, we kept M; = 200, but we found that
significantly increasing the number of hidden units
improved our results for the final comparison.
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2.4 Relationship to Chen and Manning (2014)

Our model is clearly inspired by and based on the
work of Chen and Manning (2014). There are a
few structural differences: (1) we allow for much
smaller embeddings of POS tags and labels, (2) we
use Relu units in our hidden layers, and (3) we use
a deeper model with two hidden layers. Somewhat
to our surprise, we found these changes combined
with an SGD training scheme (Section 3.1) during
the “pre-training” phase of the model to lead to an
almost 1% accuracy gain over Chen and Manning
(2014). This trend held despite carefully tuning
hyperparameters for each method of training and
structure combination.

Our main contribution from an algorithmic per-
spective is our training procedure: as described in
the next section, we use the structured perceptron
for learning the final layer of our model. We thus
present a novel way to leverage a neural network
representation in a structured prediction setting.

3 Semi-Supervised Structured Learning

In this work, we investigate a semi-supervised
structured learning scheme that yields substantial
improvements in accuracy over the baseline neu-
ral network model. There are two complementary
contributions of our approach: (1) incorporating
structured learning of the model and (2) utilizing
unlabeled data. In both cases, we use the neural
network to model the probability of each parsing
action y as a soft-max function taking the final hid-
den layer as its input:

P(y) o exp{BTh; + by), 3)
where 8, is a M; dimensional vector of weights for
class y and i is the index of the final hidden layer
of the network. At a high level our approach can
be summarized as follows:

o First, we pre-train the network’s hidden rep-
resentations by learning probabilities of pars-
ing actions. Fixing the hidden representa-
tions, we learn an additional final output layer
using the structured perceptron that uses the
output of the network’s hidden layers. In
practice this improves accuracy by ~0.6% ab-
solute.

Next, we show that we can supplement the
gold data with a large corpus of high quality



automatic parses. We show that incorporat-
ing unlabeled data in this way improves ac-
curacy by as much as 1% absolute.

3.1 Backpropagation Pretraining

To learn the hidden representations, we use
mini-batched averaged stochastic gradient descent
(ASGD) (Bottou, 2010) with momentum (Hinton,
2012) to learn the parameters ® of the network,
where © = {E,, W;,b;, 5, | Yg,i,y}. We use back-
propagation to minimize the multinomial logistic
loss:

L®) = - log P(yj | ¢;,0) + A ) IIWili3, (4)
J i

where A is a regularization hyper-parameter over
the hidden layer parameters (we use 2 = 107 in
all experiments) and j sums over all decisions and
configurations {yj;, c;} extracted from gold parse
trees in the dataset.

The specific update rule we apply at iteration ¢
is as follows:

8 = M8&i—1 — AL(©y), )
Os1 = O + 1181, (6)

where the descent direction g, is computed by a
weighted combination of the previous direction
gi—1and the current gradient AL(®,). The parame-
ter u € [0, 1) is the momentum parameter while 7,
is the traditional learning rate. In addition, since
we did not tune the regularization parameter A,
we apply a simple exponential step-wise decay to
ns; for every vy rounds of updates, we multiply
1 = 0.961,-1.

The final component of the update is parame-
ter averaging: we maintain averaged parameters
Q; = a,0,_1 + (1 — ;)®,, where qa; is an averag-
ing weight that increases from 0.1 to 0.9999 with
1/t. Combined with averaging, careful tuning of
the three hyperparameters p, 19, and y using held-
out data was crucial in our experiments.

3.2 Structured Perceptron Training

Given the hidden representations, we now describe
how the perceptron can be trained to utilize these
representations. The perceptron algorithm with
early updates (Collins and Roark, 2004) requires
a feature-vector definition ¢ that maps a sentence
x together with a configuration c to a feature vec-
tor ¢(x,c) € RY. There is a one-to-one mapping
between configurations ¢ and decision sequences
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y1...yj-1 for any integer j > 1: we will use ¢ and
Y1 ...yj-1 interchangeably.

For a sentence x, define GEN(x) to be the set
of parse trees for x. Each y € GEN(x) is a se-
quence of decisions y; ...y, for some integer m.
We use Y to denote the set of possible decisions
in the parsing model. For each decision y € Y
we assume a parameter vector v(y) € RY. These
parameters will be trained using the perceptron.

