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Abstract

Word embeddings have recently gained
considerable popularity for modeling
words in different Natural Language
Processing (NLP) tasks including seman-
tic similarity measurement. However,
notwithstanding their success, word
embeddings are by their very nature
unable to capture polysemy, as different
meanings of a word are conflated into a
single representation. In addition, their
learning process usually relies on massive
corpora only, preventing them from taking
advantage of structured knowledge. We
address both issues by proposing a multi-
faceted approach that transforms word
embeddings to the sense level and lever-
ages knowledge from a large semantic
network for effective semantic similarity
measurement. We evaluate our approach
on word similarity and relational similar-
ity frameworks, reporting state-of-the-art
performance on multiple datasets.

1 Introduction

The much celebrated word embeddings represent
a new branch of corpus-based distributional se-
mantic model which leverages neural networks to
model the context in which a word is expected to
appear. Thanks to their high coverage and their
ability to capture both syntactic and semantic in-
formation, word embeddings have been success-
fully applied to a variety of NLP tasks, such as
Word Sense Disambiguation (Chen et al., 2014),
Machine Translation (Mikolov et al., 2013b), Re-
lational Similarity (Mikolov et al., 2013c), Se-
mantic Relatedness (Baroni et al., 2014) and
Knowledge Representation (Bordes et al., 2013).

However, word embeddings inherit two im-
portant limitations from their antecedent corpus-
based distributional models: (1) they are unable to

model distinct meanings of a word as they conflate
the contextual evidence of different meanings of a
word into a single vector; and (2) they base their
representations solely on the distributional statis-
tics obtained from corpora, ignoring the wealth
of information provided by existing semantic re-
sources.

Several research works have tried to address
these problems. For instance, basing their work
on the original sense discrimination approach of
Reisinger and Mooney (2010), Huang et al. (2012)
applied K-means clustering to decompose word
embeddings into multiple prototypes, each denot-
ing a distinct meaning of the target word. How-
ever, the sense representations obtained are not
linked to any sense inventory, a mapping that con-
sequently has to be carried out either manually,
or with the help of sense-annotated data. Another
line of research investigates the possibility of tak-
ing advantage of existing semantic resources in
word embeddings. A good example is the Relation
Constrained Model (Yu and Dredze, 2014). When
computing word embeddings, this model replaces
the original co-occurrence clues from text corpora
with the relationship information derived from the
Paraphrase Database1 (Ganitkevitch et al., 2013,
PPDB), an automatically extracted dataset of para-
phrase pairs.

However, none of these techniques have simul-
taneously solved both above-mentioned issues,
i.e., inability to model polysemy and reliance on
text corpora as the only source of knowledge. We
propose a novel approach, called SENSEMBED,
which addresses both drawbacks by exploiting se-
mantic knowledge for modeling arbitrary word
senses in a large sense inventory. We evaluate our
representation on multiple datasets in two stan-
dard tasks: word-level semantic similarity and re-
lational similarity. Experimental results show that
moving from words to senses, while making use

1http://paraphrase.org/#/download
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of lexical-semantic knowledge bases, makes em-
beddings significantly more powerful, resulting in
consistent performance improvement across tasks.

Our contributions are twofold: (1) we propose
a knowledge-based approach for obtaining contin-
uous representations for individual word senses;
and (2) by leveraging these representations and
lexical-semantic knowledge, we put forward a
semantic similarity measure with state-of-the-art
performance on multiple datasets.

2 Sense Embeddings

Word embeddings are vector space models (VSM)
that represent words as real-valued vectors in a
low-dimensional (relative to the size of the vo-
cabulary) semantic space, usually referred to as
the continuous space language model. The con-
ventional way to obtain such representations is to
compute a term-document occurrence matrix on
large corpora and then reduce the dimensional-
ity of the matrix using techniques such as singu-
lar value decomposition (Deerwester et al., 1990;
Bullinaria and Levy, 2012, SVD). Recent predic-
tive techniques (Bengio et al., 2003; Collobert and
Weston, 2008; Mnih and Hinton, 2007; Turian et
al., 2010; Mikolov et al., 2013a) replace the con-
ventional two-phase approach with a single super-
vised process, usually based on neural networks.

