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Preface

Welcome to the proceedings of the system demonstration session. This volume contains the papers of
the system demonstrations presented at the 52nd Annual Meeting of the Association for Computational
Linguistics, on June 23-24, 2014 in Baltimore, Maryland, USA.

The system demonstrations program offers the presentation of early research prototypes as well as
interesting mature systems. The system demonstration chairs and the members of the program committee
received 39 submissions, of which 21 were selected for inclusion in the program (acceptance rate of
53.8%) after review by three members of the program committee.

We would like to thank the members of the program committee for their timely help in reviewing the
submissions.
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Abstract 

We introduce a method that extracts keywords 
in a language with the help of the other. In our 
approach, we bridge and fuse conventionally 
irrelevant word statistics in languages. The 
method involves estimating preferences for 
keywords w.r.t. domain topics and generating 
cross-lingual bridges for word statistics 
integration. At run-time, we transform parallel 
articles into word graphs, build cross-lingual 
edges, and exploit PageRank with word 
keyness information for keyword extraction. 
We present the system, BiKEA, that applies 
the method to keyword analysis. Experiments 
show that keyword extraction benefits from 
PageRank, globally learned keyword 
preferences, and cross-lingual word statistics 
interaction which respects language diversity. 

1 Introduction 

Recently, an increasing number of Web services 
target extracting keywords in articles for content 
understanding, event tracking, or opinion mining. 
Existing keyword extraction algorithm (KEA) 
typically looks at articles monolingually and 
calculate word significance in certain language. 
However, the calculation in another language 
may tell the story differently since languages 
differ in grammar, phrase structure, and word 
usage, thus word statistics on keyword analysis. 

Consider the English article in Figure 1. Based 
on the English content alone, monolingual KEA 
may not derive the best keyword set. A better set 
might be obtained by referring to the article and 
its counterpart in another language (e.g., 
Chinese). Different word statistics in articles of 
different languages may help, due to language 

divergence such as phrasal structure (i.e., word 
order) and word usage and repetition (resulting 
from word translation or word sense) and so on. 
For example, bilingual phrases “social 
reintegration” and “重返社會” in Figure 1 have 
inverse word orders (“social” translates into “社

會 ” and “reintegration” into “重 返 ”), both 
“prosthesis” and “artificial limbs” translate into 
“義肢”, and “physical” can be associated with “物
理 ” and “身體 ” in “physical therapist” and 
“physical rehabilitation” respectively. Intuitively, 
using cross-lingual statistics (implicitly 
leveraging language divergence) can help look at 
articles from different perspectives and extract 
keywords more accurately. 

We present a system, BiKEA, that learns to 
identify keywords in a language with the help of 
the other. The cross-language information is 
expected to reinforce language similarities and 
value language dissimilarities, and better 
understand articles in terms of keywords. An 
example keyword analysis of an English article 
is shown in Figure 1. BiKEA has aligned the 
parallel articles at word level and determined the 
scores of topical keyword preferences for words. 
BiKEA learns these topic-related scores during 
training by analyzing a collection of articles. We 
will describe the BiKEA training process in more 
detail in Section 3. 

At run-time, BiKEA transforms an article in a 
language (e.g., English) into PageRank word 
graph where vertices are words in the article and 
edges between vertices indicate the words’ co-
occurrences. To hear another side of the story, 
BiKEA also constructs graph from its counterpart 
in another language (e.g., Chinese). These two 
independent graphs are then bridged over nodes 
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Figure 1. An example BiKEA keyword analysis for an article.

that are bilingually equivalent or aligned. The 
bridging is to take language divergence into 
account and to allow for language-wise 
interaction over word statistics. BiKEA, then in 
bilingual context, iterates with learned word 
keyness scores to find keywords. In our 
prototype, BiKEA returns keyword candidates of 
the article for keyword evaluation (see Figure 1); 
alternatively, the keywords returned by BiKEA 
can be used as candidates for social tagging the 
article or used as input to an article 
recommendation system. 

2 Related Work 

Keyword extraction has been an area of active 
research and applied to NLP tasks such as 
document categorization (Manning and Schutze, 
2000), indexing (Li et al., 2004), and text mining 
on social networking services ((Li et al., 2010); 
(Zhao et al., 2011); (Wu et al., 2010)). 

The body of KEA focuses on learning word 
statistics in document collection. Approaches 
such as tfidf and entropy, using local document 
and/or across-document information, pose strong 
baselines. On the other hand, Mihalcea and 
Tarau (2004) apply PageRank, connecting words 
locally, to extract essential words. In our work, 
we leverage globally learned keyword 
preferences in PageRank to identify keywords. 

Recent work has been done on incorporating 
semantics into PageRank. For example, Liu et al. 
(2010) construct PageRank synonym graph to 

accommodate words with similar meaning. And 
Huang and Ku (2013) weigh PageRank edges 
based on nodes’ degrees of reference. In contrast, 
we bridge PageRank graphs of parallel articles to 
facilitate statistics re-distribution or interaction 
between the involved languages. 

In studies more closely related to our work, 
Liu et al. (2010) and Zhao et al. (2011) present 
PageRank algorithms leveraging article topic 
information for keyword identification. The main 
differences from our current work are that the 
article topics we exploit are specified by humans 
not by automated systems, and that our 
PageRank graphs are built and connected 
bilingually. 

In contrast to the previous research in keyword 
extraction, we present a system that 
automatically learns topical keyword preferences 
and constructs and inter-connects PageRank 
graphs in bilingual context, expected to yield 
better and more accurate keyword lists for 
articles. To the best of our knowledge, we are the 
first to exploit cross-lingual information and take 
advantage of language divergence in keyword 
extraction. 

3 The BiKEA System 

Submitting natural language articles to keyword 
extraction systems may not work very well. 
Keyword extractors typically look at articles 
from monolingual points of view. Unfortunately, 
word statistics derived based on a language may 

The English Article: 
I've been in Afghanistan for 21 years. I work for the Red Cross and I'm a physical therapist. My job is to 
make arms and legs -- well it's not completely true. We do more than that. We provide the patients, the 
Afghan disabled, first with the physical rehabilitation then with the social reintegration. It's a very logical 
plan, but it was not always like this. For many years, we were just providing them with artificial limbs. It 
took quite many years for the program to become what it is now. … 
 
Its Chinese Counterpart: 
我在阿富汗已經 21 年。 我為紅十字會工作， 我是一名物理治療師。 我的工作是製作胳膊和腿 -- 
恩，這不完全是事實。 我們做的還不止這些。 我們提供給患者， 阿富汗的殘疾人， 首先是身體康
復, 然後重返社會。 這是一個非常合理的計劃， 但它並不是總是這樣。 多年來，我們只是給他們 
提供義肢。 花了很多年的程序 才讓這計劃成為現在的模樣。… 
 

Word Alignment Information: 
physical (物理), therapist (治療師), social (社會), reintegration (重返), physical (身體), rehabilitation  (康
復), prosthesis (義肢), … 
 
Scores of Topical Keyword Preferences for Words: 
(English)    prosthesis: 0.32; artificial leg: 0.21; physical therapist: 0.15; rehabilitation: 0.08; … 
(Chinese)   義肢: 0.41; 物理治療師: 0.15; 康復:0.10; 阿富汗: 0.08, … 
 
English Keywords from Bilingual Perspectives: 
prosthesis, artificial, leg, rehabilitation, orthopedic, … 
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be biased due to the language’s grammar, phrase 
structure, word usage and repetition and so on. 
To identify keyword lists from natural language 
articles, a promising approach is to automatically 
bridge the original monolingual framework with 
bilingual parallel information expected to respect 
language similarities and diversities at the same 
time.  

3.1 Problem Statement 

We focus on the first step of the article 
recommendation process: identifying a set of 
words likely to be essential to a given article. 
These keyword candidates are then returned as 
the output of the system. The returned keyword 
list can be examined by human users directly, or 
passed on to article recommendation systems for 
article retrieval (in terms of the extracted 
keywords). Thus, it is crucial that keywords be 
present in the candidate list and that the list not 
be too large to overwhelm users or the 
subsequent (typically computationally expensive) 
article recommendation systems. Therefore, our 
goal is to return reasonable-sized set of keyword 
candidates that, at the same time, must contain 
essential terms in the article. We now formally 
state the problem that we are addressing. 

Problem Statement: We are given a bilingual 
parallel article collection of various topics from 
social media (e.g., TED), an article ARTe in 
language e, and its counterpart ARTc in language 
c. Our goal is to determine a set of words that are 
likely to contain important words of ARTe. For 
this, we bridge language-specific statistics of 
ARTe and ARTc via bilingual information (e.g., 
word alignments) and consider word keyness 
w.r.t. ARTe’s topic such that cross-lingual 
diversities are valued in extracting keywords in e. 

In the rest of this section, we describe our 
solution to this problem. First, we define 
strategies for estimating keyword preferences for 
words under different article topics (Section 3.2). 
These strategies rely on a set of article-topic 
pairs collected from the Web (Section 4.1), and 
are monolingual, language-dependent 
estimations. Finally, we show how BiKEA 
generates keyword lists for articles leveraging 
PageRank algorithm with word keyness and 
cross-lingual information (Section 3.3). 

3.2 Topical Keyword Preferences 

We attempt to estimate keyword preferences 
with respect to a wide range of article topics. 
Basically, the estimation is to calculate word 

significance in a domain topic. Our learning 
process is shown in Figure 2. 
 
 

 
 
 
 

Figure 2. Outline of the process used 
to train BiKEA. 

In the first two stages of the learning process, we 
generate two sets of article and word information. 
The input to these stages is a set of articles and 
their domain topics. The output is a set of pairs 
of article ID and word in the article, e.g., 
(ARTe=1, we=“prosthesis”) in language e or 
(ARTc=1, wc=“義肢”) in language c, and a set of 
pairs of article topic and word in the article, e.g., 
(tpe=“disability”, we=“prosthesis”) in e and 
(tpe=“disability”, wc=“義肢”) in c. Note that the 
topic information is shared between the involved 
languages, and that we confine the calculation of 
such word statistics in their specific language to 
respect language diversities and the language-
specific word statistics will later interact in 
PageRank at run-time (See Section 3.3). 

The third stage estimates keyword preferences 
for words across articles and domain topics using 
aforementioned (ART,w) and (tp,w) sets. In our 
paper, two popular estimation strategies in 
Information Retrieval are explored. They are as 
follows. 

tfidf. tfidf(w)=freq(ART,w)/appr(ART’,w) where 
term frequency in an article is divided by its 
appearance in the article collection to distinguish 
important words from common words. 

ent. entropy(w)= -∑
tp’

Pr(tp’|w)×log(Pr(tp’|w)) 
where  a word’s uncertainty in topics is used to 
estimate its associations with domain topics. 

