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Abstract

In this demonstration we present WoSIT,
an API for Word Sense Induction (WSI)
algorithms. The toolkit provides imple-
mentations of existing graph-based WSI
algorithms, but can also be extended with
new algorithms. The main mission of
WoSIT is to provide a framework for the
extrinsic evaluation of WSI algorithms,
also within end-user applications such as
Web search result clustering and diversifi-
cation.

1 Introduction
The Web is by far the world’s largest information
archive, whose content – made up of billions of
Web pages – is growing exponentially. Unfortu-
nately the retrieval of any given piece of infor-
mation is an arduous task which challenges even
prominent search engines such as those developed
by Google, Yahoo! and Microsoft. Even today,
such systems still find themselves up against the
lexical ambiguity issue, that is, the linguistic prop-
erty due to which a single word may convey dif-
ferent meanings.

It has been estimated that around 4% of Web
queries and 16% of the most frequent queries are
ambiguous (Sanderson, 2008). A major issue as-
sociated with the lexical ambiguity phenomenon
on the Web is the low number of query words sub-
mitted by Web users to search engines. A pos-
sible solution to this issue is the diversification of
search results obtained by maximizing the dissimi-
larity of the top-ranking Web pages returned to the
user (Agrawal et al., 2009; Ashwin Swaminathan
and Kirovski, 2009). Another solution consists of
clustering Web search results by way of clustering
engines such as Carrot1 and Yippy2 and presenting
them to the user grouped by topic.

1http://search.carrot2.org
2http://yippy.com

Diversification and Web clustering algorithms,
however, do not perform any semantic analysis of
search results, clustering them solely on the basis
of their lexical similarity. Recently, it has been
shown that the automatic acquisition of the mean-
ings of a word of interest, a task referred to as
Word Sense Induction, can be successfully inte-
grated into search result clustering and diversifica-
tion (Navigli and Crisafulli, 2010; Di Marco and
Navigli, 2013) so as to outperform non-semantic
state-of-the-art Web clustering systems.

In this demonstration we describe a new toolkit
for Word Sense Induction, called WoSIT, which
i) provides ready implementations of existing
WSI algorithms; ii) can be extended with addi-
tional WSI algorithms; iii) enables the integration
of WSI algorithms into search result clustering
and diversification, thereby providing an extrinsic
evaluation tool. As a result the toolkit enables the
objective comparison of WSI algorithms within an
end-user application in terms of the degree of di-
versification of the search results of a given am-
biguous query.

2 WoSIT
In Figure 1 we show the workflow of the WoSIT
toolkit, composed of three main phases: WSI;
semantically-enhanced search result clustering
and diversification; evaluation. Given a target
query q whose meanings we want to automati-
cally acquire, the toolkit first builds a graph for q,
obtained either from a co-occurrence database, or
constructed programmatically by using any user-
provided input. The co-occurrence graph is then
input to a WSI algorithm, chosen from among
those available in the toolkit or implemented by
the user. As a result, a set of word clusters
is produced. This concludes the first phase of
the WoSIT workflow. Then, the word clusters
produced are used for assigning meanings to the
search results returned by a search engine for the
query q, i.e. search result disambiguation. The
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Figure 1: The WoSIT workflow.

outcome is that we obtain a clustering of search
results. Finally, during the third phase, we apply
the evaluation module which performs an evalua-
tion of the search result clustering quality and the
diversification performance.

We now describe in detail the three main phases
of WoSIT.

2.1 Word Sense Induction

The first phase of WoSIT consists of the automatic
identification of the senses of a query of inter-
est, i.e. the task of Word Sense Induction. Al-
though WoSIT enables the integration of custom
implementations which can potentially work with
any WSI paradigm, the toolkit provides ready-to-
use implementations of several graph-based algo-
rithms that work with word co-occurrences. All
these algorithms carry out WSI in two steps: co-
occurrence graph construction (Section 2.1.1) and
discovery of word senses (Section 2.1.2).

2.1.1 Co-occurrence graph construction

Given a target query q, we build a co-occurrence
graph Gq = (V,E) such that V is the set of
words co-occurring with q and E is the set of undi-
rected edges, each denoting a co-occurrence be-
tween pairs of words in V . In Figure 2 we show
an example of a co-occurrence graph for the target
word excalibur.