In contrast to word embeddings, which ob-
tain a single model for potentially ambiguous
words, sense embeddings are continuous repre-
sentations of individual word senses. In order to
be able to apply word embeddings techniques to
obtain representations for individual word senses,
large sense-annotated corpora have to be available.
However, manual sense annotation is a difficult
and time-consuming process, i.e., the so-called
knowledge acquisition bottleneck. In fact, the
largest existing manually sense annotated dataset
is the SemCor corpus (Miller et al., 1993), whose
creation dates back to more than two decades
ago. In order to alleviate this issue, we lever-
aged a state-of-the-art Word Sense Disambigua-
tion (WSD) algorithm to automatically generate
large amounts of sense-annotated corpora.

In the rest of Section 2, first, in Section 2.1, we
describe the sense inventory used for SENSEM-
BED. Section 2.2 introduces the corpus and the
disambiguation procedure used to sense annotate
this corpus. Finally in Section 2.3 we discuss
how we leverage the automatically sense-tagged

dataset for the training of sense embeddings.

2.1 Underlying sense inventory
We selected BabelNet2 (Navigli and Ponzetto,
2012) as our underlying sense inventory. The re-
source is a merger of WordNet with multiple other
lexical resources, the most prominent of which
is Wikipedia. As a result, the manually-curated
information in WordNet is augmented with the
complementary knowledge from collaboratively-
constructed resources, providing a high coverage
of domain-specific terms and named entities and a
rich set of relations. The usage of BabelNet as our
underlying sense inventory provides us with the
advantage of having our sense embeddings read-
ily applicable to multiple sense inventories.

2.2 Generating a sense-annotated corpus
As our corpus we used the September-2014 dump
of the English Wikipedia.3 This corpus comprises
texts from various domains and topics and pro-
vides a suitable word coverage. The unprocessed
text of the corpus includes approximately three
billion tokens and more than three million unique
words. We only consider tokens with at least five
occurrences.

As our WSD system, we opted for Babelfy4

(Moro et al., 2014), a state-of-the-art WSD and
Entity Linking algorithm based on BabelNet’s se-
mantic network. Babelfy first models each con-
cept in the network through its corresponding “se-
mantic signature” by leveraging a graph random
walk algorithm. Given an input text, the algo-
rithm uses the generated semantic signatures to
construct a subgraph of the semantic network rep-
resenting the input text. Babelfy then searches
this subgraph for the intended sense of each con-
tent word using an iterative process and a dense
subgraph heuristic. Thanks to its use of Babel-
Net, Babelfy inherently features multilinguality;
hence, our representation approach is equally ap-
plicable to languages other than English. In order
to guarantee high accuracy and to avoid bias to-
wards more frequent senses, we do not consider
those judgements made by Babelfy while backing
off to the most frequent sense, a case that happens
when a certain confidence threshold is not met by
the algorithm. The disambiguated items with high
confidence correspond to more than 50% of all the

2http://www.babelnet.org/
3http://dumps.wikimedia.org/enwiki/
4http://www.babelfy.org/
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bankn
1 bankn

2 numbern
4 numbern

3 hoodn
1 hoodn

12

(geographical) (financial) (phone) (acting) (gang) (convertible car)

upstreamr
1 commercial bankn

1 callsn
1 appearingv

6 torturesn
5 taillightsn

1

downstreamr
1 financial institutionn

1 dialledv
1 minor rolesn

1 vengeancen
1 grillen

2

runsv
6 national bankn

1 operatorn20 stage productionn
1 badguyn

1 bumpern2
confluencen

1 trust companyn
1 telephone networkn

1 supporting rolesn
1 brutala1 fascian

2

rivern1 savings bankn
1 telephonyn

1 leading rolesn
1 executionn

1 rear windown
1

streamn
1 bankingn

1 subscribern2 stage showsn
1 murdersn

1 headlightsn
1

Table 1: Closest senses to two senses of three ambiguous nouns: bank, number, and hood

content words. As a result of the disambiguation
step, we obtain sense-annotated data comprising
around one billion tagged words with at least five
occurrences and 2.5 million unique word senses.

2.3 Learning sense embeddings
The disambiguated text is processed with the
Word2vec (Mikolov et al., 2013a) toolkit5. We ap-
plied Word2vec to produce continuous represen-
tations of word senses based on the distributional
information obtained from the annotated corpus.
For each target word sense, a representation is
computed by maximizing the log likelihood of the
word sense with respect to its context. We opted
for the Continuous Bag of Words (CBOW) archi-
tecture, the objective of which is to predict a single
word (word sense in our case) given its context.
The context is defined by a window, typically with
the size of five words on each side with the para-
graph ending barrier. We used hierarchical soft-
max as our training algorithm. The dimension-
ality of the vectors were set to 400 and the sub-
sampling of frequent words to 10−3.