These strategies take global information (i.e., 
article collection) into account, and will be used 
as keyword preference models, bilingually 
intertwined, in PageRank at run-time which 
locally connects words (i.e., within articles). 

3.3 Run-Time Keyword Extraction 

Once language-specific keyword preference 
scores for words are automatically learned, they 
are stored for run-time reference. BiKEA then 
uses the procedure in Figure 3 to fuse the 
originally language-independent word statistics 

(1) Generate article-word pairs in training data 
(2) Generate topic-word pairs in training data 
(3) Estimate keyword preferences for words w.r.t.  
      article topic based on various strategies 
(4) Output word-and-keyword-preference-score  
      pairs for various strategies 
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to determine keyword list for a given article. In 
this procedure a machine translation technique 
(i.e., IBM word aligner) is exploited to glue 
statistics in the involved languages and make 
bilingually motivated random-walk algorithm 
(i.e., PageRank) possible. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Extracting keywords at run-time. 
 
Once language-specific keyword preference 
scores for words are automatically learned, they 
are stored for run-time reference. BiKEA then 
uses the procedure in Figure 3 to fuse the 
originally language-independent word statistics 
to determine keyword list for a given article. In 
this procedure a machine translation technique 
(i.e., IBM word aligner) is exploited to glue 
statistics in the involved languages and make 
bilingually motivated random-walk algorithm 
(i.e., PageRank) possible.  

In Steps (1) and (2) we construct PageRank 
word graphs for the article ARTe in language e 
and its counterpart ARTc in language c. They are 
built individually to respect language properties 
(such as subject-verb-object or subject-object-
verb structure). Figure 4 shows the algorithm. In 
this algorithm, EW stores normalized edge 
weights for word wi and wj (Step (2)). And EW 
is a v by v matrix where v is the vocabulary size 
of ARTe and ARTc. Note that the graph is directed 
(from words to words that follow) and edge 
weights are words’ co-occurrences within 
window size WS. Additionally we incorporate 
edge weight multiplier m>1 to propagate more 

PageRank scores to content words, with the 
intuition that content words are more likely to be 
keywords (Step (2)). 
 

 

 

 

 

 

 

Figure 4. Constructing PageRank word graph. 

Step (3) in Figure 3 linearly combines word 
graphs EWe and EWc using α. We use α to 
balance language properties or statistics, and 
BiKEA backs off to monolingual KEA if α is one. 

In Step (4) of Figure 3 for each word 
alignment (wi

c, wj
e), we construct a link between 

the word nodes with the weight BiWeight. The 
inter-language link is to reinforce language 
similarities and respect language divergence 
while the weight aims to elevate the cross-
language statistics interaction. Word alignments 
are derived using IBM models 1-5 (Och and Ney, 
2003). The inter-language link is directed from 
wi

c to wj
e, basically from language c to e based on 

the directional word-aligning entry (wi
c, wj

e). The 
bridging is expected to help keyword extraction 
in language e with the statistics in language c. 
Although alternative approach can be used for 
bridging, our approach is intuitive, and most 
importantly in compliance with the directional 
spirit of PageRank. 

Step (6) sets KP of keyword preference model 
using topical preference scores learned from 
Section 3.2, while Step (7) initializes KN of 
PageRank scores or, in our case, word keyness 
scores. Then we distribute keyness scores until 
the number of iteration or the average score 
differences of two consecutive iterations reach 
their respective limits. In each iteration, a word’s 
keyness score is the linear combination of its 
keyword preference score and the sum of the 
propagation of its inbound words’ previous 
PageRank scores. For the word wj

e in ARTe, any 
edge (wi

e,wj
e) in ARTe, and any edge (wk

c,wj
e) in 

WA, its new PageRank score is computed as 
below. 

procedure PredictKW(ARTe,ARTc,KeyPrefs,WA,α,N) 
//Construct language-specific word graph for PageRank 
(1)  EWe=constructPRwordGraph(ARTe) 
(2)  EWc=constructPRwordGraph(ARTc) 
//Construct inter-language bridges 
(3)  EW=α× EWe+(1-α) × EWc 
       for each word alignment (wi

c, wj
e) in WA 

         if IsContWord(wi
c) and IsContWord(wj

e) 
(4a)      EW[i,j]+=1× BiWeightcont 
         else 
(4b)      EW[i,j]+=1× BiWeightnoncont 
(5)  normalize each row of EW to sum to 1 
//Iterate for PageRank 
(6)  set KP1×v to 
             [KeyPrefs(w1), KeyPrefs(w2), …,KeyPrefs(wv)] 
(7)  initialize KN1 ×v to [1/v,1/ v, …,1/v] 
       repeat 

(8a)  KN’=λ× KN× EW+(1-λ)× KP 
(8b)  normalize KN’ to sum to 1 
(8c)  update KN with KN’ after the check of KN and KN’  
       until maxIter or avgDifference(KN,KN’) ≤ smallDiff 
(9)  rankedKeywords=Sort words in decreasing order of KN 
       return the N rankedKeywords in e with highest 
scores 

procedure constructPRwordGraph(ART) 
(1) EWv ×v=0v ×v 
      for each sentence st in ART 
         for each word wi in st 
            for each word wj in st where i<j and j-i ≤ WS 

         if not IsContWord(wi) and IsContWord(wj) 
(2a)            EW[i,j]+=1× m 
               elif not IsContWord(wi) and not IsContWord(wj) 
(2b)            EW[i,j]+=1× (1/m) 
               elif IsContWord(wi) and not IsContWord(wj) 
(2c)            EW[i,j]+=1× (1/m) 
               elif IsContWord(wi) and IsContWord(wj) 
(2d)            EW[i,j]+=1× m 
       return EW 
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Once the iterative process stops, we rank 
words according to their final keyness scores and 
return top N ranked words in language e as 
keyword candidates of the given article ARTe. An 
example keyword analysis for an English article 
on our working prototype is shown in Figure 1. 
Note that language similarities and dissimilarities 
lead to different word statistics in articles of 
difference languages, and combining such word 
statistics helps to generate more promising 
keyword lists. 

4 Experiments 

BiKEA was designed to identify words of 
importance in an article that are likely to cover 
the keywords of the article. As such, BiKEA will 
be trained and evaluated over articles. 
Furthermore, since the goal of BiKEA is to 
determine a good (representative) set of 
keywords with the help of cross-lingual 
information, we evaluate BiKEA on bilingual 
parallel articles. In this section, we first present 
the data sets for training BiKEA (Section 4.1). 
Then, Section 4.2 reports the experimental 
results under different system settings. 

4.1 Data Sets 

We collected approximately 1,500 English 
transcripts (3.8M word tokens and 63K word 
types) along with their Chinese counterparts 
(3.4M and 73K) from TED (www.ted.com) for 
our experiments. The GENIA tagger (Tsuruoka 
and Tsujii, 2005) was used to lemmatize and 
part-of-speech tag the English transcripts while 
the CKIP segmenter (Ma and Chen, 2003) 
segment the Chinese. 

30 parallel articles were randomly chosen and 
manually annotated for keywords on the English 
side to examine the effectiveness of BiKEA in 
English keyword extraction with the help of 
Chinese. 

4.2 Experimental Results 

Table 1 summarizes the performance of the 
baseline tfidf and our best systems on the test set. 

The evaluation metrics are nDCG (Jarvelin and 
Kekalainen, 2002), precision, and mean 
reciprocal rank. 

(a) @N=5 nDCG P MRR 
tfidf .509 .213 .469 
PR+tfidf .676 .400 .621 
BiKEA+tfidf .703 .406 .655 

 

(b) @N=7 nDCG P MRR 
tfidf .517 .180 .475 
PR+tfidf .688 .323 .626 
BiKEA+tfidf .720 .338 .660 

 

(c) @N=10 nDCG P MRR 
tfidf .527 .133 .479 
PR+tfidf .686 .273 .626 
BiKEA+tfidf .717 .304 .663 

Table 1. System performance at 
(a) N=5 (b) N=7 (c) N=10. 

As we can see, monolingual PageRank (i.e., 
PR) and bilingual PageRank (BiKEA), using 
global information tfidf, outperform tfidf. They 
relatively boost nDCG by 32% and P by 87%. 
The MRR scores also indicate their superiority: 
their top-two candidates are often keywords vs. 
the 2nd place candidates from tfidf. 
Encouragingly, BiKEA+tfidf achieves better 
performance than the strong monolingual 
PR+tfidf across N’s. Specifically, it further 
improves nDCG relatively by 4.6% and MRR 
relatively by 5.4%. 

Overall, the topical keyword preferences, and 
the inter-language bridging and the bilingual 
score propagation in PageRank are simple yet 
effective. And respecting language statistics and 
properties helps keyword extraction. 

5 Summary 

We have introduced a method for extracting 
keywords in bilingual context. The method 
involves estimating keyword preferences, word-
aligning parallel articles, and bridging language-
specific word statistics using PageRank. 
Evaluation has shown that the method can 
identify more keywords and rank them higher in 
the candidate list than monolingual KEAs. As for 
future work, we would like to explore the 
possibility of incorporating the articles’ reader 
feedback into keyword extraction. We would 
also like to examine the proposed methodology 
in a multi-lingual setting.  
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Abstract

We present the ICARUS Coreference Ex-
plorer, an interactive tool to browse and
search coreference-annotated data. It can
display coreference annotations as a tree,
as an entity grid, or in a standard text-
based display mode, and lets the user
switch freely between the different modes.
The tool can compare two different an-
notations on the same document, allow-
ing system developers to evaluate errors in
automatic system predictions. It features
a flexible search engine, which enables
the user to graphically construct search
queries over sets of documents annotated
with coreference.

1 Introduction

Coreference resolution is the task of automatically
grouping references to the same real-world entity
in a document into a set. It is an active topic in cur-
rent NLP research and has received considerable
attention in recent years, including the 2011 and
2012 CoNLL shared tasks (Pradhan et al., 2011;
Pradhan et al., 2012).

Coreference relations are commonly repre-
sented by sets of mentions, where all mentions
in one set (or coreference cluster) are considered
coreferent. This type of representation does not
support any internal structure within the clusters.
However, many automatic coreference resolvers
establish links between pairs of mentions which
are subsequently transformed to a cluster by tak-
ing the transitive closure over all links, i.e., placing
all mentions that are directly or transitively classi-
fied as coreferent in one cluster. This is particu-
larly the case for several state-of-the-art resolvers
(Fernandes et al., 2012; Durrett and Klein, 2013;
Björkelund and Kuhn, 2014). These pairwise de-
cisions, which give rise to a clustering, can be ex-

ploited for detailed error analysis and more fine-
grained search queries on data automatically an-
notated for coreference.