In decoding with the perceptron-trained model,
we will use beam search to attempt to find:

m

argmax Z v(yj) - X, y1 .. yj-1)-
yeGEN(x) =1

Thus each decision y; receives a score:

v(yj) - X, y1. .. yj-1)-

In the perceptron with early updates, the param-
eters v(y) are trained as follows. On each train-
ing example, we run beam search until the gold-
standard parse tree falls out of the beam.! De-
fine j to be the length of the beam at this point.
A structured perceptron update is performed using
the gold-standard decisions yj ...y; as the target,
and the highest scoring (incorrect) member of the
beam as the negative example.

A key idea in this paper is to use the neural net-
work to define the representation ¢(x,c). Given
the sentence x and the configuration ¢, assuming
two hidden layers, the neural network defines val-
ues for hy, hy, and P(y) for each decision y. We
experimented with various definitions of ¢ (Sec-
tion 5.2) and found that ¢(x, ¢) = [h; hy P(y)] (the
concatenation of the outputs from both hidden lay-
ers, as well as the probabilities for all decisions y
possible in the current configuration) had the best
accuracy on development data.

Note that it is possible to continue to use back-
propagation to learn the representation ¢(x, c) dur-
ing perceptron training; however, we found using
ASGD to pre-train the representation always led to
faster, more accurate results in preliminary exper-
iments, and we left further investigation for future
work.

3.3 Incorporating Unlabeled Data

Given the high capacity, non-linear nature of the
deep network we hypothesize that our model can

'If the gold parse tree stays within the beam until the end
of the sentence, conventional perceptron updates are used.



be significantly improved by incorporating more
data. One way to use unlabeled data is through
unsupervised methods such as word clusters (Koo
et al., 2008); we follow Chen and Manning (2014)
and use pretrained word embeddings to initial-
ize our model. The word embeddings capture
similar distributional information as word clusters
and give consistent improvements by providing a
good initialization and information about words
not seen in the treebank data.

However, obtaining more training data is even
more important than a good initialization. One
potential way to obtain additional training data is
by parsing unlabeled data with previously trained
models. McClosky et al. (2006) and Huang and
Harper (2009) showed that iteratively re-training
a single model (“self-training”) can be used to
improve parsers in certain settings; Petrov et al.
(2010) built on this work and showed that a slow
and accurate parser can be used to “up-train” a
faster but less accurate parser.

In this work, we adopt the “tri-training” ap-
proach of Li et al. (2014): Two parsers are used to
process the unlabeled corpus and only sentences
for which both parsers produced the same parse
tree are added to the training data. The intu-
ition behind this idea is that the chance of the
parse being correct is much higher when the two
parsers agree: there is only one way to be correct,
while there are many possible incorrect parses. Of
course, this reasoning holds only as long as the
parsers suffer from different biases.

We show that tri-training is far more effective
than vanilla up-training for our neural network
model. We use same setup as Li et al. (2014), in-
tersecting the output of the BerkeleyParser (Petrov
et al., 2006), and a reimplementation of ZPar
(Zhang and Nivre, 2011) as our baseline parsers.
The two parsers agree only 36% of the time on
the tune set, but their accuracy on those sentences
is 97.26% UAS, approaching the inter annotator
agreement rate. These sentences are of course eas-
ier to parse, having an average length of 15 words,
compared to 24 words for the tune set overall.
However, because we only use these sentences to
extract individual transition decisions, the shorter
length does not seem to hurt their utility. We gen-
erate 107 tokens worth of new parses and use this
data in the backpropagation stage of training.
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4 Experiments

In this section we present our experimental setup
and the main results of our work.

4.1 Experimental Setup

We conduct our experiments on two English lan-
guage benchmarks: (1) the standard Wall Street
Journal (WSJ) part of the Penn Treebank (Marcus
et al., 1993) and (2) a more comprehensive union
of publicly available treebanks spanning multiple
domains. For the WSJ experiments, we follow
standard practice and use sections 2-21 for train-
ing, section 22 for development and section 23 as
the final test set. Since there are many hyperpa-
rameters in our models, we additionally use sec-
tion 24 for tuning. We convert the constituency
trees to Stanford style dependencies (De Marneffe
et al., 2006) using version 3.3.0 of the converter.
We use a CRF-based POS tagger to generate 5-
fold jack-knifed POS tags on the training set and
predicted tags on the dev, test and tune sets; our
tagger gets comparable accuracy to the Stanford
POS tagger (Toutanova et al., 2003) with 97.44%
on the test set. We report unlabeled attachment
score (UAS) and labeled attachment score (LAS)
excluding punctuation on predicted POS tags, as
is standard for English.