WoSIT enables the creation of the co-
occurrence graph either programmatically, by
adding edges and vertices according to any user-
specific algorithm, or starting from the statis-
tics for co-occurring words obtained from a co-
occurrence database (created, e.g., from a text cor-
pus, as was done by Di Marco and Navigli (2013)).

In either case, weights for edges have to be pro-
vided in terms of the correlation strength between
pairs of words (e.g. using Dice, Jaccard or other
co-occurrence measures).

The information about the co-occurrence
database, e.g. a MySQL database, is provided
programmatically or via parameters in the prop-
erties configuration file (db.properties).
The co-occurrence database has to follow a
given schema provided in the toolkit docu-
mentation. An additional configuration file
(wosit.properties) also allows the user
to specify additional constraints, e.g. the
minimum weight value of co-occurrence (the
wordGraph.minWeight parameter) to be
added as edges to the graph.

The graphs produced can also be saved to binary
(i.e. serialized) or text file:

g.saveToSer(fileName);

g = WordGraph.loadFromSer(fileName);

g.saveToTxt(fileName);

g = WordGraph.loadFromTxt(fileName);

We are now ready to provide our co-occurrence
graph, created with just a few lines of code, as in-
put to a WSI algorithm, as will be explained in the
next section.

2.1.2 Discovery of Word Senses

Once the co-occurrence graph for the query q is
built, it can be input to any WSI algorithm which
extends the GraphClusteringAlgorithm
class in the toolkit. WoSIT comes with a number
of ready-to-use such algorithms, among which:
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Figure 2: Example of a co-occurrence graph for
the word excalibur.

• Balanced Maximum Spanning Tree (B-
MST) (Di Marco and Navigli, 2013), an ex-
tension of a WSI algorithm based on the
calculation of a Maximum Spanning Tree
(Di Marco and Navigli, 2011) aimed at bal-
ancing the number of co-occurrences in each
sense cluster.
• HyperLex (Véronis, 2004), an algorithm

which identifies hubs in co-occurrence
graphs, thereby identifying basic meanings
for the input query.
• Chinese Whispers (Biemann, 2006), a ran-

domized algorithm which partitions nodes by
means of the iterative transfer of word sense
information across the co-occurrence graph
(Biemann, 2006).
• Squares, Triangles and Diamonds

(SquaT++) (Di Marco and Navigli, 2013),
an extension of the SquaT algorithm (Navigli
and Crisafulli, 2010) which exploits three
cyclic graph patterns to determine and
discard those vertices (or edges) with weak
degree of connectivity in the graph.

We also provide an implementation of a word
clustering algorithm, i.e. Lin98 (Lin, 1998),
which does not rely on co-occurrence graphs, but
just on the word co-occurrence information to it-
eratively refine word clusters on the basis of their
“semantic” relationships.

A programmatic example of use of the B-MST
WSI algorithm is as follows:

BMST mst = new BMST(g);

mst.makeClustering();

Clustering wordClusters =

mst.getClustering();

where g is a co-occurrence graph created as ex-
plained in Section 2.1.1, provided as input to
the constructor of the algorithm’s class. The

makeClustering method implements the in-
duction algorithm and creates the word clus-
ters, which can then be retrieved calling the
getClustering method. As a result an in-
stance of the Clustering class is provided.

As mentioned above, WoSIT also enables
the creation of custom WSI implementa-
tions. This can be done by extending the
GraphClusteringAlgorihm abstract class.
The new algorithm just has to implement two
methods:

public void makeClustering();

public Clustering getClustering();

As a result, the new algorithm is readily inte-
grated into the WoSIT toolkit.

2.2 Semantically-enhanced Search Result
Clustering and Diversification

We now move to the use of the induced senses of
our target query q within an application, i.e. search
result clustering and diversification.

Search result clustering. The next step (cf. Fig-
ure 1) is the association of the search results re-
turned by a search engine for query q with the most
suitable word cluster (i.e. meaning of q). This can
be done in two lines:

SnippetAssociator associator =

SnippetAssociator.getInstance();

SnippetClustering clustering =

associator.associateSnippet(

targetWord,

searchResults,

wordClusters,

AssociationMetric.DEGREE_OVERLAP);

The first line obtains an instance of the class
which performs the association between search re-
sult snippets and the word clusters obtained from
the WSI algorithm. The second line calls the asso-
ciation method associateSnippet which in-
puts the target word, the search results obtained
from the search engine, the word clusters and, fi-
nally, the kind of metric to use for the associa-
tion. Three different association metrics are im-
plemented in the toolkit:

• WORD OVERLAP performs the association by
maximizing the size of the intersection be-
tween the word sets in each snippet and the
word clusters;
• DEGREE OVERLAP performs the association

by calculating for each word cluster the sum
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of the vertex degrees in the co-occurrence
graph of the words occurring in each snippet;
• TOKEN OVERLAP is similar in spirit to
WORD OVERLAP, but takes into account each
token occurrence in the snippet bag of words.