We present the ICARUS Coreference Explorer
(ICE), an interactive tool to browse and search
coreference-annotated data. In addition to stan-
dard text-based display modes, ICE features two
other display modes: an entity-grid (Barzilay and
Lapata, 2008) and a tree view, which makes use
of the internal pairwise links within the clusters.
ICE builds on ICARUS (Gärtner et al., 2013), a
platform for search and exploration of dependency
treebanks.1

ICE is geared towards two (typically) distinct
users: The NLP developer who designs corefer-
ence resolution systems can inspect the predic-
tions of his system using the three different dis-
play modes. Moreover, ICE can compare the pre-
dictions of a system to a gold standard annotation,
enabling the developer to inspect system errors in-
teractively. The second potential user is the cor-
pus linguist, who might be interested in brows-
ing or searching a document, or a (large) set of
documents for certain coreference relations. The
built-in search engine of ICARUS now also allows
search queries over sets of documents in order to
meet the needs of this type of user.

2 Data Representation

ICE reads the formats used in the 2011 and 2012
CoNLL shared tasks as well as the SemEval 2010
format (Recasens et al., 2010).2 Since these for-
mats cannot accommodate pairwise links, an aux-
iliary file with standoff annotation can be pro-
vided, which we call allocation. An allocation is a
list of pairwise links between mentions. Multiple

1ICE is written in Java and is therefore platform indepen-
dent. It is open source (under GNU GPL) and we provide
both sources and binaries for download on http://www.
ims.uni-stuttgart.de/data/icarus.html

2These two formats are very similar tabular formats, but
differ slightly in the column representations.
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allocations can be associated with a single docu-
ment and the user can select one of these for dis-
play or search queries. An allocation can also in-
clude properties on mentions and links. The set
of possible properties is not constrained, and the
user can freely specify properties as a list of key-
value pairs. Properties on mentions may include,
e.g., grammatical gender or number, or informa-
tion status labels. Additionally, a special property
that indicates the head word of a mention can be
provided in an allocation. The head property en-
ables the user to access head words of mentions
for display or search queries.

The motivation for keeping the allocation file
separate from the CoNLL or SemEval files is two-
fold: First, it allows ICE to work without hav-
ing to provide an allocation file, thereby making it
easy to use with the established formats for coref-
erence. The user is still able to introduce addi-
tional structure by the use of the allocation file.
Second, multiple allocation files allow the user to
switch between different allocations while explor-
ing a set of documents. Moreover, as we will see
in Section 3.3, ICE can also compare two different
allocations in order to highlight the differences.

In addition to user-specified allocations, ICE
will always by default provide an internal structure
for the clusters, in which the correct antecedent
of every mention is the closest coreferent mention
with respect to the linear order of the document
(this is equivalent to the training instance creation
heuristic proposed by Soon et al. (2001)). There-
fore, the user is not required to define an allocation
on their own.

3 Display Modes

In this section we describe the entity grid and tree
display modes by means of screenshots. ICE addi-
tionally includes a standard text-based view, sim-
ilar to other coreference visualization tools. The
example document is taken from the CoNLL 2012
development set (Pradhan et al., 2012) and we
use two allocations: (1) the predictions output by
Björkelund and Kuhn (2014) system (predicted)
and (2) a gold allocation that was obtained by
running the same system in a restricted setting,
where only links between coreferent mentions are
allowed (gold). The complete document can be
seen in the lower half of Figure 1.

3.1 Entity grid

Barzilay and Lapata (2008) introduce the entity
grid, a tabular view of entities in a document.
Specifically, rows of the grid correspond to sen-
tences, and columns to entities. The cells of the ta-
ble are used to indicate that an entity is mentioned
in the corresponding sentence. Entity grids pro-
vide a compact view on the distribution of men-
tions in a document and allow the user to see how
the description of an entity changes from mention
to mention.

Figure 1 shows ICE’s entity-grid view for the
example document using the predicted allocation.
When clicking on a cell in the entity grid the im-
mediate textual context of the cell is shown in the
lower pane. In Figure 1, the cell with the blue
background has been clicked, which corresponds
to the two mentions firms from Taiwan and they.
These mentions are thus highlighted in the lower
pane. The user can also right-click on a cell and
jump straight to the tree view, centered around the
same mentions.

3.2 Label Patterns

The information that is displayed in the cells of
the entity grid (and also on the nodes in the tree
view, see Section 3.3) can be fully customized by
the user. The customization is achieved by defin-
ing label patterns. A label pattern is a string that
specifies the format according to which a mention
will be displayed. The pattern can extract infor-
mation on a mention according to three axes: (1)
at the token- level for the full mention, extracting,
e.g., the sequence of surface forms or the part-of-
speech tags of a mention; (2) at the mention- level,
extracting an arbitrary property of a mention as de-
fined in an allocation; (3) token-level information
from the head word of a mention.

Label patterns can be defined interactively
while displaying a document and the three axes are
referenced by dedicated operators. For instance,
the label pattern $form$ extracts the full surface
form of a mention, whereas #form# only extracts
the surface form of the head word of a mention.
All properties defined by the user in the allocation
(see Section 2) are accessible via label patterns.

For example, the allocations we use for Fig-
ure 1 include a number of properties on the
mentions, most of which are internally com-
puted by the coreference system: The TYPE of
a mention, which can take any of the values

8



Figure 1: Entity grid over the predicted clustering in the example document.

{Name, Common, Pronoun} and is inferred from
the part- of-speech tags in the CoNLL file; The
grammatical NUMBER of a mention, which is as-
signed based on the number and gender data com-
piled by Bergsma and Lin (2006) and can take
the values {Sin, Plu, Unknown}. The label pat-
tern for displaying the number property associated
with a mention would be %Number%.

The label pattern used in Figure 1 is defined
as ("$form$" - %Type% - %Number%). This pat-
tern accesses the full surface form of the mentions
($form$), as well as the TYPE (%Type%) and gram-
matical NUMBER (%Number%) properties defined
in the allocation file.

Custom properties and label patterns can be
used for example to display the entity grid in the
form proposed by Barzilay and Lapata (2008): In
the allocation, we assign a coarse-grained gram-
matical function property (denoted GF) to every
mention, where each mention is tagged as either
subject, object, or other (denoted S, O, X, respec-
tively).3 The label pattern %GF% then displays the
grammatical function of each mention in the entity
grid, as shown in Figure 2.

3.3 Tree view

Pairwise links output by an automatic coreference
system can be treated as arcs in a directed graph.
Linking the first mention of each cluster to an ar-
tificial root node creates a tree structure that en-
codes the entire clustering in a document. This
representation has been used in coreference re-

3The grammatical function was assigned by converting
the phrase-structure trees in the CoNLL file (which lack
grammatical function information) to Stanford dependencies
(de Marneffe and Manning, 2008), and then extracting the
grammatical function from the head word in each mention.

Figure 2: Example entity grid, using the labels by
Barzilay and Lapata (2008).

solvers (Fernandes et al., 2012; Björkelund and
Kuhn, 2014), but ICE uses it to display links be-
tween mentions introduced by an automatic (pair-
wise) resolver.

Figure 3 shows three examples of the tree view
of the same document as before: The gold allo-
cation (3a), the predicted allocation (3b), as well
as the differential view, where the two allocations
are compared (3c). Each mention corresponds to
a node in the trees and all mentions are directly or
transitively dominated by the artificial root node.
Every subtree under the root constitutes its own
cluster and a solid arc between two mentions de-
notes that the two mentions are coreferent accord-
ing to a coreference allocation. The information
displayed in the nodes of the tree can be cus-
tomized using label patterns.

In the differential view (Figure 3c), solid arcs
correspond to the predicted allocation. Dashed
nodes and arcs are present in the gold allocation,
but not in the prediction. Discrepancies between
the predicted and the gold allocations are marked
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(a) Tree representing the gold allocation. (b) Tree representing the predicted allocation.

(c) Differential view displaying the difference between the gold and predicted allocations.

Figure 3: Tree view over the example document (gold, predicted, differential).

with different colors denoting different types of er-
rors. The example in Figure 3c contains two errors
made by the system:

1. A false negative mention, denoted by the
dashed red node Shangtou. In the gold
standard (Figure 3a) this mention is clus-
tered with other mentions such as Shantou ’s,
Shantou City, etc. The dashed arc between
Shantou ’s and Shangtou is taken from the
gold allocation, and indicates what the sys-
tem prediction should have been like.4

2. A foreign antecedent, denoted by the solid
orange arc between Shantou ’s new high level
technology development zone and Shantou.
In this case, the coreference system erro-
neously clustered these two mentions. The
correct antecedent is indicated by the dashed
arc that originates from the document root.

4This error likely stems from the fact that Shantou is
spelled two different ways within the same document which
causes the resolver’s string-matching feature to fail.

This error is particularly interesting since the
system effectively merges the two clusters
corresponding to Shantou and Shantou’ s new
high level technology development zone. The
tree view, however, shows that the error stems
from a single link between these two men-
tions, and that the developer needs to address
this.

Since the tree-based view makes pairwise de-
cisions explicit, the differential view shown in
Figure 3c is more informative to NLP develop-
ers when inspecting errors by automatic system
than comparing a gold standard clustering to a pre-
dicted one. The problem with analyzing the error
on clusterings instead of trees is that the clusters
would be merged, i.e., it is not clear where the ac-
tual mistake was made.

Additional error types not illustrated by Fig-
ure 3c include false positive mentions, where
the system invents a mention that is not part
of the gold allocation. When a false positive
mention is assigned as an antecedent of another
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mention, the corresponding link is marked as an
invented antecedent. Links that erroneously start
a new cluster when it is coreferent with other men-
tions to the left is marked as false new.

4 Searching

The search engine in ICE makes the annotations
in the documents searchable for, e. g., a corpus lin-
guist who is interested in specific coreference phe-
nomena. It allows the user to express queries over
mentions related through the tree. Queries can ac-
cess the different layers of annotation, both from
the allocation file and the underlying document,
using various constructs such as, e.g., transitivity,
regular expressions, and/or disjunctions. The user
can construct queries either textually (through a
query language) or graphically (by creating nodes
and configuring constraints in dialogues). For a
further discussion of the search engine we refer to
the original ICARUS paper (Gärtner et al., 2013).

Figure 4 shows a query that matches cataphoric
pronouns, i.e., pronouns that precede their an-
tecedents. The figure shows the query expressed
as a subgraph (on the left) and the corresponding
results (right) obtained on the development set of
the English CoNLL 2012 data using the manual
annotation represented in the gold allocation.

