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Abstract

Traditional approaches to the task of ACE
event extraction primarily rely on elabo-
rately designed features and complicated
natural language processing (NLP) tools.
These traditional approaches lack gener-
alization, take a large amount of human
effort and are prone to error propaga-
tion and data sparsity problems. This
paper proposes a novel event-extraction
method, which aims to automatically ex-
tract lexical-level and sentence-level fea-
tures without using complicated NLP
tools. We introduce a word-representation
model to capture meaningful semantic reg-
ularities for words and adopt a framework
based on a convolutional neural network
(CNN) to capture sentence-level clues.
However, CNN can only capture the most
important information in a sentence and
may miss valuable facts when considering
multiple-event sentences. We propose a
dynamic multi-pooling convolutional neu-
ral network (DMCNN), which uses a dy-
namic multi-pooling layer according to
event triggers and arguments, to reserve
more crucial information. The experimen-
tal results show that our approach signif-
icantly outperforms other state-of-the-art
methods.

1 Introduction

Event extraction is an important and challenging
task in Information Extraction (IE), which aims
to discover event triggers with specific types and
their arguments. Current state-of-the-art methods
(Li et al., 2014; Li et al., 2013; Hong et al., 2011;
Liao and Grishman, 2010; Ji and Grishman, 2008)
often use a set of elaborately designed features
that are extracted by textual analysis and linguistic

knowledge. In general, we can divide the features
into two categories: lexical features and contex-
tual features.

Lexical features contain part-of-speech tags
(POS), entity information, and morphology fea-
tures (e.g., token, lemma, etc.), which aim to cap-
ture semantics or the background knowledge of
words. For example, consider the following sen-
tence with an ambiguous word beats:

S1: Obama beats McCain.
S2: Tyson beats his opponent .
In S1, beats is a trigger of type Elect. However,

in S2, beats is a trigger of type Attack, which is
more common than type Elect. Because of the am-
biguity, a traditional approach may mislabel beats
in S1 as a trigger of Attack. However, if we have
the priori knowledge that Obama and McCain are
presidential contenders, we have ample evidence
to predict that beats is a trigger of type Elect. We
call these knowledge lexical-level clues. To repre-
sent such features, the existing methods (Hong et
al., 2011) often rely on human ingenuity, which
is a time-consuming process and lacks general-
ization. Furthermore, traditional lexical features
in previous methods are a one-hot representation,
which may suffer from the data sparsity problem
and may not be able to adequately capture the se-
mantics of the words (Turian et al., 2010).

To identify events and arguments more pre-
cisely, previous methods often captured contex-
tual features, such as syntactic features, which aim
to understand how facts are tied together from a
larger field of view. For example, in S3, there are
two events that share three arguments as shown
in Figure 1. From the dependency relation of
nsubj between the argument cameraman and trig-
ger died, we can induce a Victim role to cam-
eraman in the Die event. We call such infor-
mation sentence-level clues. However, the argu-
ment word cameraman and its trigger word fired
are in different clauses, and there is no direct de-

167



In Baghdad ,   a cameraman died when   an American tank fired on   the Palestine  Hotel.
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Figure 1: Event mentions and syntactic parser results of S3. The upper side shows two event mentions
that share three arguments: the Die event mention, triggered by “died”, and the Attack event mention,
triggered by “fired”. The lower side shows the collapsed dependency results.

pendency path between them. Thus it is difficult
to find the Target role between them using tradi-
tional dependency features. In addition, extracting
such features depends heavily on the performance
of pre-existing NLP systems, which could suffer
from error propagation.

S3: In Baghdad, a cameraman died when an
American tank fired on the Palestine Hotel.

To correctly attach cameraman to fired as a Tar-
get argument, we must exploit internal semantics
over the entire sentence such that the Attack event
results in Die event. Recent improvements of
convolutional neural networks (CNNs) have been
proven to be efficient for capturing syntactic and
semantics between words within a sentence (Col-
lobert et al., 2011; Kalchbrenner and Blunsom,
2013; Zeng et al., 2014) for NLP tasks. CNNs
typically use a max-pooling layer, which applies
a max operation over the representation of an en-
tire sentence to capture the most useful informa-
tion. However, in event extraction, one sentence
may contain two or more events, and these events
may share the argument with different roles. For
example, there are two events in S3, namely, the
Die event and Attack event. If we use a traditional
max-pooling layer and only keep the most impor-
tant information to represent the sentence, we may
obtain the information that depicts “a cameraman
died” but miss the information about “American
tank fired on the Palestine Hotel”, which is impor-
tant for predicting the Attack event and valuable
for attaching cameraman to fired as an Target ar-
gument. In our experiments, we found that such
multiple-event sentences comprise 27.3% of our
dataset, which is a phenomenon we cannot ignore.