As a result of the learning process, we obtain
vector-based semantic representations for each of
the word senses in the automatically-annotated
corpus. We show in Table 1 some of the closest
senses to six sample word senses: the geographi-
cal and financial senses of river, the performance
and phone number senses of number, and the gang
and car senses of hood.6 As can be seen, sense em-
beddings can capture effectively the clear distinc-
tions between different senses of a word. Addi-
tionally, the closest senses are not necessarily con-
strained to the same part of speech. For instance,
the river sense of bank has the adverbs upstream
and downstream and the “move along, of liquid”
sense of the verb run among its closest senses.

5http://code.google.com/p/word2vec/
6We follow Navigli (2009) and show the nth sense of the

word with part of speech x as wordx
n.

Synset Description Synonymous senses

hoodn
1 rough or violent youth hoodlumn

1 , goonn
2 , thugn

1

hoodn
4 photography equipment lens hoodn

1

hoodn
9 automotive body parts bonnetn2 , cowln1 , cowlingn

1

hoodn
12 car with retractable top convertiblen

1

Table 2: Sample initial senses of the noun hood
(leftmost column) and their synonym expansion
(rightmost column).

3 Similarity Measurement

This Section describes how we leverage the gen-
erated sense embeddings for the computation of
word similarity and relational similarity. We start
the Section by explaining how we associate a
word with its set of corresponding senses and
how we compare pairs of senses in Sections 3.1
and 3.2, respectively. We then illustrate our ap-
proach for measuring word similarity, together
with its knowledge-based enhancement, in Section
3.3, and relational similarity in Section 3.4. Here-
after, we refer to our similarity measurement ap-
proach as SENSEMBED.

3.1 Associating senses with words

In order to be able to utilize our sense embeddings
for a word-level task such as word similarity mea-
surement, we need to associate each word with its
set of relevant senses, each modeled by its corre-
sponding vector. Let Sw be the set of senses asso-
ciated with the word w. Our objective is to cover
as many senses as can be associated with the word
w. To this end we first initialize the set Sw by the
word senses of the word w and all its synonymous
word senses, as defined in the BabelNet sense in-
ventory. We show in Table 2 some of the senses
of the noun hood and the synonym expansion for
these senses. We further expand the set Sw by re-
peating the same process for the lemma of word w
(if not already in lemma form).
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3.2 Vector comparison
For comparing vectors, we use the Tanimoto dis-
tance. The measure is a generalization of Jaccard
similarity for real-valued vectors in [-1, 1]:

T ( ~w1, ~w2) =
~w1 · ~w2

‖ ~w1‖2 + ‖ ~w2‖2 − ~w1 · ~w2
(1)

where ~w1 · ~w2 is the dot product of the vectors
~w1 and ~w2 and ‖ ~w1‖ is the Euclidean norm of
~w1. Rink and Harabagiu (2013) reported consis-
tent improvements when using vector space met-
rics, in particular the Tanimoto distance, on the
SemEval-2012 task on relational similarity (Jur-
gens et al., 2012) in comparison to several other
measures that are designed for probability distri-
butions, such as Jensen-Shannon divergence and
Hellinger distance.

3.3 Word similarity
We show in Algorithm 1 our procedure for mea-
suring the semantic similarity of a pair of input
words w1 and w2. The algorithm also takes as
its inputs the similarity strategy and the weighted
similarity parameter α (Section 3.3.1) along with
a graph vicinity factor flag (Section 3.3.2).