The query matches two mentions that are di-
rectly or transitively connected through the graph.
The first mention (red node) matches mentions of
the type Pronoun that have to be attached to the
document root node. In the tree formalism we
adopt, this implies that it must be the first men-
tion of its cluster. The second mention (green
node) matches any mention that is not of the type
Pronoun.

(a) (b)

Figure 4: Example search query and correspond-
ing results.

The search results are grouped along two axes:
the surface form of the head word of the first (red)
node, and the type property of the second mention

(green node), indicated by the special grouping
operator <*> inside the boxes. The correspond-
ing results are shown in the right half of Figure 4,
where the first group (surface form) runs verti-
cally, and the second group (mention type) runs
horizontally. The number of hits for each configu-
ration is shown in the corresponding cell. For ex-
ample, the case that the first mention of a chain is
the pronoun I and the closest following coreferent
mention that is not a pronoun is of type Common,
occurs 6 times. By clicking on a cell, the user can
jump straight to a list of the matches, and browse
them using any of the three display modes.

5 Related Work

Two popular annotation and visualization tools
for coreference are PAlinkA (Orăsan, 2003) and
MMAX2 (Müller and Strube, 2006), which fo-
cus on a (customizable) textual visualization with
highlighting of clusters. The TrED (Pajas and
Štěpánek, 2009) project is a very flexible multi-
level annotation tool centered around tree-based
annotations that can be used to annotate and vi-
sualize coreference. It also features a powerful
search engine. Recent annotation tools include the
web-based BRAT (Stenetorp et al., 2012) and its
extension WebAnno (Yimam et al., 2013). A ded-
icated query and exploration tool for multi-level
annotations is ANNIS (Zeldes et al., 2009).

The aforementioned tools are primarily meant
as annotation tools. They have a tendency of lock-
ing the user into one type of visualization (tree- or
text-based), while often lacking advanced search
functionality. In contrast to them, ICE is not meant
to be yet another annotation tool, but was designed
as a dedicated coreference exploration tool, which
enables the user to swiftly switch between differ-
ent views. Moreover, none of the existing tools
provide an entity-grid view.

ICE is also the only tool that can graphically
compare predictions of a system to a gold standard
with a fine-grained distinction on the types of dif-
ferences. Kummerfeld and Klein (2013) present
an algorithm that transforms a predicted corefer-
ence clustering into a gold clustering and records
the necessary transformations, thereby quantify-
ing different types of errors. However, their algo-
rithm only works on clusterings (sets of mentions),
not pairwise links, and is therefore not able to pin-
point some of the mistakes that ICE can (such as
the foreign antecedent described in Section 3).
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6 Conclusion

We presented ICE, a flexible coreference visual-
ization and search tool. The tool complements
standard text-based display modes with entity-grid
and tree visualizations. It is also able to dis-
play discrepancies between two different corefer-
ence annotations on the same document, allow-
ing NLP developers to debug coreference sys-
tems in a graphical way. The built-in search en-
gine allows corpus linguists to construct complex
search queries and provide aggregate result views
over large sets of documents. Being based on the
ICARUS platform’s plugin-engine, ICE is extensi-
ble and can easily be extended to cover additional
data formats.

Acknowledgments

This work was funded by the German Federal
Ministry of Education and Research (BMBF) via
CLARIN-D, No. 01UG1120F and the German
Research Foundation (DFG) via the SFB 732,
project D8.

References
Regina Barzilay and Mirella Lapata. 2008. Model-

ing Local Coherence: An Entity-Based Approach.
Computational Linguistics, 34(1):1–34.

Shane Bergsma and Dekang Lin. 2006. Bootstrapping
path-based pronoun resolution. In COLING-ACL,
pages 33–40, Sydney, Australia, July.

Anders Björkelund and Jonas Kuhn. 2014. Learning
Structured Perceptrons for Coreference Resolution
with Latent Antecedents and Non-local Features. In
ACL, Baltimore, MD, USA, June.

Marie-Catherine de Marneffe and Christopher D. Man-
ning. 2008. The stanford typed dependencies
representation. In COLING Workshop on Cross-
framework and Cross-domain Parser Evaluation.

Greg Durrett and Dan Klein. 2013. Easy Victo-
ries and Uphill Battles in Coreference Resolution.
In EMNLP, pages 1971–1982, Seattle, Washington,
USA, October.

Eraldo Fernandes, Cı́cero dos Santos, and Ruy Milidiú.
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Constantin Orăsan. 2003. PALinkA: A highly cus-
tomisable tool for discourse annotation. In Akira
Kurematsu, Alexander Rudnicky, and Syun Tutiya,
editors, Proceedings of the Fourth SIGdial Work-
shop on Discourse and Dialogue, pages 39–43.
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Massimo Poesio, and Yannick Versley. 2010.
Semeval-2010 task 1: Coreference resolution in
multiple languages. In Proceedings of the 5th Inter-
national Workshop on Semantic Evaluation, pages
1–8, Uppsala, Sweden, July.

Wee Meng Soon, Hwee Tou Ng, and Daniel
Chung Yong Lim. 2001. A machine learning ap-
proach to coreference resolution of noun phrases.
Computational Linguistics, 27(4):521–544.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
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Abstract
We present two recently released open-
source taggers: NameTag is a free soft-
ware for named entity recognition (NER)
which achieves state-of-the-art perfor-
mance on Czech; MorphoDiTa (Morpho-
logical Dictionary and Tagger) performs
morphological analysis (with lemmatiza-
tion), morphological generation, tagging
and tokenization with state-of-the-art re-
sults for Czech and a throughput around
10-200K words per second. The taggers
can be trained for any language for which
annotated data exist, but they are specifi-
cally designed to be efficient for inflective
languages, Both tools are free software
under LGPL license and are distributed
along with trained linguistic models which
are free for non-commercial use under the
CC BY-NC-SA license. The releases in-
clude standalone tools, C++ libraries with
Java, Python and Perl bindings and web
services.

1 Introduction

Morphological analysis, part-of-speech tagging
and named entity recognition are one of the most
important components of computational linguistic
applications. They usually represent initial steps
of language processing. It is no wonder then that
they have received a great deal of attention in the
computational linguistics community and in some
respect, these tasks can even be considered very
close to being “solved”.

However, despite the fact that there is a consid-
erable number of POS taggers available for En-
glish and other languages with a large number of
active users, we lacked a POS tagger and NE rec-
ognizer which would
• be well suited and trainable for languages

with very rich morphology and thus a large

tagset of possibly several thousand plausible
combinations of morphologically related at-
tribute values,

• provide excellent, preferably state-of-the-art
results for Czech,

• be distributed along with trained linguistic
models for Czech,

• allow the user to train custom models for any
language,

• be extremely efficient in terms of RAM and
disc usage to be used commercially,

• offer a full end-to-end solution for users with
little computational linguistics background,

• be distributed as a library without additional
dependencies,

• offer API in many programming languages,

• be open-source, free software.
Following these requirements, we have devel-

oped a morphological dictionary and tagger soft-
ware, which is described and evaluated in Sec-
tion 3; and a named entity recognizer, which is de-
scribed and evaluated in Section 4. The software
performance and resource usage are described in
Section 5 and the release and licensing condition
information is given in Section 6. We conclude the
paper in Section 7.

2 Related Work

2.1 POS Tagging
In English, the task of POS tagging has been in
the center of computational linguists’ attention for
decades (Kucera and Francis, 1967), with renewed
interest after significant improvements achieved
by (Collins, 2002). The recent state-of-the-art for
English POS supervised tagging without external
data for training is by (Shen et al., 2007) and there
are many available taggers, such as well-known
Brill tagger (Brill, 1992), TnT tagger (Brants,
2000) and many others.
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In Czech, the POS tagging research has been
carried out mostly by Czech speaking linguistic
community and the current state-of-the-art was re-
ported by (Spoustová et al., 2009) in Morče re-
search project1. Based on this project, two taggers
were released: Morče tagger (released as part of
COMPOST2 containing morphological analyzer,
tagger and trained models, available to registered
users only) and Featurama3 (source code only, no
trained models publicly available).

2.2 Named Entity Recognition
For English, many NE datasets and shared tasks
exist, e.g. CoNLL-2003 (Tjong Kim Sang and
De Meulder, 2003), MUC7 (Chinchor, 1998).
These shared tasks and the associated freely avail-
able NE annotated corpora allowed wide and suc-
cessful research in NE recognition in English. For
example, the systems which published high scores
on the CoNLL-2003 task include (Suzuki and
Isozaki, 2008), (Ando and Zhang, 2005) and to our
knowledge, the best currently known results on
this dataset were published by (Ratinov and Roth,
2009). One should also mention a well-known and
widely used Stanford parser (Finkel et al., 2005).

In Czech, the referential corpus for NE recog-
nition is called the Czech Named Entity Corpus4

(Ševčı́ková et al., 2007) and we describe its’ prop-
erties further in Section 4.2. The development of
the Czech NE recognition research is easy to fol-
low: started by a pilot project by (Ševčı́ková et al.,
2007), the results were improved by (Kravalová
and Žabokrtský, 2009), (Konkol and Konopı́k,
2011) and (Konkol and Konopı́k, 2013). The cur-
rent state-of-the-art results for CNEC are reported
by (Straková et al., 2013). So far, there was no
freely available Czech NE recognizer.

3 MorphoDiTa: Morphological
Dictionary and Tagger

3.1 Morphological Dictionary Methodology
The morphological dictionary is specially de-
signed for inflective languages with large number
of suffixes (endings) and we propose an effective
method for handling rich morphology.

In inflective languages,5 words take endings
1
http://ufal.mff.cuni.cz/morce/index.php

2
http://ufal.mff.cuni.cz/compost/

3
http://sourceforge.net/projects/featurama/

4
http://ufal.mff.cuni.cz/cnec/

5In the following, we describe features of a core group
of inflective languages, such as Slavic languages of all types.

(suffixes) to mark linguistic cases, grammatical
number, gender etc. Therefore, many forms may
be related to one lemma. For example, the lemma
“zelený” (“green” in Czech) can appear as “ze-
lený”, “zelenějšı́”, “zelenému” etc. – there are
several tens of forms for this type of adjective.
Corpus-wise, there are 168K unique forms and
72K lemmas in a corpus of 2M words (Prague De-
pendency Treebank 2.5 (Bejček et al., 2012)) in
Czech. It is therefore crucial to handle the end-
ings effectively and to reduce the processing costs
where regularities are found.

Given a resource with forms, lemmas and tags,6

MorphoDiTa estimates regular patterns based on
common form endings and automatically clusters
them into morphological “templates” without
linguistic knowledge about the language. We now
describe the method for template set creation.