Search result diversification. The above two
lines of code return a set of snippet clusters and, as
a result, semantically-enhanced search result clus-
tering is performed. At the end, the resulting clus-
tering can be used to provide a diversified rerank-
ing of the results:

List<Snippet> snippets =

clustering.diversify(sorter);

The diversify method returns a flat list of
snippet results obtained according to the Sorter
object provided in input. The Sorter abstract
class is designed to rerank the snippet clusters ac-
cording to some predefined rule. For instance, the
CardinalitySorter class, included in the
toolkit, sorts the clusters according to the size of
each cluster. Once a sorting order has been es-
tablished, an element from each snippet cluster is
added to an initially-empty list; next, a second el-
ement from each cluster is added, and so on, until
all snippets are added to the list.

The sorting rules implemented in the toolkit are:

• CardinalitySorter: sorts the clusters
according to their size, i.e. the number of ver-
tices in the cluster;
• MeanSimilaritySorter: sorts the clus-

ters according to the average association
score between the snippets in the cluster and
the backing word cluster (defined by the se-
lected association metrics).

Notably, the end user can then implement his or
her own custom sorting procedure by simply ex-
tending the Sorter class.

2.2.1 Search Result Datasets

The framework comes with two search result
datasets of ambiguous queries: the AMBI-
ENT+MORESQUE dataset made available by
Bernardini et al. (2009) and Navigli and Crisa-
fulli (2010), respectively, and the SemEval-2013-
Task11 dataset.3 New result datasets can be pro-
vided by users complying with the dataset format
described below.

3For details visit http://lcl.uniroma1.it/
wosit/.

A search result dataset in WoSIT is made up of
at least two files:

• topics.txt, which contains the queries
(topics) of interest together with their nu-
meric ids. For instance:

id description

1 polaroid

2 kangaroo

3 shakira

... ...

• results.txt, which lists the search re-
sults for each given query, in terms of URL,
page title and page snippet:

ID url title snippet
1.1 http://www.polaroid.com/ Polaroid | Home ...
1.2 http://www.polaroid.com/products products...
1.3 http://en.wikipedia.org/wiki/Polaroid_Cor...
... ...

Therefore, the two files provide the queries and the
corresponding search results returned by a search
engine. In order to enable an automatic evaluation
of the search result clustering and diversification
output, two additional files have to be provided:

• subTopics.txt, which for each query
provides the list of meanings for that query,
e.g.:

ID description
1.1 Polaroid Corporation, a multinational con...
1.2 Instant film photographs are sometimes kn...
1.3 Instant camera (or Land camera), sometime...
... ...

• STRel.txt, which provides the manual as-
sociations between each search result and the
most suitable meaning as provided in the
subTopics.txt file. For instance:

subTopicID resultID

1.1 1.1

1.1 1.2

1.1 1.3

... ...

2.3 WSI Evaluator

As shown in Figure 1 the final component of our
workflow is the evaluation of WSI when integrated
into search result clustering and diversification (al-
ready used by Navigli and Vannella (2013)). This
component, called the WSI Evaluator, takes as
input the snippet clusters obtained for a given
query together with the fully annotated search re-
sult dataset, as described in the previous section.
Two kinds of evaluations are carried out, described
in what follows.
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1 Dataset searchResults = Dataset.getInstance();

2 DBConfiguration db = DBConfiguration.getInstance();

3 for(String targetWord : dataset.getQueries())

4 {

5 WordGraph g = WordGraph.createWordGraph(targetWord, searchResults, db);

6 BMST mst = new BMST(g);

7 mst.makeClustering();

8 SnippetAssociator snippetAssociator = SnippetAssociator.getInstance();

9 SnippetClustering snippetClustering = snippetAssociator.associateSnippet(

10 targetWord, searchResults, mst.getClustering(), AssociationMetric.WORD_OVERLAP);

11 snippetClustering.export("output/outputMST.txt", true);

12 }

13 WSIEvaluator.evaluate(searchResults, "output/outputMST.txt");

Figure 3: An example of evaluation code for the B-MST clustering algorithm.