In this paper, we propose a dynamic multi-
pooling convolutional neural network (DMCNN)
to address the problems stated above. To capture

lexical-level clues and reduce human effort, we
introduce a word-representation model (Mikolov
et al., 2013b), which has been shown to be able
to capture the meaningful semantic regularities of
words (Bengio et al., 2003; Erhan et al., 2010;
Mikolov et al., 2013a). To capture sentence-level
clues without using complicated NLP tools, and
to reserve information more comprehensively, we
devise a dynamic multi-pooling layer for CNN,
which returns the maximum value in each part of
the sentence according to event triggers and argu-
ments. In summary, the contributions of this paper
are as follows:

• We present a novel framework for event
extraction, which can automatically induce
lexical-level and sentence-level features from
plain texts without complicated NLP prepro-
cessing.

• We devise a dynamic multi-pooling convolu-
tional neural network (DMCNN), which aims
to capture more valuable information within
a sentence for event extraction.

• We conduct experiments on a widely used
ACE2005 event extraction dataset, and the
experimental results show that our approach
outperforms other state-of-the-art methods.

2 Event Extraction Task

In this paper, we focus on the event extraction task
defined in Automatic Content Extraction1 (ACE)
evaluation, where an event is defined as a specific
occurrence involving participants. First, we in-
troduce some ACE terminology to understand this
task more easily:

1http://projects.ldc.upenn.edu/ace/
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• Event mention: a phrase or sentence within
which an event is described, including a trig-
ger and arguments.

• Event trigger: the main word that most
clearly expresses the occurrence of an event
(An ACE event trigger is typically a verb or a
noun).

• Event argument: an entity mention, tempo-
ral expression or value (e.g. Job-Title) that is
involved in an event (viz., participants).

• Argument role: the relationship between an
argument to the event in which it participates.

Given an English text document, an event ex-
traction system should predict event triggers with
specific subtypes and their arguments for each sen-
tence. The upper side of figure 1 depicts the event
triggers and their arguments for S3 in Section 1.
ACE defines 8 event types and 33 subtypes, such
as Attack or Elect.

Although event extraction depends on name
identification and entity mention co-reference, it
is another difficult task in ACE evaluation and not
the focus in the event extraction task. Thus, in this
paper, we directly leverage the entity label pro-
vided by the ACE, following most previous works
(Hong et al., 2011; Liao and Grishman, 2010; Ji
and Grishman, 2008).

3 Methodology

In this paper, event extraction is formulated as a
two-stage, multi-class classification via dynamic
multi-pooling convolutional neural networks with
the automatically learned features. The first stage
is called trigger classification, in which we use a
DMCNN to classify each word in a sentence to
identify trigger words. If one sentence has trig-
gers, the second stage is conducted, which applies
a similar DMCNN to assign arguments to trig-
gers and align the roles of the arguments. We call
this argument classification. Because the second
stage is more complicated, we first describe the
methodology of argument classification in Section
3.1∼3.4 and then illustrate the difference between
the DMCNNs that are used for trigger classifica-
tion and those used for argument classification in
Section 3.5.

Figure 2 describes the architecture of argu-
ment classification, which primarily involves the
following four components: (i) word-embedding

learning, which reveals the embedding vectors of
words in an unsupervised manner; (ii) lexical-level
feature representation, which directly uses embed-
ding vectors of words to capture lexical clues; (iii)
sentence-level feature extraction, which proposes
a DMCNN to learn the compositional semantic
features of sentences; and (iv) argument classi-
fier output, which calculates a confidence score for
each argument role candidate.