3.3.1 Similarity measurement strategy
We take two strategies for calculating the similar-
ity of the given words w1 and w2. Let Sw1 and
Sw2 be the sets of senses associated with the two
respective input wordsw1 andw2, and let ~si be the
sense embedding vector of the sense si. In the first
strategy, which we refer to as closest, we follow
the conventional approach (Budanitsky and Hirst,
2006) and measure the similarity of the two words
as the similarity of their closest senses, i.e.:

Simclosest (w1, w2) = max
s1∈Sw1
s2∈Sw2

T (~s1, ~s2) (2)

However, taking the similarity of the closest
senses of two words as their overall similarity ig-
nores the fact that the other senses can also con-
tribute to the process of similarity judgement. In
fact, psychological studies suggest that humans,
while judging semantic similarity of a pair of
words, consider different meanings of the two
words and not only the closest ones (Tversky,
1977; Markman and Gentner, 1993). For instance,
the WordSim-353 dataset (Finkelstein et al., 2002)
contains the word pair brother-monk. Despite hav-
ing the religious devotee sense in common, the

Algorithm 1 Word Similarity
Input: Two words w1 and w2

Str, the similarity strategy
Vic, the graph vicinity factor flag
α parameter for the weighted strategy

Output: The similarity between w1 and w2

1: Sw1 ← getSenses(w1), Sw2 ← getSenses(w2)
2: if Str is closest then
3: sim← -1
4: else
5: sim← 0
6: end if
7: for each s1 ∈ Sw1 and s2 ∈ Sw2 do
8: if Vic is true then
9: tmp← T ∗(~s1,~s2)

10: else
11: tmp← T (~s1,~s2)
12: end if
13: if Str is closest then
14: sim← max (sim, tmp)
15: else
16: sim← sim + tmpα × d(s1) × d(s2)
17: end if
18: end for

two words are assigned the similarity judgement
of 6.27, which is slightly above the middle point
in the similarity scale [0,10] of the dataset. This
clearly indicates that other non-synonymous, yet
still related, senses of the two words have also
played a role in the similarity judgement. Addi-
tionally, the relatively low score reflects the fact
that the religious devotee sense is not a dominant
meaning of the word brother.

We therefore put forward another similarity
measurement strategy, called weighted, in which
different senses of the two words contribute to
their similarity computation, but the contributions
are scaled according to their relative importance.
To this end, we first leverage sense occurrence fre-
quencies in order to estimate the dominance of
each specific word sense. For each word w, we
first compute the dominance of its sense s ∈ Sw
by dividing the frequency of s by the overall fre-
quency of all senses associated with w, i.e., Sw:

d(s) =
freq(s)∑

s′∈Sw
freq(s′)

(3)

We further recognize that the importance of a
specific sense of a word can also be triggered by
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the word it is being compared with. We model
this by biasing the similarity computation towards
closer senses, by increasing the contribution of
closer senses through a power function with pa-
rameter α. The similarity of a pair of words w1

and w2 according to the weighted strategy is com-
puted as:

Simweighted (w1, w2) =∑
s1∈Sw1

∑
s2∈Sw2

d(s1) d(s2) T (~s1, ~s2)α (4)

where the α parameter is a real-valued constant
greater than one. We show in Section 4.1.3 how
we tune the value of this parameter.

3.3.2 Enhancing similarity accuracy
Our similarity measurement approach takes ad-
vantage of lexical knowledge at two different lev-
els. First, as we described in Sections 2.2 and
2.3, we use a knowledge-based disambiguation
approach, i.e., Babelfy, which exploits BabelNet’s
semantic network. Second, we put forward a
methodology that leverages the relations in Babel-
Net’s graph for enhancing the accuracy of similar-
ity judgements, to be discussed next.

As a distributional vector representation tech-
nique, our sense embeddings can potentially suffer
from inaccurate modeling of less frequent word
senses. In contrast, our underlying sense inven-
tory provides a full coverage of all its concepts,
with relations that are taken from WordNet and
Wikipedia. In order to make use of the com-
plementary information provided by our lexical
knowledge base and to obtain more accurate sim-
ilarity judgements, we introduce a graph vicin-
ity factor, that combines the structural knowledge
from BabelNet’s semantic network and the distri-
butional representation of sense embeddings. To
this end, for a given sense pair, we scale the
similarity judgement obtained by comparing their
corresponding sense embeddings, based on their
placement in the network. Let E be the set of all
sense-to-sense relations provided by BabelNet’s
semantic network, i.e., E = {(si, sj) : si − sj}.
Then, the similarity of a pair of words with the
graph vicinity factor in formulas 2 and 4 is com-
puted by replacing T with T ∗, defined as:

T ∗(~s1, ~s2) =

{
T (~s1, ~s2)× β, if (s1, s2) ∈ E
T (~s1, ~s2)× β−1, otherwise

(5)

We show in Section 4.1.3 how we tune the pa-
rameter β. This procedure is particularly help-
ful for the case of less frequent word senses that
do not have enough contextual information to al-
low an effective representation. For instance, the
SimLex-999 dataset (Hill et al., 2014), which we
use as our tuning dataset (see Section 4.1.3), con-
tains the highly-related pair orthodontist-dentist.
We observed that the intended sense of the noun
orthodontist occurs only 70 times in our anno-
tated corpus. As a result, the obtained represen-
tation was not accurate, resulting in a low similar-
ity score for the pair. The two respective senses
are, however, directly connected in the BabelNet
graph. Hence, the graph vicinity factor scales up
the computed similarity value for the word pair.