During template set creation, MorphoDiTa
takes lemmas one by one. For each lemma, it
collects all corresponding forms and builds a trie
(De La Briandais, 1959; Knuth, 1997). Trie is a
tree structure in which one character corresponds
to a node and all descendants of a node share the
same prefix. The procedure then finds a suitable
common ancestor in the trie (common prefix or
stem). The heuristics is “such a node whose sub-
tree has depth at most N and at the same time has
the maximal number of ancestors with one child”.
Intuitively, this means we want to select a long
prefix (stem) – hence “maximal number of ances-
tors” but at the same time, the linguistic endings
are not too long (at most N ). Having selected a
common prefix, all the endings (including their
corresponding tags) in its subtree define a tem-
plate. A rich trie with many subtrees may be split
into multiple templates. For example, a simple trie
for noun “hrad” (“castle” in Czech) with one tem-
plate, and also two lemmas sharing two templates
are shown in Fig. 1. When processing the next
lemma and its corresponding forms, either new
template is created, or the templates are reused if
the set of endings is the same. Larger N leads to
longer endings and larger number of classes, and
smaller N leads to short endings and less classes.7

Sometimes, the word “inflective” is used also for agglutina-
tive languages such as Turkish, Hungarian or Finnish; we be-
lieve our tools are suitable for these, too, but we have not
tested them on this group yet.

6In Czech, the resource used was Morfflex CZ by Jan
Hajič: http://ufal.mff.cuni.cz/morfflex.

7Our morphological dictionary representation cannot be
replaced with a minimized finite state automaton with marked

14



The number of templates determines the effi-
ciency of dictionary encoding. When too few tem-
plates are used, many are needed to represent a
lemma. When too many are used, the representa-
tion of the templates themselves is large.

The morphological dictionary is then saved in
binary form and the software offers a higher level
access: given a form, morphological analysis lists
all possible lemma-tag pairs; given a lemma-tag
pair, MorphoDiTa generates the respective form.
The analysis function is then used in tagging,
which we describe in the next section.

The heuristics described above does not require
linguistic knowledge about the language and han-
dles linguistic regularities very well. The major
advantage is a significant data compression lead-
ing to efficient resource usage: in our setting, the
original morphology dictionary, the Czech Morf-
flex, contains 120M form-tag pairs derived from
1M unique lemmas, using 3 922 different tags, of
total size 6.7GB.8 Using the proposed heuristics
with N = 8, there are 7 080 templates created,
such that the whole dictionary is encoded using
3M template instances. The resulting binary form
of the dictionary uses 2MB, which is 3 000 times
smaller than the original dictionary.

In order to look up a word form in the dictio-
nary, we split it into a prefix and an ending for
all ending lengths from 1 to N . We then find
templates associated with both the prefix and the
ending. For each such template, we return the
lemma corresponding to the prefix and the tag cor-
responding to the ending. The result is a set of
lemma-tag pairs found during this procedure. This
algorithm can be implemented efficiently – our
implementation performs 500k word form lookups
per second in the Czech morphological dictionary.

3.2 POS Tagger Methodology

The POS tagger is an offspring of Morče and Fea-
turama research projects based on (Spoustová et
al., 2009). For each form in the text, the mor-
phological dictionary suggests all possible lemma-
tag candidates and these lemma-tag pairs are dis-
ambiguated by the tagger. The tagger is imple-
mented as supervised, rich feature averaged per-
ceptron (Collins, 2002) and the classification fea-
tures are adopted from (Spoustová et al., 2009).

lemmas, because the process of minimization cannot capture
templates containing word forms (or their prefixes) of multi-
ple lemmas.

8Which compresses to 454MB using gzip -9.
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Figure 1: A simple trie for noun “hrad“ (castle in
Czech), and two lemmas sharing templates.

Czech language was trained on the training part
of the Prague Dependency Treebank 2.5 (Bejček
et al., 2012). The English language was trained
on the standard training portion (Sections 0-18) of
the Wall Street Journal part of the Penn Treebank
(Marcus et al., 1993). In both cases, the system
was tuned on the development set (Sections 19-21
in PTB/WSJ in English) and tested on the testing
section (Sections 22-24 in PTB/WSJ in English).

3.3 POS Tagger Evaluation

An evaluation of POS taggers, which do not use
external data, is shown in Table 1 for Czech and in
Table 2 for English. MorphoDiTa reaches state-of-
the-art results for Czech and nearly state-of-the-
art results for English. The results are very simi-
lar for the three Czech systems, Morče, Featurama
and MorphoDiTa, because in all three cases, they
are implementations of (Spoustová et al., 2009).
However, MorphoDiTa is the first end-to-end ap-
plication released under a free license.

Due to rich morphosyntactic complexity of the
Czech language and the positional tagging scheme
proposed by (Hajič, 2004), there are 3 922 plausi-
ble tags in Czech (although only 1 571 unique tags
actually appear in training data).

However, in many applications, only the first
two tagging positions, which correspond to POS
and sub-POS,9 are actually needed for further pro-
cessing, which greatly reduces the complexity of
the task, leaving only 67 possible tags (64 in train-
ing data), although some morphological informa-
tion, such as case, is lost.

9Sub-POS is detailed set of POS labels, which includes
basic properties such as the type of pronouns, conjunctions,
adjectives, also some tense and active/passive/mood informa-
tion for verbs, etc.

15



Tagger Task Accuracy
Morče tag 95.67%
Featurama tag 95.66%
MorphoDiTa tag 95.75%
MorphoDiTa lemma 97.80%
MorphoDiTa lemma+tag 95.03%
MorphoDiTa tag-first two pos. 99.18%

Table 1: Evaluation of Czech POS taggers.

Tagger Accuracy
Morče (Spoustová et al., 2009) 97.23%
(Shen et al., 2007) 97.33%
MorphoDiTa 97.27%

Table 2: Evaluation of the English taggers.

An example of a full 15-position tag and the re-
stricted 2-position tag for an adjective “zelený” is
“AAIS1----1A----” and “AA”, respectively.
The first two positions are in fact quite similar
to what the Penn-style tags encode (for English).
MorphoDiTa therefore also offers models trained
on such a restricted tagging scheme. The tag-
ger evaluation for the 2-position, restricted tags is
given in the last row of Table 1.

4 NameTag: Named Entity Recognizer

4.1 NER Methodology

The NE recognizer is an implementation of a re-
search project by (Straková et al., 2013). The rec-
ognizer is based on a Maximum Entropy Markov
Model. First, maximum entropy model predicts,
for each word in a sentence, the full probabil-
ity distribution of its classes and positions with
respect to an entity. Consequently, a global op-
timization via dynamic programming determines
the optimal combination of classes and named en-
tities chunks (lengths). The classification features
utilize morphological analysis, two-stage predic-
tion, word clustering and gazetteers and are de-
scribed in (Straková et al., 2013).

The recognizer is available either as a run-time
implementation with trained linguistic models for
Czech, or as a package which allows custom mod-
els to be trained using any NE-annotated data.

4.2 Czech Named Entity Corpus

For training the recognizer, Czech Named Entity
Corpus(Ševčı́ková et al., 2007) was used. In this
corpus, Czech entities are classified into a two-
level hierarchy classification: a fine-grained set
of 42 classes or a more coarse classification of 7

System F-measure F-measure
(42 classes) (7 classes)

(Ševčı́ková et al., 2007) 62.00 68.00
(Kravalová et al., 2009) 68.00 71.00
(Konkol and Konopı́k, 2013) NA 79.00
(Straková et al., 2013) 79.23 82.82
NameTag CNEC 1.1 77.88 81.01
NameTag CNEC 2.0 77.22 80.30

Table 3: Evaluation of the Czech NE recognizers.

Corpus Words / sec RAM Model size
CNEC 1.1 40K 54MB 3MB
CNEC 2.0 45K 65MB 4MB

Table 4: Evaluation of the NE recognizer tagger
throughput, RAM and model size.

super-classes. Like other authors, we report the
evaluation on both hierarchy levels.

Czech Named Entity Corpus annotation allows
ambiguous labels, that is, one entity can be labeled
with two classes; however, NameTag predicts ex-
actly one label per named entity, just like the pre-
vious work does (Straková et al., 2013).

Furthermore, CNEC also allows embedded
entities, which is also somewhat problematic.
NameTag always predicts only the outer-most en-
tity (the embedding entity), although it is penal-
ized by the evaluation score which includes cor-
rect prediction of the nested entities.

4.3 NER Evaluation

For comparison with previous work, we report re-
sults for the first version of the Czech Named En-
tity Corpus (CNEC 1.1). The linguistic models
released with NameTag are trained on the most
current version of the Czech Named Entity Cor-
pus (CNEC 2.0), which has been recently released.
We report our results for both CNEC 1.1 and
CNEC 2.0 in Table 3.

5 Software Performance

We designed MorphoDiTa and NameTag as light-
weight, efficient software with low resource usage.

Depending on the morphosyntactic complexity
of the language and the selected tagging scheme,
the MorphoDiTa tagger has a throughput around
10-200K words per second on 2.9GHz Pentium
computer with 4GB RAM. Table 4 shows the sys-
tem word throughput, allocated RAM and model
size on such a machine for NameTag and Table 5
shows these parameters for MorphoDiTa.
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Task System Words / sec RAM Model size
Czech tag Morče (Spoustová et al., 2009) 1K 902MB 178MB
Czech tag Featurama 2K 747MB 210MB
Czech tag MorphoDiTa 10K 52MB 16MB
Czech tag–first two pos. MorphoDiTa 200K 15MB 2MB
English Penn style Morče (Spoustová et al., 2009) 3K 268MB 42MB
English Penn style Featurama 10K 195MB 49MB
English Penn style MorphoDiTa 50K 30MB 6MB

Table 5: Evaluation of the POS tagger throughput, RAM and model size.

MorphoDiTa NameTag
Binaries and source code https://github.com/ufal/morphodita https://github.com/ufal/nametag

Project website http://ufal.mff.cuni.cz/morphodita http://ufal.mff.cuni.cz/nametag

Demo http://lindat.mff.cuni.cz/services/morphodita/ http://lindat.mff.cuni.cz/services/nametag/

Web services http://lindat.mff.cuni.cz/services

Language models http://lindat.mff.cuni.cz

Table 6: Web links to MorphoDiTa and NameTag downloads.

6 Release

Both MorphoDiTa and NameTag are free software
under LGPL and their respective linguistic models
are free for non-commercial use and distributed
under CC BY-NC-SA license, although for some
models the original data used to create the model
may impose additional licensing conditions. Both
MorphoDiTa and NameTag can be used as:

• a standalone tool,

• C++ library with Java, Python, Perl bindings,

• a web service, which does not require any in-
stallation at the user’s machine whatsoever,

• an on-line demo.