3.1 Word Embedding Learning and
Lexical-Level Feature Representation

Lexical-level features serve as important clues for
event extraction (Hong et al., 2011; Li et al.,
2013). Traditional lexical-level features primar-
ily include lemma, synonyms and POS tag of the
candidate words. The quality of such features
depends strongly on the results of existing NLP
tools and human ingenuity. Additionally, the tra-
ditional features remain unsatisfactory for captur-
ing the semantics of words, which are important
in event extraction, as showed in S1 and S2. As
Erhan et al. (2010) reported, word embeddings
learned from a significant amount of unlabeled
data are more powerful for capturing the mean-
ingful semantic regularities of words. This paper
uses unsupervised pre-trained word embedding as
the source of base features. We select the word
embeddings of candidate words (candidate trigger,
candidate argument) and the context tokens (left
and right tokens of the candidate words). Then, all
of these word embeddings are concatenated into
the lexical-level features vector L to represent the
lexical-level features in argument classification.

In this work, we use the Skip-gram model to
pre-train the word embedding. This model is the
state-of-the-art model in many NLP tasks (Baroni
et al., 2014). The Skip-gram model trains the
embeddings of words w1, w2...wm by maximizing
the average log probability,

1
m

m∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j |wt) (1)

where c is the size of the training window. Basi-
cally, p(wt+j |wt) is defined as,

p(wt+j |wt) =
exp(e

′T
t+jet)∑m

w=1 exp(e′T
w et)

(2)

wherem is the vocabulary of the unlabeled text. e
′
i

is another embedding for ei, see Morin and Bengio
(2005) for details.
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Figure 2: The architecture for the stage of argument classification in the event extraction. It illustrates
the processing of one instance with the predict trigger fired and the candidate argument cameraman.

3.2 Extracting Sentence-Level Features
Using a DMCNN

The CNN, with max-pooling layers, is a good
choice to capture the semantics of long-distance
words within a sentence (Collobert et al., 2011).
However, as noted in the section 1, traditional
CNN is incapable of addressing the event extrac-
tion problem. Because a sentence may contain
more than one event, using only the most impor-
tant information to represent a sentence, as in the
traditional CNN, will miss valuable clues. To re-
solve this problem, we propose a DMCNN to ex-
tract the sentence-level features. The DMCNN
uses a dynamic multi-pooling layer to obtain a
maximum value for each part of a sentence, which
is split by event triggers and event arguments.
Thus, the DMCNN is expected to capture more
valuable clues compared to traditional CNN meth-
ods.

3.2.1 Input
This subsection illustrates the input needed for a
DMCNN to extract sentence-level features. The
semantic interactions between the predicted trig-
ger words and argument candidates are crucial for
argument classification. Therefore, we propose
three types of input that the DMCNN uses to cap-
ture these important clues:

• Context-word feature (CWF): Similar to
Kalchbrenner et al. (2014) and Collobert et
al. (2011), we take all the words of the whole
sentence as the context. CWF is the vector of
each word token transformed by looking up
word embeddings.

• Position feature (PF): It is necessary to spec-

ify which words are the predicted trigger or
candidate argument in the argument classi-
fication. Thus, we proposed the PF, which
is defined as the relative distance of the cur-
rent word to the predicted trigger or candidate
argument. For example, in S3, the relative
distances of tank to the candidate argument
cameraman is 5. To encode the position fea-
ture, each distance value is also represented
by an embedding vector. Similar to word em-
bedding, Distance Values are randomly ini-
tialized and optimized through back propaga-
tion.

• Event-type feature (EF): The event type of a
current trigger is valuable for argument clas-
sification (Ahn, 2006; Hong et al., 2011; Liao
and Grishman, 2010; Li et al., 2013), so we
encode event type predicted in the trigger
classification stage as an important clue for
the DMCNN, as in the PF.