For the second set of experiments, we follow
the same procedure as above, but with a more di-
verse dataset for training and evaluation. Follow-
ing Vinyals et al. (2015), we use (in addition to the
WSJ), the OntoNotes corpus version 5 (Hovy et
al., 20006), the English Web Treebank (Petrov and
McDonald, 2012), and the updated and corrected
Question Treebank (Judge et al., 2006). We train
on the union of each corpora’s training set and test
on each domain separately. We refer to this setup
as the “Treebank Union” setup.

In our semi-supervised experiments, we use the
corpus from Chelba et al. (2013) as our source of
unlabeled data. We process it with the Berkeley-
Parser (Petrov et al., 2006), a latent variable con-
stituency parser, and a reimplementation of ZPar
(Zhang and Nivre, 2011), a transition-based parser
with beam search. Both parsers are included as
baselines in our evaluation. We select the first
107 tokens for which the two parsers agree as
additional training data. For our tri-training ex-
periments, we re-train the POS tagger using the
POS tags assigned on the unlabeled data from the
Berkeley constituency parser. This increases POS



Method UAS LAS Beam Method News Web QTB
Graph-based Graph-based
Bohnet (2010) 92.88 90.71 n/a Bohnet (2010) 91.38 85.22 91.49
Martins et al. (2013) 92.89 90.55 n/a Martins et al. (2013) 91.13 85.04 91.54
Zhang and McDonald (2014) 93.22 91.02 n/a Zhang and McDonald (2014) 91.48 85.59 90.69
Transition-based Transition-based
*Zhang and Nivre (2011) 93.00 90.95 32 *Zhang and Nivre (2011) 91.15 85.24 92.46
Bohnet and Kuhn (2012) 93.27 91.19 40 Bohnet and Kuhn (2012) 91.69 85.33 92.21
Chen and Manning (2014) 91.80 89.60 1 Our Greedy 91.21 85.41 90.61
S-LSTM (Dyer et al., 2015)  93.20 90.90 1 Our Perceptron (B=16) 92.25 86.44 92.06
Our Greedy 93.19 91.18 1 — .
Our Perceptron 93.99 92.05 8 Trl;trammg )
Zhang and Nivre (2011) 91.46 85.51 91.36
Tri-training Our Greedy 91.82 86.37 90.58
*Zhang and Nivre (2011) 9292 90.88 32 Our Perceptron (B=16) 92.62 87.00 93.05
Our Greedy 93.46 91.49 1
Our Perceptron 94.26 92.41 8 Table 2: Final Treebank Union test set results. We report

Table 1: Final WS]J test set results. We compare our system to
state-of-the-art graph-based and transition-based dependency
parsers. * denotes our own re-implementation of the system
so we could compare tri-training on a competitive baseline.
All methods except Chen and Manning (2014) and Dyer et
al. (2015) were run using predicted tags from our POS tag-
ger. For reference, the accuracy of the Berkeley constituency
parser (after conversion) is 93.61% UAS / 91.51% LAS.

accuracy slightly to 97.57% on the WSJ.

4.2 Model Initialization & Hyperparameters

In all cases, we initialized W; and 8 randomly us-
ing a Gaussian distribution with variance 10™*. We
used fixed initialization with b; = 0.2, to ensure
that most Relu units are activated during the initial
rounds of training. We did not systematically com-
pare this random scheme to others, but we found
that it was sufficient for our purposes.

For the word embedding matrix Eyog, we
initialized the parameters using pretrained word
embeddings. We used the publicly available
word2vec? tool (Mikolov et al., 2013) to learn
CBOW embeddings following the sample config-
uration provided with the tool. For words not ap-
pearing in the unsupervised data and the special
“NULL” etc. tokens, we used random initializa-
tion. In preliminary experiments we found no dif-
ference between training the word embeddings on
1 billion or 10 billion tokens. We therefore trained
the word embeddings on the same corpus we used
for tri-training (Chelba et al., 2013).