3.4 Relational similarity
Relational similarity evaluates the correspondence
between relations (Medin et al., 1990). The task
can be viewed as an analogy problem in which,
given two pairs of words (wa, wb) and (wc, wd),
the goal is to compute the extent to which the rela-
tions of wa to wb and wc to wd are similar. Sense
embeddings are suitable candidates for measuring
this type of similarity, as they represent relations
between senses as linear transformations. Given
this property, the relation between a pair of words
can be obtained by subtracting their correspond-
ing normalized embeddings. Following Zhila et al.
(2013), the relational similarity between two pairs
of word (wa, wb) and (wc, wd) is accordingly cal-
culated as:

ANALOGY( ~wa, ~wb, ~wc, ~wd) =
T ( ~wb − ~wa, ~wd − ~wc)

(6)

We show the procedure for measuring the rela-
tional similarity in Algorithm 2. The algorithm
first finds the closest senses across the two word
pairs: s∗a and s∗b for the first pair and s∗c and s∗d
for the second. The analogy vector representa-
tions are accordingly computed as the difference
between the sense embeddings of the correspond-
ing closest senses. Finally, the relational similarity
is computed as the similarity of the analogy vec-
tors of the two pairs.

4 Experiments

We evaluate our sense-enhanced semantic repre-
sentation on multiple word similarity and related-
ness datasets (Section 4.1), as well as the relational
similarity framework (Section 4.2).
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Algorithm 2 Relational Similarity
Input: Two pairs of words wa, wb and wc, wd
Output: The degree of analogy between the two

pairs

1: Swa ← getSenses(wa), Swb
← getSenses(wb)

2: (s∗a, s∗b )← argmaxsa∈Swa
sb∈Swb

T (~sa, ~sb)

3: Swc ← getSenses(wc), Swd
← getSenses(wd)

4: (s∗c , s∗d)← argmaxsc∈Swc
sd∈Swd

T (~sc, ~sd)

5: return: T (~sb∗ − ~sa
∗ , ~sd∗ − ~sc

∗)

4.1 Word similarity experiment

Word similarity measurement is one of the most
popular evaluation methods in lexical semantics,
and semantic similarity in particular, with numer-
ous evaluation benchmarks and datasets. Given a
set of word pairs, a system’s task is to provide sim-
ilarity judgments for each pair, and these judge-
ments should ideally be as close as possible to
those given by humans.

4.1.1 Datasets

We evaluate SENSEMBED on standard word simi-
larity and relatedness datasets: the RG-65 (Ruben-
stein and Goodenough, 1965) and the WordSim-
353 (Finkelstein et al., 2002, WS-353) datasets.
Agirre et al. (2009) suggested that the original
WS-353 dataset conflates similarity and related-
ness and divided the dataset into two subsets, each
containing pairs for just one type of association
measure: similarity (the WS-Sim dataset) and re-
latedness (the WS-Rel dataset).

We also evaluate our approach on the YP-130
dataset, which was created by Yang and Powers
(2005) specifically for measuring verb similarity,
and also on the Stanford’s Contextual Word Sim-
ilarities (SCWS), a dataset for measuring word-
in-context similarity (Huang et al., 2012). In the
SCWS dataset each word is provided with the sen-
tence containing it, which helps in pointing out the
intended sense of the corresponding target word.

Finally, we also report results on the MEN
dataset which was recently introduced by Bruni
et al. (2014). MEN contains two sets of English
word pairs, together with human-assigned similar-
ity judgments, obtained by crowdsourcing using
Amazon Mechanical Turk.