Figure 2 assumes that word embedding has size
dw = 4, position embedding has size dp = 1
and event-type embedding has size de = 1. Let
xi ∈ Rd be the d-dimensional vector representa-
tion corresponding to the i-th word in the sentence,
where d = dw + dp ∗ 2 + de. A sentence of length
n is represented as follows:

x1:n = x1 ⊕ x2 ⊕ ...⊕ xn (3)

where ⊕ is the concatenation operator. Thus,
combined word embedding, position embedding
and event-type embedding transform an instance
as a matrix X ∈ Rn×d. Then, X is fed into the
convolution part.
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3.2.2 Convolution
The convolution layer aims to capture the compo-
sitional semantics of a entire sentence and com-
press these valuable semantics into feature maps.
In general, let xi:i+j refer to the concatenation of
words xi, xi+1, ..., xi+j . A convolution operation
involves a filter w ∈ Rh×d, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h−1 by the following operator,

ci = f(w · xi:i+h−1 + b) (4)

where b ∈ R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This fil-
ter is applied to each possible window of words in
the sentence x1:h, x2:h+1, ..., xn−h+1:n to produce
a feature map ci where the index i ranges from 1
to n− h+ 1.

We have described the process of how one fea-
ture map is extracted from one filter. To capture
different features, it usually use multiple filters in
the convolution. Assuming that we use m filters
W = w1, w2, ..., wm, the convolution operation
can be expressed as:

cji = f(wj · xi:i+h−1 + bj) (5)

where j ranges from 1 tom. The convolution result
is a matrix C ∈ Rm×(n−h+1).

3.2.3 Dynamic Multi-Pooling
To extract the most important features (max value)
within each feature map, traditional CNNs (Col-
lobert et al., 2011; Kim, 2014; Zeng et al., 2014)
take one feature map as a pool and only get one
max value for each feature map. However, sin-
gle max-pooling is not sufficient for event extrac-
tion. Because in the task of this paper, one sen-
tence may contain two or more events, and one
argument candidate may play a different role with
a different trigger. To make an accurate predic-
tion, it is necessary to capture the most valuable
information with regard to the change of the can-
didate words. Thus, we split each feature map
into three parts according to the candidate argu-
ment and predicted trigger in the argument clas-
sification stage. Instead of using one max value
for an entire feature map to represent the sen-
tence, we keep the max value of each split part and
call it dynamic multi-pooling. Compared to tra-
ditional max-pooling, dynamic multi-pooling can

reserve more valuable information without miss-
ing the max-pooling value.

As shown in Figure 2, the feature map output cj
is divided into three sections cj1, cj2, cj3 by “cam-
eraman” and “fired”. The dynamic multi-pooling
can be expressed as formula 6,where 1 ≤ j ≤ m
and 1 ≤ i ≤ 3.

pji = max(cji) (6)

Through the dynamic multi-pooling layer, we
obtain the pji for each feature map. Then, we
concatenate all pji to form a vector P ∈ R3m,
which can be considered as higher-level features
(sentence-level features).

3.3 Output

The automatically learned lexical and sentence-
level features mentioned above are concatenated
into a single vector F = [L,P ]. To compute the
confidence of each argument role, the feature vec-
tor F ∈ R3m+dl , where m is the number of the
feature map and dl is the dimension of the lexical-
level features, is fed into a classifier.

O = WsF + bs (7)

Ws ∈ Rn1×(3m+dl) is the transformation ma-
trix and O ∈ Rn1 is the final output of the net-
work, where n1 is equal to the number of the ar-
gument role including the “None role” label for
the candidate argument which don’t play any role
in the event. For regularization, we also employ
dropout(Hinton et al., 2012) on the penultimate
layer, which can prevent the co-adaptation of hid-
den units by randomly dropping out a proportion p
of the hidden units during forward and backprop-
agation.

3.4 Training

We define all of the parameters for the stage
of argument classification to be trained as θ =
(E,PF1, PF2, EF,W, b,WS , bs). Specifically, E
is the word embedding, PF1 and PF2 are the posi-
tion embedding,EF is the embedding of the event
type, W and b are the parameter of the filter, Ws

and bs are all of the parameters of the output layer.
Given an input example s, the network with pa-

rameter θ outputs the vector O, where the i-th
componentOi contains the score for argument role
i. To obtain the conditional probability p(i|x, θ),
we apply a softmax operation over all argument
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role types:

p(i|x, θ) =
eoi

n1∑
k=1

eok

(8)

Given all of our (suppose T) training examples
(xi; yi), we can then define the objective function
as follows:

J (θ) =
T∑

i=1

log p(y(i)|x(i), θ) (9)

To compute the network parameter θ, we max-
imize the log likelihood J (θ) through stochastic
gradient descent over shuffled mini-batches with
the Adadelta (Zeiler, 2012) update rule.