We set Dyorg = 64 and Dyyg = Diapel = 32 for
embedding dimensions and M| = M, = 2048 hid-
den units in our final experiments. For the percep-

Zhttp://code.google.com/p/word2vec/
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LAS only for brevity; see Appendix for full results. For these
tri-training results, we sampled sentences to ensure the dis-
tribution of sentence lengths matched the distribution in the
training set, which we found marginally improved the ZPar
tri-training performance. For reference, the accuracy of the
Berkeley constituency parser (after conversion) is 91.66%
WSJ, 85.93% Web, and 93.45% QTB.

tron layer, we used ¢(x,c) = [h; hy P(y)] (con-
catenation of all intermediate layers). All hyper-
parameters (including structure) were tuned using
Section 24 of the WSJ only. When not tri-training,
we used hyperparameters of y = 0.2, g = 0.05,
u = 0.9, early stopping after roughly 16 hours of
training time. With the tri-training data, we de-
creased 7o 0.05, increased y = 0.5, and de-
creased the size of the network to M; 1024,
M, = 256 for run-time efficiency, and trained the
network for approximately 4 days. For the Tree-
bank Union setup, we set M| = M, = 1024 for the
standard training set and for the tri-training setup.

4.3 Results

Table 1 shows our final results on the WSJ test
set, and Table 2 shows the cross-domain results
from the Treebank Union. We compare to the best
dependency parsers in the literature. For (Chen
and Manning, 2014) and (Dyer et al., 2015), we
use reported results; the other baselines were run
by Bernd Bohnet using version 3.3.0 of the Stan-
ford dependencies and our predicted POS tags for
all datasets to make comparisons as fair as possi-
ble. On the WSJ and Web tasks, our parser out-
performs all dependency parsers in our compari-
son by a substantial margin. The Question (QTB)
dataset is more sensitive to the smaller beam size
we use in order to train the models in a reason-
able time; if we increase to B = 32 at inference



time only, our perceptron performance goes up to
92.29% LAS.

Since many of the baselines could not be di-
rectly compared to our semi-supervised approach,
we re-implemented Zhang and Nivre (2011) and
trained on the tri-training corpus. Although tri-
training did help the baseline on the dev set (Fig-
ure 4), test set performance did not improve sig-
nificantly. In contrast, it is quite exciting to see
that after tri-training, even our greedy parser is
more accurate than any of the baseline depen-
dency parsers and competitive with the Berkeley-
Parser used to generate the tri-training data. As ex-
pected, tri-training helps most dramatically to in-
crease accuracy on the Treebank Union setup with
diverse domains, yielding 0.4-1.0% absolute LAS
improvement gains for our most accurate model.

Unfortunately we are not able to compare to
several semi-supervised dependency parsers that
achieve some of the highest reported accuracies
on the WSJ, in particular Suzuki et al. (2009),
Suzuki et al. (2011) and Chen et al. (2013). These
parsers use the Yamada and Matsumoto (2003) de-
pendency conversion and the accuracies are there-
fore not directly comparable. The highest of these
is Suzuki et al. (2011), with a reported accuracy
of 94.22% UAS. Even though the UAS is not di-
rectly comparable, it is typically similar, and this
suggests that our model is competitive with some
of the highest reported accuries for dependencies
on WSJ.

5 Discussion

In this section, we investigate the contribution of
the various components of our approach through
ablation studies and other systematic experiments.
We tune on Section 24, and use Section 22 for
comparisons in order to not pollute the official test
set (Section 23). We focus on UAS as we found
the LAS scores to be strongly correlated. Unless
otherwise specified, we use 200 hidden units in
each layer to be able to run more ablative exper-
iments in a reasonable amount of time.