2.3.1 Evaluation of the clustering quality

The quality of the output produced by
semantically-enhanced search result cluster-
ing is evaluated in terms of Rand Index (Rand,
1971, RI), Adjusted Rand Index (Hubert and
Arabie, 1985, ARI), Jaccard Index (JI) and,
finally, precision and recall as done by Crabtree et
al. (2005), together with their F1 harmonic mean.

2.3.2 Evaluation of the clustering diversity

To evaluate the snippet clustering diversity the
measures of S-recall@K and S-precision@r (Zhai
et al., 2003) are calculated. These measures de-
termine how many different meanings of a query
are covered in the top-ranking results shown to the
user. We calculate these measures on the output of
the three different association metrics illustrated in
Section 2.2.

3 A Full Example
We now show a full example of usage of the
WoSIT API. The code shown in Figure 3 initially
obtains a search result dataset (line 1), selects a
database (line 2) and iterates over its queries (line
3). Next, a co-occurrence graph for the current
query is created from a co-occurrence database
(line 5) and an instance of the B-MST WSI algo-
rithm is created with the graph as input (line 6).
After executing the algorithm (line 7), the snippets
for the given query are clustered (lines 8-10). The
resulting snippet clustering is appended to an out-
put file (line 11). Finally, the WSI evaluator is run
on the resulting snippet clustering using the given
dataset (line 13).

3.1 Experiments

We applied the WoSIT API to the AMBI-
ENT+MORESQUE dataset using 4 induction al-

Algorithm Assoc. Web1T
metr. ARI JI F1 # cl.

SquaT++
WO 69.65 75.69 59.19 2.1
DO 69.21 75.45 59.19 2.1
TO 69.67 75.69 59.19 2.1

B-MST
WO 60.76 71.51 64.56 5.0
DO 66.48 69.37 64.84 5.0
TO 63.17 71.21 64.04 5.0

HyperLex
WO 60.86 72.05 65.41 13.0
DO 66.27 68.00 71.91 13.0
TO 62.82 70.87 65.08 13.0

Chinese Whispers
WO 67.75 75.37 60.25 12.5
DO 65.95 69.49 70.33 12.5
TO 67.57 74.69 60.50 12.5

Table 1: Results of WSI algorithms with a Web1T
co-occurrence database and the three association
metrics (Word Overlap, Degree Overlap and To-
ken Overlap). The reported measures are Ad-
justed Rand Index (ARI), Jaccard Index (JI) and
F1. We also show the average number of clusters
per query produced by each algorithm.

gorithms among those available in the toolkit,
where co-occurrences were obtained from the
Google Web1T corpus (Brants and Franz, 2006).
In Table 1 we show the clustering quality results
output by the WoSIT evaluator, whereas in Fig-
ure 4 we show the diversification performance in
terms of S-recall@K.

3.2 Conclusions

In this demonstration we presented WoSIT, a full-
fledged toolkit for Word Sense Induction algo-
rithms and their integration into search result clus-
tering and diversification. The main contributions
are as follows: first, we release a Java API for
performing Word Sense Induction which includes
several ready-to-use implementations of existing
algorithms; second, the API enables the use of the
acquired senses for a given query for enhancing
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Figure 4: S-recall@K performance.

search result clustering and diversification; third,
we provide an evaluation component which, given
an annotated dataset of search results, carries out
different kinds of evaluation of the snippet cluster-
ing quality and diversity.

WoSIT is the first available toolkit which pro-
vides an end-to-end approach to the integration of
WSI into a real-world application. The toolkit en-
ables an objective comparison of WSI algorithms
as well as an evaluation of the impact of apply-
ing WSI to clustering and diversifying search re-
sults. As shown by Di Marco and Navigli (2013),
this integration is beneficial and allows outperfor-
mance of non-semantic state-of-the-art Web clus-
tering systems.

The toolkit, licensed under a Creative Com-
mons Attribution-Non Commercial-Share Alike
3.0 License, is available at http://lcl.
uniroma1.it/wosit/.
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