3.5 Model for Trigger Classification
In the above sections, we presented our model and
features for argument classification. The method
proposed above is also suitable for trigger classi-
fication, but the task only need to find triggers in
the sentence, which is less complicated than argu-
ment classification. Thus we can used a simplified
version of DMCNN.

In the trigger classification, we only use the can-
didate trigger and its left and right tokens in the
lexical-level feature representation. In the feature
representation of the sentence level, we use the
same CWF as does in argument classification, but
we only use the position of the candidate trigger to
embed the position feature. Furthermore, instead
of splitting the sentence into three parts, the sen-
tence is split into two parts by a candidate trigger.
Except for the above change in the features and
model, we classify a trigger as the classification of
an argument. Both stages form the framework of
the event extraction.

4 Experiments

4.1 Dataset and Evaluation Metric
We utilized the ACE 2005 corpus as our dataset.
For comparison, as the same as Li et al. (2013),
Hong et al. (2011) and Liao and Grishman (2010),
we used the same test set with 40 newswire articles
and the same development set with 30 other docu-
ments randomly selected from different genres and
the rest 529 documents are used for training. Sim-
ilar to previous work (Li et al., 2013; Hong et al.,
2011; Liao and Grishman, 2010; Ji and Grishman,
2008), we use the following criteria to judge the
correctness of each predicted event mention:

• A trigger is correct if its event subtype and
offsets match those of a reference trigger.

• An argument is correctly identified if its event
subtype and offsets match those of any of the
reference argument mentions.

• An argument is correctly classified if its event
subtype, offsets and argument role match
those of any of the reference argument men-
tions.

Finally we use Precision (P ), Recall (R) and F
measure (F1) as the evaluation metrics.

4.2 Our Method vs. State-of-the-art Methods

We select the following state-of-the-art methods
for comparison.
1) Li’s baseline is the feature-based system pro-
posed by Li et al. (2013), which only employs
human-designed lexical features, basic features
and syntactic features.
2) Liao’s cross-event is the method proposed by
Liao and Grishman (2010), which uses document-
level information to improve the performance of
ACE event extraction.
3) Hong’s cross-entity is the method proposed by
Hong et al. (2011), which extracts event by using
cross-entity inference. To the best of our knowl-
edge, it is the best-reported feature-based system
in the literature based on gold standards argument
candidates.
4) Li’s structure is the method proposed by Li et
al. (2013), which extracts events based on struc-
ture prediction. It is the best-reported structure-
based system.

Following Li et al. (2013), we tuned the
model parameters on the development through
grid search. Moreover, in different stages of event
extraction, we adopted different parameters in the
DMCNN. Specifically, in the trigger classification,
we set the window size as 3, the number of the
feature map as 200, the batch size as 170 and the
dimension of the PF as 5. In the argument classi-
fication, we set the window size as 3, the number
of the feature map as 300, the batch size as 20 and
the dimension of the PF and EF as 5. Stochastic
gradient descent over shuffled mini-batches with
the Adadelta update rule(Zeiler, 2012) is used for
training and testing processes. It mainly contains
two parameters p and ε. We set p = 0.95 and
ε = 1e−6. For the dropout operation, we set the
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Methods Trigger
Identification(%)

Trigger Identification
+ Classification(%)

Argument
Identification(%)

Argument
Role(%)

P R F P R F P R F P R F
Li’s baseline 76.2 60.5 67.4 74.5 59.1 65.9 74.1 37.4 49.7 65.4 33.1 43.9
Liao’s cross-event N/A 68.7 68.9 68.8 50.9 49.7 50.3 45.1 44.1 44.6
Hong’s cross-entity N/A 72.9 64.3 68.3 53.4 52.9 53.1 51.6 45.5 48.3
Li’s structure 76.9 65.0 70.4 73.7 62.3 67.5 69.8 47.9 56.8 64.7 44.4 52.7
DMCNN model 80.4 67.7 73.5 75.6 63.6 69.1 68.8 51.9 59.1 62.2 46.9 53.5

Table 1: Overall performance on blind test data

rate = 0.5. We train the word embedding using
the Skip-gram algorithm 2 on the NYT corpus 3.