5.1 Impact of Network Structure

In addition to initialization and hyperparameter
tuning, there are several additional choices about
model structure and size a practitioner faces when
implementing a neural network model. We ex-
plore these questions and justify the particular
choices we use in the following. Note that we do
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Figure 2: Effect of hidden layers and pre-training on vari-
ance of random restarts. Initialization was either completely
random or initialized with word2vec embeddings (“Pre-
trained”), and either one or two hidden layers of size 200
were used (“200” vs “200x2007). Each point represents
maximization over a small hyperparameter grid with early
stopping based on WSJ tune set UAS score. Dyoq = 64,
Dlag, Digper = 16.

not use a beam for this analysis and therefore do
not train the final perceptron layer. This is done
in order to reduce training times and because the
trends persist across settings.

Variance reduction with pre-trained embed-
dings. Since the learning problem is non-
convex, different initializations of the parameters
yield different solutions to the learning problem.
Thus, for any given experiment, we ran multiple
random restarts for every setting of our hyperpa-
rameters and picked the model that performed best
using the held-out tune set. We found it important
to allow the model to stop training early if tune set
accuracy decreased.

We visualize the performance of 32 random
restarts with one or two hidden layers and with
and without pretrained word embeddings in Fig-
ure 2, and a summary of the figure in Table 3.
While adding a second hidden layer results in a
large gain on the tune set, there is no gain on the
dev set if pre-trained embeddings are not used.
In fact, while the overall UAS scores of the tune
set and dev set are strongly correlated (p = 0.64,
p < 10719), they are not significantly correlated
if pre-trained embeddings are not used (o = 0.12,
p > 0.3). This suggests that an additional bene-
fit of pre-trained embeddings, aside from allowing
learning to reach a more accurate solution, is to
push learning towards a solution that generalizes
to more data.



Pre Hidden WSJ §24 (Max) WSJ §22

Y 200 x 200 92.10 +0.11 92.58 +0.12
Y 200 91.76 + 0.09 92.30 +0.10
N 200 x 200 91.84 +0.11 92.19 +0.13
N 200 91.55+0.10 92.20+0.12

Table 3: Impact of network architecture on UAS for greedy
inference. We select the best model from 32 random restarts
based on the tune set and show the resulting dev set accuracy.
We also show the standard deviation across the 32 restarts.

#Hidden 64 128 256 512 1024 2048

1 Layer 91.73 92.27 92.48 92.73 92.74 92.83
2 Layers 91.89 92.40 92.71 92.70 92.96 93.13

Table 4: Increasing hidden layer size increases WSJ Dev
UAS. Shown is the average WSJ Dev UAS across hyperpa-
rameter tuning and early stopping with 3 random restarts with
a greedy model.

Diminishing returns with increasing embed-
ding dimensions. For these experiments, we
fixed one embedding type to a high value and
reduced the dimensionality of all others to very
small values. The results are plotted in Figure
3, suggesting larger embeddings do not signifi-
cantly improve results. We also ran tri-training
on a very compact model with Dyoq = 8 and
Dyg = Digpel = 2 (8X fewer parameters than our
full model) which resulted in 92.33% UAS accu-
racy on the dev set. This is comparable to the full
model without tri-training, suggesting that more
training data can compensate for fewer parame-
ters.

Increasing hidden units yields large gains. For
these experiments, we fixed the embedding sizes
Dyord = 64, Dyag = Dianel = 32 and tried increas-
ing and decreasing the dimensionality of the hid-
den layers on a logarthmic scale. Improvements in
accuracy did not appear to saturate even with in-
creasing the number of hidden units by an order of
magnitude, though the network became too slow
to train effectively past M = 2048. These results
suggest that there are still gains to be made by in-
creasing the efficiency of larger networks, even for
greedy shift-reduce parsers.

5.2 Impact of Structured Perceptron

We now turn our attention to the importance of
structured perceptron training as well as the im-
pact of different latent representations.

Bias reduction through structured training.
To evaluate the impact of structured training, we
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Beam 1 2 4 8§ 16 32
WSJ Only
ZN'11  90.55 91.36 92.54 92.62 92.88 93.09
Softmax ~ 92.74 93.07 93.16 93.25 93.24 93.24

Perceptron 92.73 93.06 93.40 93.47 93.50 93.58
Tri-training

ZN’11 91.65 92.37 93.37 93.24 93.21 93.18

Softmax  93.71 93.82 93.86 93.87 93.87 93.87

Perceptron 93.69 94.00 94.23 94.33 94.31 94.32

Table 5: Beam search always yields significant gains but us-
ing perceptron training provides even larger benefits, espe-
cially for the tri-trained neural network model. The best re-
sult for each model is highlighted in bold.