4.1.2 Comparison systems
We compare the performance of our similarity
measure against twelve other approaches. As re-
gards traditional distributional models, we report
the best results computed by Baroni et al. (2014)
for PMI-SVD, a system based on Pointwise Mu-
tual Information (PMI) and SVD-based dimen-
sionality reduction. For word embeddings, we re-
port the results of Pennington et al. (2014, GloVe)
and Collobert and Weston (2008). GloVe is an al-
ternative way for learning embeddings, in which
vector dimensions are made explicit, as opposed
to the opaque meaning of the vector dimensions
in Word2vec. The approach of Collobert and We-
ston (2008) is an embeddings model with a deeper
architecture, designed to preserve more complex
knowledge as distant relations. We also show re-
sults for the word embeddings trained by Baroni
et al. (2014). The authors first constructed a mas-
sive corpus by combining several large corpora.
Then, they trained dozens of different Word2vec
models by varying the system’s training parame-
ters and reported the best performance obtained on
each dataset.

As representatives for graph-based similarity
techniques, we report results for the state-of-the-
art approach of Pilehvar et al. (2013) which is
based on random walks on WordNet’s seman-
tic network. Moreover, we present results for
the graph-based approach of Zesch et al. (2008),
which compares a pair of words based on the path
lengths on Wiktionary’s semantic network.

We also compare our word similarity measure
against the multi-prototype models of Reisinger
and Mooney (2010) and Huang et al. (2012), and
against the approaches of Yu and Dredze (2014)
and Chen et al. (2014), which enhance word em-
beddings with semantic knowledge derived from
PPDB and WordNet, respectively. Finally, we re-
port results for word embeddings, as our baseline,
obtained using the Word2vec toolkit on the same
corpus that was annotated and used for learning
our sense embeddings (cf. Section 2.3).

4.1.3 Parameter tuning
Recall from Sections 3.3.1 and 3.3.2 that our al-
gorithm has two parameters: the α parameter for
the weighted strategy and the β parameter for the
graph vicinity factor. We tuned these two parame-
ters on the SimLex-999 dataset (Hill et al., 2014).
We picked SimLex-999 since there are not many
comparison systems in the literature that report re-
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Measure Dataset

RG-65 WS-Sim WS-Rel YP-130 MEN Average

Pilehvar et al. (2013) 0.868 0.677 0.457 0.710 0.690 0.677
Zesch et al. (2008) 0.820 — — 0.710 — —
Collobert and Weston (2008) 0.480 0.610 0.380 — 0.570 —
Word2vec (Baroni et al., 2014) 0.840 0.800 0.700 — 0.800 —
GloVe 0.769 0.666 0.559 0.577 0.763 0.737
ESA 0.749 — — — — —
PMI-SVD 0.738 0.659 0.523 0.337 0.726 0.695

Word2vec 0.732 0.707 0.476 0.343 0.665 0.644
SENSEMBEDclosest 0.894 0.756 0.645 0.734 0.779 0.769
SENSEMBEDweighted 0.871 0.812 0.703 0.639 0.805 0.794

Table 3: Spearman correlation performance on five word similarity and relatedness datasets.

sults on the dataset. We found the optimal values
for α and β to be 8 and 1.6, respectively.

4.1.4 Results
Table 3 shows the experimental results on five
different word similarity and relatedness datasets.
We report the Spearman correlation performance
for the two strategies of our approach as well as
eight other comparison systems. SENSEMBED

proves to be highly reliable on both similarity and
relatedness measurement tasks, obtaining the best
performance on most datasets. In addition, our ap-
proach shows itself to be equally suitable for verb
similarity, as indicated by the results on YP-130.

The rightmost column in the Table shows the
average performance weighted by dataset size.
Between the two similarity measurement strate-
gies, weighted proves to be the more suitable,
achieving the best overall performance on three
datasets and the best mean performance of 0.794
across the two strategies. This indicates that our
assumption of considering all senses of a word in
similarity computation was beneficial.