Table 1 shows the overall performance on the
blind test dataset. From the results, we can see
that the DMCNN model we proposed with the
automatically learned features achieves the best
performance among all of the compared meth-
ods. DMCNN can improve the best F1 (Li et
al., 2013) in the state-of-the-arts for trigger clas-
sification by 1.6% and argument role classifica-
tion by 0.8%. This demonstrates the effective-
ness of the proposed method. Moreover, a com-
parison of Liao’s cross-event with Li’s baseline il-
lustrates that Liao’s cross-event achieves a better
performance. We can also make the same obser-
vation when comparing Hong’s cross-entity with
Liao’s cross-event and comparing Li’s structure
with Hong’s cross-entity. It proves that richer
feature sets lead to better performance when us-
ing traditional human-designed features. How-
ever, our method could obtain further better re-
sults on the condition of only using automatically
learned features from original words. Specifically,
compared to Hong’s cross-entity, it gains 0.8% im-
provement on trigger classification F1 and 5.2%
improvement on argument classification F1. We
believe the reason is that the features we automati-
cally learned can capture more meaningful seman-
tic regularities of words. Remarkably, compared
to Li’s structure, our approach with sentence and
lexical features achieves comparable performance
even though we do not use complicated NLP tools.

4.3 Effect of The DMCNN on Extracting
Sentence-Level Features

In this subsection, we prove the effectiveness of
the proposed DMCNN for sentence-level feature
extraction. We specifically select two methods as
baselines for comparison with our DMCNN: Em-
beddings+T and CNN. Embeddings+T uses word

2https://code.google.com/p/word2vec/
3https://catalog.ldc.upenn.edu/LDC2008T19

embeddings as lexical-level features and tradi-
tional sentence-level features based on human de-
sign (Li et al., 2013). A CNN is similar to a
DMCNN, except that it uses a standard convolu-
tional neural network with max-pooling to capture
sentence-level features. By contrast, a DMCNN
uses the dynamic multi-pooling layer in the net-
work instead of the max-pooling layer in a CNN.
Moreover, to prove that a DMCNN could capture
more precise sentence-level features, especially
for those sentences with multiple events, we divide
the testing data into two parts according the event
number in a sentence (single event and multiple
events) and perform evaluations separately. Table
2 shows the proportion of sentences with multiple
events or a single event and the proportion of argu-
ments that attend one event or more events within
one sentence in our dataset. Table 3 shows the re-
sults.

Stage 1/1 (%) 1/N (%)
Trigger 72.7 27.3

Argument 76.8 23.2

Table 2: The proportion of multiple events within
one sentence. 1/1 means that one sentence only
has one trigger or one argument plays a role in one
sentence; otherwise, 1/N is used.

Table 3 illustrates that the methods based on
convolutional neural networks (CNN and DM-
CNN) outperform Embeddings+T. It proves that
convolutional neural networks could be more ef-
fective than traditional human-design strategies
for sentence-level feature extraction. In table 3, for
all sentences, our method achieves improvements
of approximately 2.8% and 4.6% over the CNN.
The results prove the effectiveness of the dynamic
multi-pooling layer. Interestingly, the DMCNN
yields a 7.8% improvement for trigger classifica-
tion on the sentences with multiple events. This
improvement is larger than in sentences with a sin-
gle event. Similar observations can be made for
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the argument classification results. This demon-
strates that the proposed DMCNN can effectively
capture more valuable clues than the CNN with
max-pooling, especially when one sentence con-
tains more than one event.

Stage Method 1/1 1/N all
F1 F1 F1

Trigger
Embedding+T 68.1 25.5 59.8

CNN 72.5 43.1 66.3
DMCNN 74.3 50.9 69.1

Argument
Embedding+T 37.4 15.5 32.6

CNN 51.6 36.6 48.9
DMCNN 54.6 48.7 53.5

Table 3: Comparison of the event extraction scores
obtained for the Traditional, CNN and DMCNN
models

4.4 Effect of Word Embedding on Extracting
Lexical-Level Features

This subsection studies the effectiveness of our
word embedding for lexical features. For compar-
ison purposes, we select the baseline described by
Li et al. (2013) as the traditional method, which
uses traditional lexical features, such as n-grams,
POS tags and some entity information. In con-
trast, we only use word embedding as our lexical
feature. Moreover, to prove that word embedding
could capture more valuable semantics, especially
for those words in the test data that never appear
to be the same event type or argument role in the
training data, we divide the triggers and arguments
in the testing data into two parts (1: appearing in
testing data only, or 2: appearing in both testing
and training data with the same event type or argu-
ment role) and perform evaluations separately. For
triggers, 34.9% of the trigger words in the test data
never appear to be the same event type in the train-
ing data. This proportion is 83.1% for arguments.
The experimental results are shown in Table 4.