MorphoDiTa and NameTag are platform inde-
pendent and do not require any additional libraries.
Web services and demo for the Czech and English
languages are also available.

Table 6 lists the web links to all resources. The
pre-compiled binaries and source code are avail-
able on GitHub, the language models are avail-
able from the LINDAT/CLARIN infrastructure
and the documentation can be found at the respec-
tive project websites.

7 Conclusion

We released two efficient, light-weight POS- and
NE taggers (especially efficient for inflective lan-
guages), which are available to a wide audience
as an open-source, free software with rich API
and also as an end-to-end application. The tag-
gers reach state-of-the-art results for Czech and
are distributed with the models. We are currently

working on more language releases (Slovak, Pol-
ish and Arabic). We are also aware that the cre-
ation of the dictionary relies on the existence of a
resource annotated with forms, lemmas and tags,
which may not be readily available. Therefore,
our future work includes developing a guesser for
analyzing previously unseen but valid word forms
in inflective languages, using only data annotated
with disambiguated POS tags. We hope the release
for Czech will prove useful for broad audience, for
example for shared tasks which include Czech lan-
guage data.
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Abstract

Vector space word representations are use-
ful for many natural language process-
ing applications. The diversity of tech-
niques for computing vector representa-
tions and the large number of evaluation
benchmarks makes reliable comparison a
tedious task both for researchers devel-
oping new vector space models and for
those wishing to use them. We present
a website and suite of offline tools that
that facilitate evaluation of word vectors
on standard lexical semantics benchmarks
and permit exchange and archival by users
who wish to find good vectors for their
applications. The system is accessible at:
www.wordvectors.org.

1 Introduction

Data-driven learning of vector-space word embed-
dings that capture lexico-semantic properties is
a technique of central importance in natural lan-
guage processing. Using co-occurrence statistics
from a large corpus of text (Deerwester et al.,
1990; Turney and Pantel, 2010), it is possible
to construct high-quality semantic vectors — as
judged by both correlations with human judge-
ments of semantic relatedness (Turney, 2006;
Agirre et al., 2009) and as features for down-
stream applications (Turian et al., 2010). A num-
ber of approaches that use the internal representa-
tions from models of word sequences (Collobert
and Weston, 2008) or continuous bags-of-context
wordsets (Mikolov et al., 2013) to arrive at vector
representations have also been shown to likewise
capture co-occurrence tendencies and meanings.

With an overwhelming number of techniques
to obtain word vector representations the task of
comparison and choosing the vectors best suitable
for a particular task becomes difficult. This is

further aggravated by the large number of exist-
ing lexical semantics evaluation benchmarks be-
ing constructed by the research community. For
example, to the best of our knowledge, for evaluat-
ing word similarity between a given pair of words,
there are currently at least 10 existing bench-
marks1 that are being used by researchers to prove
the effectiveness of their word vectors.

In this paper we describe an online application
that provides the following utilities:

• Access to a suite of word similarity evalua-
tion benchmarks

• Evaluation of user computed word vectors

• Visualizing word vectors in R2

• Evaluation and comparison of the available
open-source vectors on the suite

• Submission of user vectors for exhaustive of-
fline evaluation and leader board ranking

• Publicly available repository of word vectors
with performance details

Availability of such an evaluation system will
help in enabling better consistency and uniformity
in evaluation of word vector representations as
well as provide an easy to use interface for end-
users in a similar spirit to Socher et al. (2013a),
a website for text classification.2 Apart from the
online demo version, we also provide a software
that can be run in an offline mode on the command
line. Both the online and offline tools will be kept
updated with continuous addition of new relevant
tasks and vectors.

1www.wordvectors.org/suite.php
2www.etcml.com
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2 Word Similarity Benchmarks

We evaluate our word representations on 10 dif-
ferent benchmarks that have been widely used to
measure word similarity. The first one is the WS-
3533 dataset (Finkelstein et al., 2001) containing
353 pairs of English words that have been assigned
similarity ratings by humans. This data was fur-
ther divided into two fragments by Agirre et al.
(2009) who claimed that similarity (WS-SIM) and
relatedness (WS-REL)4 are two different kinds
of relations and should be dealt with separately.
The fourth and fifth benchmarks are the RG-65
(Rubenstein and Goodenough, 1965) and the MC-
30 (Miller and Charles, 1991) datasets that contain
65 and 30 pairs of nouns respectively and have
been given similarity rankings by humans. These
differ from WS-353 in that it contains only nouns
whereas the former contains all kinds of words.

The sixth benchmark is the MTurk-2875

(Radinsky et al., 2011) dataset that constitutes 287
pairs of words and is different from the previ-
ous benchmarks in that it has been constructed
by crowdsourcing the human similarity ratings
using Amazon Mechanical Turk (AMT). Simi-
lar in spirit is the MTruk-7716 (Halawi et al.,
2012) dataset that contains 771 word pairs whose
similarity was crowdsourced from AMT. An-
other, AMT created dataset is the MEN7 bench-
mark (Bruni et al., 2012) that consists of 3000
word pairs, randomly selected from words that
occur at least 700 times in the freely available
ukWaC and Wackypedia8 corpora combined.

The next two benchmarks were created to put
emphasis on different kinds of word types. To
specifically emphasize on verbs, Yang and Pow-
ers (2006) created a new benchmark YP-130 of
130 verb pairs with human similarity judgements.
Since, most of the earlier discussed datasets con-
tain word pairs that are relatively more frequent in
a corpus, Luong et al. (2013) create a new bench-

3http://www.cs.technion.ac.il/˜gabr/
resources/data/wordsim353/

4http://alfonseca.org/eng/research/
wordsim353.html

5http://tx.technion.ac.il/˜kirar/
Datasets.html

6http://www2.mta.ac.il/˜gideon/
mturk771.html

7http://clic.cimec.unitn.it/˜elia.
bruni/MEN.html

8http://wacky.sslmit.unibo.it/doku.
php?id=corpora

mark (Rare-Word)9 that contains rare-words by
sampling words from different frequency bins to a
total of 2034 word pairs.

We calculate similarity between a given pair
of words by the cosine similarity between their
corresponding vector representation. We then re-
port Spearman’s rank correlation coefficient (My-
ers and Well, 1995) between the rankings pro-
duced by our model against the human rankings.

Multilingual Benchmarks. As is the case with
most NLP problems, the lexical semantics evalua-
tion benchmarks for languages other than English
have been limited. Currently, we provide a link
to some of these evaluation benchmarks from our
website and in future will expand the website to
encompass vector evaluation for other languages.

3 Visualization

The existing benchmarks provide ways of vector
evaluation in a quantitative setting. To get an idea
of what kind of information the vectors encode it is
important to see how these vectors represent words
in n-dimensional space, where n is the length
of the vector. Visualization of high-dimensional
data is an important problem in many different do-
mains, and deals with data of widely varying di-
mensionality. Over the last few decades, a variety
of techniques for the visualization of such high-
dimensional data have been proposed (de Oliveira
and Levkowitz, 2003).

Since visualization in n dimensions is hard
when n >= 3, we use the t-SNE (van der Maaten
and Hinton, 2008) tool10 to project our vectors into
R2. t-SNE converts high dimensional data set into
a matrix of pairwise similarities between individ-
ual elements and then provides a way to visual-
ize these distances in a way which is capable of
capturing much of the local structure of the high-
dimensional data very well, while also revealing
global structure such as the presence of clusters at
several scales.

In the demo system, we give the user an option
to input words that they need to visualize which
are fed to the t-SNE tool and the produced images
are shown to the user on the webpage. These im-
ages can then be downloaded and used. We have

9http://www-nlp.stanford.edu/˜lmthang/
morphoNLM/

10http://homepage.tudelft.nl/19j49/
t-SNE_files/tsne_python.zip
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Figure 1: Antonyms (red) and synonyms (green) of beautiful represented by Faruqui and Dyer (2014)
(left) and Huang et al. (2012) (right).

included two datasets by default which exhibit dif-
ferent properties of the language:

• Antonyms and synonyms of beautiful

• Common male-female nouns and pronouns

In the first plot, ideally the antonyms (ugly,
hideous, . . . ) and synonyms (pretty, gorgeous,
. . . ) of beautiful should form two separate clus-
ters in the plot. Figure 1 shows the plots of the
antonyms and synonyms of the word beautiful for
two available embeddings. The second default
word plot is the gender data set, every word in
which has a male and a female counterpart (ex.
grandmother and grandfather), this data set ex-
hibits both local and global properties. Locally,
the male and female counterparts should occur in
pairs together and globally there should be two
separate clusters of male and female.

4 Word Vector Representations

4.1 Pre-trained Vectors

We haves collected several standard pre-trained
word vector representations freely available for re-
search purposes and provide a utility for the user
to test them on the suite of benchmarks, as well
as try out the visualization functionality. The user
can also choose the option to choose two different
types of word vectors and compare their perfor-
mance on the benchmarks. We will keep adding
word vectors on the website as and when they are
released. The following word vectors have been
included in our collection:

Metaoptimize. These word embeddings 11 have
been trained in (Turian et al., 2010) using a neu-
ral network language model and were shown to
be useful for named entity recognition (NER) and
phrase chunking.

SENNA. It is a software12 which outputs a host
of predictions: part-of-speech (POS) tags, chunk-
ing, NER etc (Collobert et al., 2011). The soft-
ware uses neural word embeddings trained over
Wikipedia data for over 2 months.

RNNLM. The recurrent neural network lan-
guage modeling toolkit13 comes with some
pre-trained embeddings on broadcast news
data (Mikolov et al., 2011).

Global Context. Huang et al. (2012) present a
model to incorporate document level information
into embeddings to generate semantically more in-
formed word vector representations. These em-
beddings14 capture both local and global context
of the words.

Skip-Gram. This model is a neural network lan-
guage model except for that it does not have a
hidden layer and instead of predicting the target
word, it predicts the context given the target word
(Mikolov et al., 2013). These embeddings are
much faster to train15 than the other neural em-
beddings.

11http://metaoptimize.com/projects/
wordreprs/

12http://ronan.collobert.com/senna/
13http://rnnlm.org/
14http://nlp.stanford.edu/˜socherr/

ACL2012_wordVectorsTextFile.zip
15https://code.google.com/p/word2vec/
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Figure 2: Vector selection interface (right) of the demo system.

Multilingual. Faruqui and Dyer (2014) propose
a method based on canonical correlation analy-
sis to produce more informed monolingual vec-
tors using multilingual knowledge. Their method
is shown to perform well for both neural embed-
dings and LSA (Deerwester et al., 1990) based
vectors.16

4.2 User-created Vectors

Our demo system provides the user an option to
upload their word vectors to perform evaluation
and visualization. However, since the size of the
word vector file will be huge due to a lot of in-
frequent words that are not useful for evaluation,
we give an option to filter the word vectors file
to only include the words required for evaluation.
The script and the vocabulary file can be found on
the website online.