We report in Table 4 the Spearman correlation
performance of four approaches that are similar
to SENSEMBED: the multi-prototype models of
Reisinger and Mooney (2010) and Huang et al.
(2012), and the semantically enhanced models of
Yu and Dredze (2014) and Chen et al. (2014). We
provide results only on WS-353 and SCWS, since
the above-mentioned approaches do not report
their performance on other datasets. As we can
see from the Table, SENSEMBED outperforms the
other approaches on the WS-353 dataset. How-
ever, our approach lags behind on SCWS, high-
lighting the negative impact of taking the closest

Measure WS-353 SCWS

Huang et al. (2012) 0.713 0.628
Reisinger and Mooney (2010) 0.770 –
Chen et al. (2014) – 0.662
Yu and Dredze (2014) 0.537 –

Word2vec 0.694 0.642
SENSEMBEDclosest 0.714 0.589
SENSEMBEDweighted 0.779 0.624

Table 4: Spearman correlation performance of the
multi-prototype and semantically-enhanced ap-
proaches on the WordSim-353 and the Stanford’s
Contextual Word Similarities datasets.

senses as the intended meanings. In fact, on this
dataset, SENSEMBEDweighted provides better per-
formance owing to its taking into account other
senses as well. The better performance of the
multi-prototype systems can be attributed to their
coarse-grained sense inventories which are auto-
matically constructed by means of Word Sense In-
duction.

4.2 Relational similarity experiment

Dataset and evaluation. We take as our bench-
mark the SemEval-2012 task on Measuring De-
grees of Relational Similarity (Jurgens et al.,
2012). The task provides a dataset comprising 79
graded word relations, 10 of which are used for
training and the rest for test. The task evaluated
the participating systems in terms of the Spear-
man correlation and the MaxDiff score (Louviere,
1991).
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Model Setting Dataset

Strategy Vicinity Expansion RG-65 WS-Sim WS-Rel YP-130 MEN Average

Word2vec – – 0.732 0.707 0.476 0.343 0.665 0.644
Word2vecexp – – X 0.700 0.665 0.326 0.621 0.655 0.632

SENSEMBED

closest
0.825 0.693 0.488 0.492 0.712 0.690

X 0.844 0.714 0.562 0.681 0.743 0.728
X X 0.894 0.756 0.645 0.734 0.779 0.769

weighted
0.877 0.776 0.639 0.446 0.783 0.762

X 0.864 0.783 0.665 0.591 0.773 0.761
X X 0.871 0.812 0.703 0.639 0.805 0.794

Table 6: Spearman correlation performance of word embeddings (Word2vec) and SENSEMBED on dif-
ferent semantic similarity and relatedness datasets.

Measure MaxDiff Spearman

Com 45.2 0.353
PairDirection 45.2 —
RNN-1600 41.8 0.275
UTD-LDA — 0.334
UTD-NB 39.4 0.229
UTD-SVM 34.7 0.116
PMI baseline 33.9 0.112

Word2vec 43.2 0.288
SENSEMBEDclosest 45.9 0.358

Table 5: Spearman correlation performance of dif-
ferent systems on the SemEval-2012 Task on Re-
lational Similarity.

Comparison systems. We compare our results
against six other systems and the PMI baseline
provided by the task organizers. As for systems
that use word embeddings for measuring rela-
tional similarity, we report results for RNN-1600
(Mikolov et al., 2013c) and PairDirection (Levy
and Goldberg, 2014). We also report results for
UTD-NB and UTD-SVM (Rink and Harabagiu,
2012), which rely on lexical pattern classification
based on Naı̈ve Bayes and Support Vector Ma-
chine classifiers, respectively. UTD-LDA (Rink
and Harabagiu, 2013) is another system presented
by the same authors that casts the task as a selec-
tional preferences one. Finally, we show the per-
formance of Com (Zhila et al., 2013), a system that
combines Word2vec, lexical patterns, and knowl-
edge base information. Similarly to the word
similarity experiments, we also report a baseline
based on word embeddings (Word2vec) trained on
the same corpus and with the same settings as
SENSEMBED.

Results. Table 5 shows the performance of dif-
ferent systems in the task of relational similarity
in terms of the Spearman correlation and MaxDiff
score. A comparison of the results for Word2vec
and SENSEMBED shows the advantage gained by
moving from the word to the sense level. Among
the comparison systems, Com attains the clos-
est performance. However, we note that the sys-
tem is a combination of several methods, whereas
SENSEMBED is based on a single approach.

4.3 Analysis

In order to analyze the impact of the different
components of our similarity measure, we carried
out a series of experiments on our word similar-
ity datasets. We show in Table 6 the experimen-
tal results in terms of Spearman correlation. Per-
formance is reported for the two similarity mea-
surement strategies, i.e., closest and weighted, and
for different system settings with and without the
expansion procedure (cf. Section 3.1) and graph
vicinity factor (cf. Section 3.3.2). As our com-
parison baseline, we also report results for word
embeddings, obtained using the Word2vec toolkit
on the same corpus and with the same configura-
tion (cf. Section 2.3) used for learning the sense
embeddings (Word2vec in the Table). The right-
most column in the Table reports the mean perfor-
mance weighted by dataset size. Word2vecexp is
the word embeddings system in which the simi-
larity of the two words is determined in terms of
the closest word embeddings among all the corre-
sponding synonyms obtained with the expansion
procedure (cf. Section 3.1).