Table 4 illustrates that for all situations, our
method makes significant improvements com-
pared with the traditional lexical features in the
classification of both the trigger and argument.
For situation B, the lexical-level features extracted
from word embedding yield a 18.8% improvement
for trigger classification and an 8.5% improvement
for argument classification. This occurs because
the baseline only uses discrete features, so they
suffer from data sparsity and could not adequately
handle a situation in which a trigger or argument
does not appear in the training data.

Stage Method A B All
F1 F1 F1

Trigger Traditional 68.8 14.3 61.2
Ours 70.7 33.1 64.9

Argument Traditional 58.5 22.2 34.6
Ours 59.5 30.7 40.2

Table 4: Comparison of the results for the tradi-
tional lexical feature and our lexical feature. A de-
notes the triggers or arguments appearing in both
training and test datasets, and B indicates all other
cases.

4.5 Lexical features vs. Sentence Features

To compare the effectiveness of different levels of
features, we extract events by using lexical fea-
tures and sentence features separately. The results
obtained using the DMCNN are shown in table
5. Interestingly, in the trigger-classification stage,
the lexical features play an effective role, whereas
the sentence features play a more important role in
the argument-classification stage. The best results
are achieved when we combine lexical-level and
sentence-level features. This observation demon-
strates that both of the two-level features are im-
portant for event extraction.

Feature Trigger Argument
F1 F1

Lexical 64.9 40.2
Sentence 63.8 50.7
Combine 69.1 53.5

Table 5: Comparison of the trigger-classification
score and argument-classification score obtained
by lexical-level features, sentence-level features
and a combination of both

5 Related Work

Event extraction is one of important topics in NLP.
Many approaches have been explored for event ex-
traction. Nearly all of the ACE event extraction
use supervised paradigm. We further divide super-
vised approaches into feature-based methods and
structure-based methods.

In feature-based methods, a diverse set of strate-
gies has been exploited to convert classification
clues (such as sequences and parse trees) into
feature vectors. Ahn (2006) uses the lexical
features(e.g., full word, pos tag), syntactic fea-
tures (e.g., dependency features) and external-
knowledge features(WordNet) to extract the event.
Inspired by the hypothesis of “One Sense Per Dis-
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course”(Yarowsky, 1995), Ji and Grishman (2008)
combined global evidence from related documents
with local decisions for the event extraction. To
capture more clues from the texts, Gupta and Ji
(2009), Liao and Grishman (2010) and Hong et al.
(2011) proposed the cross-event and cross-entity
inference for the ACE event task. Although these
approaches achieve high performance, feature-
based methods suffer from the problem of select-
ing a suitable feature set when converting the clas-
sification clues into feature vectors.

In structure-based methods, researchers treat
event extraction as the task of predicting the struc-
ture of the event in a sentence. McClosky et al.
(2011) casted the problem of biomedical event ex-
traction as a dependency parsing problem. Li et
al. (2013) presented a joint framework for ACE
event extraction based on structured perceptron
with beam search. To use more information from
the sentence, Li et al. (2014) proposed to extract
entity mentions, relations and events in ACE task
based on the unified structure. These methods
yield relatively high performance. However, the
performance of these methods depend strongly on
the quality of the designed features and endure the
errors in the existing NLP tools.

6 Conclusion

This paper proposes a novel event extraction
method, which can automatically extract lexical-
level and sentence-level features from plain texts
without complicated NLP preprocessing. A word-
representation model is introduced to capture lex-
ical semantic clues and a dynamic multi-pooling
convolutional neural network (DMCNN) is de-
vised to encode sentence semantic clues. The ex-
perimental results prove the effectiveness of the
proposed method.
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