5 Offline Evaluation & Public Access

We provide an online portal where researchers can
upload their vectors which are then be evaluated
on a variety of NLP tasks and then placed on the
leader board.17 The motivation behind creating
such a portal is to make it easier for a user to se-
lect the kind of vector representation that is most
suitable for their task. In this scenario, instead of
asking the uploader to filter their word vectors for
a small vocabulary, they will be requested to up-
load their vectors for the entire vocabulary.

16http://cs.cmu.edu/˜mfaruqui/soft.html
17We provide an initial list of some such tasks to which we

will later add more tasks as they are developed.

5.1 Offline Evaluation

Syntactic & semantic relations. Mikolov et al.
(2013) present a new semantic and syntactic re-
lation dataset composed of analogous word pairs
of size 8869 and 10675 pairs resp.. It contains
pairs of tuples of word relations that follow a com-
mon relation. For example, in England : Lon-
don :: France : Paris, the two given pairs of words
follow the country-capital relation. We use the
vector offset method (Mikolov et al., 2013) to
compute the missing word in these relations. This
is non-trivial |V |-way classification task where V
is the size of the vocabulary.

Sentence Completion. The Microsoft Research
sentence completion dataset contains 1040 sen-
tences from each of which one word has been re-
moved. The task is to correctly predict the miss-
ing word from a given list of 5 other words per
sentence. We average the word vectors of a given
sentence qsent =

∑N
i=1,i 6=j qwi/N , where wj is

the missing word and compute the cosine similar-
ity of qsent vector with each of the options. The
word with the highest similarity is chosen as the
missing word placeholder.

Sentiment Analysis Socher et al. (2013b) have
created a treebank which contains sentences an-
notated with fine-grained sentiment labels on both
the phrase and sentence level. They show that
compositional vector space models can be used
to predict sentiment at these levels with high ac-
curacy. The coarse-grained treebank, containing
only positive and negative classes has been split
into training, development and test datasets con-
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Figure 3: Screenshot of the command line version showing word similarity evaluation.

taining 6920, 872 and 1821 sentences respectively.
We train a logistic regression classifier with L2
regularization on the average of the word vectors
of a given sentence to predict the coarse-grained
sentiment tag at the sentence level.

TOEFL Synonyms. These are a set of 80 ques-
tions compiled by Landauer and Dutnais (1997),
where a given word needs to be matched to its
closest synonym from 4 given options. A num-
ber of systems have reported their results on this
dataset.18 We use cosine similarity to identify the
closest synonym.

5.2 Offline Software
Along with the web demo system we are making
available a software which can be downloaded and
be used for evaluation of vector representations of-
fline on all the benchmarks listed above. Since, we
cannot distribute the evaluation benchmarks along
with the software because of licensing issues, we
would give links to the resources which should be
downloaded prior to using the software. This soft-
ware can be run on a command line interface. Fig-
ure 3 shows a screenshot of word similarity evalu-
ation using the software.

5.3 Public Access
Usually corpora that the vectors are trained upon
are not available freely because of licensing issues
but it is easier to release the vectors that have been
trained on them. In the system that we have devel-
oped, we give the user an option to either make the
vectors freely available for everyone to use under a
GNU General Public License19 or a Creative Com-
mons License.20 If the user chooses not to make
the word vectors available, we would evaluate the

18http://aclweb.org/aclwiki/index.php?
title=TOEFL_Synonym_Questions_(State_of_
the_art)

19https://www.gnu.org/copyleft/gpl.html
20https://creativecommons.org/licenses/

by-nc-sa/4.0/legalcode

vectors and give it a position in the leader board
with proper citation to the publications/softwares.

6 Conclusion

In this paper we have presented a demo system that
supports rapid and consistent evaluation of word
vector representations on a variety of tasks, visual-
ization with an easy-to-use web interface and ex-
change and comparison of different word vector
representations. The system also provides access
to a suite of evaluation benchmarks both for En-
glish and other languages. The functionalities of
the system are aimed at: (1) Being a portal for
systematic evaluation of lexical semantics tasks
that heavily rely on word vector representation, (2)
Making it easier for an end-user to choose the most
suitable vector representation schema.
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Abstract 

Without inspirations, writing may be a 

frustrating task for most people. In this study, 

we designed and implemented WINGS, a 

Chinese input method extended on 

IBus-Pinyin with intelligent writing assistance. 

In addition to supporting common Chinese 

input, WINGS mainly attempts to spark users’ 

inspirations by recommending both word 

level and sentence level writing suggestions. 

The main strategies used by WINGS, 

including providing syntactically and 

semantically related words based on word 

vector representation and recommending 

contextually related sentences based on LDA, 

are discussed and described. Experimental 

results suggest that WINGS can facilitate 

Chinese writing in an effective and creative 

manner. 

1 Introduction 

Writing articles may be a challenging task, as we 

usually have trouble in finding the suitable words 

or suffer from lack of ideas. Thus it may be very 

helpful if some writing reference information, 

e.g., words or sentences, can be recommended 

while we are composing an article. 

On the one hand, for non-english users, e.g., 

Chinese, the Chinese input method is our first 

tool for interacting with a computer. Nowadays, 

the most popular Chinese input methods are 

Pinyin-based ones, such as Sougou Pinyin
1
 and 

Google Pinyin
2
. These systems only present 

accurate results of Pinyin-to-Character 

conversion. Considering these systems’ lack of 

suggestions for related words, they hardly 

provide writers with substantial help in writing. 

On the other hand, try to meet the need of writing 

assistance, more and more systems facilitating 

Chinese writing have been available to the public, 

                                                           
* Corresponding author 
1 http://pinyin.sogou.com 
2 http://www.google.com/intl/zh-CN/ime/pinyin 

such as WenXin Super Writing Assistant
3
 and 

BigWriter
4
, and among others. However, due to 

their shortcomings of building examples library 

manually and lack of corpus mining techniques, 

most of the time the suggestions made by these 

systems are not creative or contextual. 

  Thus, in this paper, we present Writing with 

INtelligent Guidance and Suggestions (WINGS)
5
, 

a Chinese input method extended with intelligent 

writing assistance. Through WINGS, users can 

receive intelligent, real-time writing suggestions, 

including both word level and sentence level. 

Different from existing Chinese writing assistants, 

WINGS mainly attempts to spark users’ writing 

inspirations from two aspects: providing diverse 

related words to expand users’ minds and 

recommending contextual sentences according to 

their writing intentions. Based on corpus mining 

with Natural Language Processing techniques, 

e.g., word vector representation and LDA model, 

WINGS aims to facilitate Chinese writing in an 

effective and creative manner. 

  For example, when using WINGS to type 

“xuxurusheng”, a sequence of Chinese Pinyin 

characters for “栩栩如生” (vivid/vividly), the 

Pinyin-to-Character Module will generate “栩栩

如生” and some other candidate Chinese words. 

Then the Words Recommending Module 

generates word recommendations for “栩栩如

生 ”. The recommended words are obtained 

through calculating word similarities based on 

word vector representations as well as rule-based 

strategy (POS patterns). 

In the Sentences Recommending Module, we 

first use “ 栩栩如生 ” to retrieve example 

sentences from sentences library. Then the topic 

similarities between the local context and the 

candidate sentences are evaluated for contextual 

                                                           
3 http://www.xiesky.com 
4 http://www.zidongxiezuo.com/bigwriter_intro.php 
5 The DEB package for Ubuntu 64 and recorded video of 

our system demonstration can be accessed at this URL: 

http://yunpan.cn/Qp4gM3HW446Rx (password:63b3) 

25



Chinese Pinyin Sequence

Recommended Words

Recommended Sentences

Pinyin-to-Character results (Original Words)

 
Figure 1. Screenshot of WINGS.  

 

sentence recommendations. 

At last in consideration of users’ feedback, we 

introduce a User Feedback Module to our system. 

The recorded feedback data will in turn influence 

the scores of words and sentences in 

Recommending Modules above. 

Figure 1 shows a screenshot of WINGS. 

2 Related Work 

2.1 Input Method 

Chinese input method is one of the most 

important tools for Chinese PC users. Nowadays, 

Pinyin-based input method is the most popular 

one. The main strategy that Pinyin-based input 

method uses is automatically converting Pinyin 

to Chinese characters (Chen and Lee, 2000).  

In recent years, more and more intelligent 

strategies have been adopted by different input 

methods, such as Triivi
6

, an English input 

method that attempts to increase writing speed 

by suggesting words and phrases, and PRIME 

(Komatsu et al., 2005), an English/Japanese 

input system that utilizes visited documents to 

predict the user’s next word to be input. 

In our system the basic process was Pinyin  

Characters (words)  Writing Suggestions 

(including words and sentences). We mainly 

focused on writing suggestions from Characters 

(words) in this paper. As the Pinyin-to-Character 

was the underlining work, we developed our 

system directly on the open source framework of 

the IBus (an intelligent input Bus for Linux and 

Unix OS) and IBus-Pinyin
7
 input method. 

2.2 Writing Assistant 

As previously mentioned, several systems are 

available in supporting Chinese writing, such as 

WenXin Super Writing Assistant and Big Writer. 

                                                           
6 http://baike.baidu.com/view/4849876.htm 
7 https://code.google.com/p/ibus 

These systems are examples of a retrieval-based 

writing assistant, which is primarily based on a 

large examples library and provides users with a 

search function. 

In contrast, other writing assistants employ 

special NLP strategies. Liu et al. (2011, 2012) 

proposed two computer writing assistants: one 

for writing love letters and the other for blog 

writing. In these two systems, some special 

techniques were used, including text generation, 

synonym substitution, and concept expansion. 

PENS (Liu et al., 2000) and FLOW (Chen et al., 

2012) are two writing assistants designed for 

students of English as a Foreign Language (EFL) 

practicing writing, which are mainly based on 

Statistical Machine Translation (SMT) strategies. 

Compared with the above mentioned systems, 

WINGS is closer to retrieval-based writing 

assistants in terms of function. However, WINGS 

can provide more intelligent suggestions because 

of the introduction of NLP techniques, e.g., word 

vector representation and topic model. 

2.3 Word Representations in Vector Space 

Recently, Mikolov et al. (2013) proposed novel 

model architectures to compute continuous 

vector representations of words obtained from 

very large data sets. The quality of these 

representations was assessed through a word 

similarity task, and according to their report, the 

word vectors provided state-of-the-art 

performance for measuring syntactic and 

semantic word similarities in their test set. Their 

research produced the open source tool 

word2vec8. 