A comparison of word and sense embeddings
in the vanilla setting (with neither the expansion
procedure nor graph vicinity factor) indicates the
consistent advantage gained by moving from word
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to sense level, irrespective of the dataset and the
similarity measurement strategy. The consistent
improvement shows that the semantic information
provided more than compensates for the inher-
ently imperfect disambiguation. Moreover, the re-
sults indicate the consistent benefit gained by in-
troducing the graph vicinity factor, highlighting
the fact that our combination of the complemen-
tary knowledge from sense embeddings and infor-
mation derived from a semantic network is bene-
ficial. Finally, note that the expansion procedure
leads to performance improvement in most cases
for sense embeddings. In direct contrast, the step
proves harmful in the case of word embeddings,
mainly due to their inability to distinguish individ-
ual word senses.

5 Related Work

Word embeddings were first introduced by Ben-
gio et al. (2003) with the goal of statistical lan-
guage modeling, i.e., learning the joint probabil-
ity function of a sequence of words. The initial
model was a Multilayer Perceptron (MLP) with
two hidden layers: a shared non-linear and a reg-
ular hidden hyperbolic tangent one. Collobert
and Weston (2008) deepened the original neural
model by adding a convolutional layer and an ex-
tra layer for modeling long-distance dependen-
cies. A significant contribution was later made by
Mikolov et al. (2013a), who simplified the original
model by removing the hyperbolic tangent layer
and hence significantly speeding up the training
process. Other related work includes GloVe (Pen-
nington et al., 2014), which is an effort to make the
vector dimensions in word embeddings explicit,
and the approach of Bordes et al. (2013), which
trains word embeddings on the basis of relation-
ship information derived from WordNet.

Several techniques have been proposed for
transforming word embeddings to the sense level.
Chen et al. (2014) leveraged word embeddings in
Word Sense Disambiguation and investigated the
possibility of retrofitting embeddings with the re-
sulting disambiguated words. Guo et al. (2014)
exploited parallel data to automatically generate
sense-annotated data, based on the fact that dif-
ferent senses of a word are usually translated to
different words in another language (Chan and
Ng, 2005). The automatically-generated sense-
annotated data was later used for training sense-
specific word embeddings. Huang et al. (2012)

adopted a similar strategy by decomposing each
word’s single-prototype representation into mul-
tiple prototypes, denoting different senses of that
word. To this end, they first gathered the context
for all occurrences of a word and then used spher-
ical K-means to cluster the contexts. Each cluster
was taken as the context for a specific meaning of
the word and hence used to train embeddings for
that specific meaning (i.e., word sense). However,
these techniques either suffer from low coverage
as they can only model word senses that occur in
the parallel data, or require manual intervention
for linking the obtained representations to an ex-
isting sense inventory. In contrast, our approach
enables high coverage and is readily applicable for
the representation of word senses in widely-used
lexical resources, such as WordNet, Wikipedia and
Wiktionary, without needing to resort to additional
manual effort.

6 Conclusions and Future Work

We proposed an approach for obtaining continu-
ous representations of individual word senses, re-
ferred to as sense embeddings. Based on the pro-
posed sense embeddings and the knowledge ob-
tained from a large-scale lexical resource, i.e., Ba-
belNet, we put forward an effective technique,
called SENSEMBED, for measuring semantic sim-
ilarity. We evaluated our approach on multiple
datasets in the tasks of word and relational simi-
larity. Two conclusions can be drawn on the ba-
sis of the experimental results: (1) moving from
word to sense embeddings can significantly im-
prove the effectiveness and accuracy of the rep-
resentations; and (2) a meaningful combination of
sense embeddings and knowledge from a semantic
network can further enhance the similarity judge-
ments. As future work, we intend to utilize our
sense embeddings to perform WSD, as was pro-
posed in Chen et al. (2014), in order to speed up
the process and train sense embeddings on larger
amounts of sense-annotated data.
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