¢(x,c)  WSJ Only Tri-training
[hs] 93.16 93.93
[P(Y)] 93.26 93.80
[h; h;] 93.33 93.95
(hy hy P(y)] 93.47 94.33

Table 6: Utilizing all intermediate representations improves
performance on the WSJ dev set. All results are with B = 8.

compare using the estimates P(y) from the neural
network directly for beam search to using the acti-
vations from all layers as features in the structured
perceptron. Using the probability estimates di-
rectly is very similar to Ratnaparkhi (1997), where
a maximum-entropy model was used to model the
distribution over possible actions at each parser
state, and beam search was used to search for the
highest probability parse. A known problem with
beam search in this setting is the label-bias prob-
lem. Table 5 shows the impact of using structured
perceptron training over using the softmax func-
tion during beam search as a function of the beam
size used. For reference, our reimplementation of
Zhang and Nivre (2011) is trained equivalently for
each setting. We also show the impact on beam
size when tri-training is used. Although the beam
does marginally improve accuracy for the softmax
model, much greater gains are achieved when per-
ceptron training is used.

Using all hidden layers crucial for structured
perceptron. We also investigated the impact of
connecting the final perceptron layer to all prior
hidden layers (Table 6). Our results suggest that
all intermediate layers of the network are indeed
discriminative. Nonetheless, aggregating all of
their activations proved to be the most effective
representation for the structured perceptron. This
suggests that the representations learned by the
network collectively contain the information re-
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Figure 3: Effect of embedding dimensions on the WSJ tune set.

quired to reduce the bias of the model, but not
when filtered through the softmax layer. Finally,
we also experimented with connecting both hid-
den layers to the softmax layer during backpropa-
gation training, but we found this did not signifi-
cantly affect the performance of the greedy model.

5.3 Impact of Tri-Training

To evaluate the impact of the tri-training approach,
we compared to up-training with the Berkely-
Parser (Petrov et al., 2006) alone. The results are
summarized in Figure 4 for the greedy and percep-
tron neural net models as well as our reimplemen-
tated Zhang and Nivre (2011) baseline.

For our neural network model, training on the
output of the BerkeleyParser yields only modest
gains, while training on the data where the two
parsers agree produces significantly better results.
This was especially pronounced for the greedy
models: after tri-training, the greedy neural net-
work model surpasses the BerkeleyParser in accu-
racy. It is also interesting to note that up-training
improved results far more than tri-training for the
baseline. We speculate that this is due to the a
lack of diversity in the tri-training data for this
model, since the same baseline model was inter-
sected with the BerkeleyParser to generate the tri-
training data.

5.4 Error Analysis

Regardless of tri-training, using the structured per-
ceptron improved error rates on some of the com-
mon and difficult labels: ROOT, ccomp, cc, conj,
and nsubj all improved by >1%. We inspected
the learned perceptron weights v for the softmax
probabilities P(y) (see Appendix) and found that
the perceptron reweights the softmax probabilities
based on common confusions; e.g. a strong neg-
ative weight for the action RIGHT(ccomp) given
the softmax model outputs RIGHT(conj). Note

331

Semi-supervised Training (WSJ Dev Set)

B Base I up [ JTri — — — Berkeley.

95

94

0
ZN'11 (B=1) ZN'11 (B=32) Ours (B=1)

Ours (B=8)

Figure 4: Semi-supervised training with 107 additional to-
kens, showing that tri-training gives significant improve-
ments over up-training for our neural net model.

that this trend did not hold when ¢(x, c) = [P(y)];
without the hidden layer, the perceptron was not
able to reweight the softmax probabilities to ac-
count for the greedy model’s biases.

6 Conclusion

We presented a new state of the art in dependency
parsing: a transition-based neural network parser
trained with the structured perceptron and ASGD.
We then combined this approach with unlabeled
data and tri-training to further push state-of-the-art
in semi-supervised dependency parsing. Nonethe-
less, our ablative analysis suggests that further
gains are possible simply by scaling up our system
to even larger representations. In future work, we
will apply our method to other languages, explore
end-to-end training of the system using structured
learning, and scale up the method to larger datasets
and network structures.
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