In our system, we used word2vec to train the 

word vectors from a corpus we processed 

beforehand. For the Words Recommending 

Module, these vectors were used to determine the 

similarity among different words. 

                                                           
8 https://code.google.com/p/word2vec 
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2.4 Latent Dirichlet Allocation 

The topic model Latent Dirichlet Allocation 

(LDA) is a generative probabilistic model of a 

corpus. In this model, documents are represented 

as random mixtures of latent topics, where each 

topic is characterized by the distribution of 

words (Blei et al., 2003). Each document can 

thus be represented as a distribution of topics. 

Gibbs Sampling is a popular and efficient 

strategy used for LDA parameter estimation and 

inference. This technique is used in 

implementing several open sourcing LDA tools, 

such as GibbsLDA++9 (Phan and Nguyen, 2007), 

which was used in this paper. 

In order to generate contextual sentence 

suggestions, we ensured that the sentences 

recommended to the user were topic related to 

the local context (5-10 words previously input) 

based on the LDA model.  

3 Overview of WINGS 

Figure 2 illustrates the overall architecture of 

WINGS.  
Start

Pinyin to Character
Convert pinyin to Chinese words 
(Original words)

Words Recommending 1
1. Calculate similarity between focused 
original word and the rest words in the 
dictionary
2. Get top 200 most similar words as 
the candidate words

Words and word 
vectors

Sentences 
index

Sentences Recommending 1
Use the focused original or 
recommended word to retrieve at most  
200 sentences by Clucene from 
sentences index.

Sentences and 
their 

topic vector 

Sentences Recommending 2
1. Infer the topic vector of the local 
context by Gibbs Sammpling. Calculate 
the KL divergence between the local 
context and candidate sentences.
2. The sentence has been used before 
will get a boost in score.

1. Select word or sentence as input
2. Save feedback(User Feedback)

LDA train result 
for inference

Input Pinyin

Pinyin-Character 
mapping data,etc.

Words and 
sentences 

selected info

YES

End

Continue
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Words Recommending 2
1.Boost in score: 1).Whether the 
original and recommended word 
match one of the specified patterns, 
such as A-N, V-N and etc. 2). Whether 
The word has been used before
2. Re-rank candidate words.

 
Figure 2. Overall architecture of WINGS. 

3.1 System Architecture 

Our system is composed of four different 

                                                           
9 http://gibbslda.sourceforge.net 

modules: Pinyin-to-Character Module, Words 

Recommending Module, Sentences 

Recommending Module, and User Feedback 

Module. The following sub-sections discuss 

these modules in detail. 

3.2 Pinyin-to-Character Module 

Our system is based on the open sourcing input 

framework IBus and extended on the 

IBus-Pinyin input method. Thus, the 

Pinyin-to-Character module is adopted from the 

original IBus-Pinyin system. This module 

converts the input Chinese Pinyin sequence into 

a list of candidate Chinese words, which we refer 

to as original words. 

3.3 Words Recommending Module 

 Words vector representations 

In this preparatory step for word 

recommendation, words vector representations 

are obtained using the word2vec tool. This will 

be described in detail in Section 4. 

 Obtain the most related words 

Our system will obtain the focused original 

word and calculate the cosine similarities 

between this word and the rest of the words in 

the dictionary. Thus, we can obtain the top 200 

most similar words according to their cosine 

values. These words are referred to as 

recommended words. According to Mikolov et 

al. (2013), these words are syntactically and 

semantically similar to the original word. 

 Re-rank the recommended words 

In order to further improve word recommending, 

we introduce several special POS patterns (Table 

1). If the POS of the original word and the 

recommended word satisfy one of the POS 

patterns we specified, the score (based on the 

cosine similarity) of the recommended word will 

be boosted. In addition, the score of the word 

selected by the user before will also be boosted. 

Therefore, these words will be ranked higher in 

the recommended words list. 
POS of  

original word 

POS of  

recommended word 

N (noun) A (adjective) 

A (adjective) N (noun) 

N (noun) V (verb) 

Any POS Same with the original word 

Any POS L (idiom) 

Table 1. Special POS patterns. 

3.4 Sentences Recommending Module 

 Sentences topic distribution 

In this preparatory step for sentence 
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recommendation, sentences topic distribution 

vectors and other parameters are trained using 

the GibbsLDA++. This step will be discussed in 

Section 4. 

 Retrieve relative sentences via CLucene 

The focused original or recommended word will 

be used to search the most related sentences in 

the sentences index via CLucene
10

. At most 200 

sentences will be taken as candidates, which will 

be called recommended sentences. 

 Re-rank the recommended sentences 

To ensure that the recommended sentences are 

topic related to our local input context (5-10 

words previously input), we use Gibbs Sampling 

to infer the topic vector of the local context, and 

calculate the KL divergence between the local 

context and each recommended sentence. Finally, 

the recommended sentences will be re-ranked 

based on their KL divergences value with respect 

to the local context and the boost score derived 

from the feedback information. 

3.5 User Feedback Module 

This module saves the users’ feedback 

information, particularly the number of times 

when users select the recommended words and 

sentences. This information will be used as a 

boost factor for the Words and Sentences 

Recommending Modules. Our reasons for 

introducing this module are two-fold: the users’ 

feedback reflects their preference, and at the 

same time, this information can somewhat 

indicate the quality of the words and sentences. 

4 Data Pre-processing 

In this section, the procedure of our data 

pre-processing is discussed in detail. Firstly, our 

raw corpus was crawled from DiYiFanWen
11

, a 

Chinese writing website that includes all types of 

writing materials. After extracting useful 

composition examples from each raw html file, 

we merged all articles into a single file named 

large corpus. Finally, a total of 324,302 articles 

were merged into the large corpus (with a total 

size of 320 MB). 

For words recommending, each of the articles 

in our large corpus was segmented into words by 

ICTCLAS
12

 with POS tags. Subsequently, 

word2vec tool was used on the words sequence 

(with useless symbols filtered). Finally, the 

words, their respective vector representations and 

                                                           
10 http://sourceforge.net/projects/clucene 
11 http://www.diyifanwen.com 
12 http://ictclas.nlpir.org 

main POS tags were combined, and we built 

these data into one binary file. 

For sentences recommending, the large corpus 

was segmented into sentences based on special 

punctuations. Sentences that were either too long 

or too short were discarded. Finally, 2,567,948 

sentences were left, which we called original 

sentences. An index was created on these 

sentences using CLucene. Moreover, we 

segmented these original sentences and filtered 

the punctuations and stop words. Accordingly, 

these new sentences were named segmented 

sentences. We then ran GibbsLDA++ on the 

segmented sentences, and the Gibbs sampling 

result and topic vector of each sentence were 

thus obtained. Finally, we built the original 

sentence and their topic vectors into a binary file. 

The Gibbs sampling data used for inference was 

likewise saved into a binary file. 

  Table 2 lists all information on the resources 

of WINGS.  
Items Information 

Articles corpus size 320 MB 

Articles total count 324,302 

Words total count 101,188 

Sentences total count 2,567,948 

Table 2. Resources information. 

5 Experimental Results 

This section discusses the experimental results of 

WINGS. 

5.1 Words Recommending 

The top 20 recommended words for the sample 

word “老师” (teacher) are listed in Table 3. 

Compared with traditional methods (using Cilin, 

Hownet, and so forth.), using the word vectors to 

determine related words will identify more 

diverse and meaningful related words and this 

quality of WINGS is shown in Table 4. With the 

diversity of recommended words, writers’ minds 

can be expanded easily.  

1-10: 同学(student), 上课(conduct class), 语文

课(Chinese class), 语重心长(with sincere words 

and earnest wishes), 和蔼可亲(affability), 教导

(guide), 讲课 (lecture), 讲台 (dais), 不厌其烦

(patient), 全班(the whole class) 

11-20: 下课(finish class), 一番话(remarks), 数

学课(math class), 开小差(be absent-minded), 戒

尺 (ferule), 班主任 (class adviser), 忐忑不安

(restless), 记得(remember), 青出于蓝而胜于蓝

(excel one’s master), 听讲(listen to) 

Table 3. Top 20 recommended words for “老师” 

(teacher). 
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Words about Words 

Person 同学, 班主任, 全班 

Quality 语重心长, 和蔼可亲, 不

厌其烦 

Course 语文课, 数学课 

Teaching 教导, 讲课, 上课, 下课 

Teaching facility 讲台, 戒尺 

Student behaviour 听讲, 开小差, 忐忑不安 

Special idiom 青出于蓝而胜于蓝 

Others 记得, 一番话 

Table 4. Diversity of recommended words for 

“老师” (teacher). 

5.2 Sentences Recommending 

By introducing the topic model LDA, the 

sentences recommended by WINGS are related to 

the topic of the local context. Table 5 presents 

the top 5 recommended sentences for the word 

“栩栩如生” (vivid/vividly) in two different local 

contexts: one refers to characters in books; the 

other refers to statues and sculptures. Most 

sentences in the first group are related to the first 

context, and most from the second group are 

related to the second context. 

In order to assess the performance of WINGS 

in sentence recommendation, the following 

evaluation was implemented. A total of 10 

Chinese words were randomly selected, and each 

word was given two or three different local 

contexts as above (contexts varied for different 

words). Finally, we obtained a total of 24 groups 

of data, each of which included an original word, 

a local context, and the top 10 sentences 

recommended by WINGS. To avoid the influence 

of personal preferences, 12 students were invited 

to judge whether each sentence in the 24 

different groups was related to their respective 

local context. We believed that a sentence was 

related to its context only when at least 70% of 

the evaluators agreed. The Precision@10 

measure in Information Retrieval was used, and 

the total average was 0.76, as shown in Table 6. 

Additionally, when we checked the sentences 

which were judged not related to their respective 

local context, we found that these sentences were 

generally too short after stop words removal, and 

as a result the topic distributions inferred from 

Gibbs Sampling were not that reliable. 

Context 1 is about characters in books:  

故事 (story), 人物 (character), 形象 (image), 

作品(works) 

1 这本书刻画了许多栩栩如生的人物 

(The characters of this book are depicted 

vividly) 

2 这本书人物描写栩栩如生，故事叙述有声有

色  

(The characters of this book are depicted vividly 

and the story is impressive narrative) 

3 故事中的人物形象栩栩如生  

(The characters of this story are depicted 

vividly) 

4 他的作品情节惊险曲折人物栩栩如生结局出

人意料 

(His works are full of plot twists, vivid 

characters, and surprising endings) 

5 书中的人物都被葛竞姐姐描写得栩栩如生  

(The characters in the book are depicted vividly 

by Jing Zhuge) 

Context 2 is about statues and sculptures:  

塑像 (statue), 雕塑 (sculpture), 石刻 (stone 

inscription), 寺庙(temple) 

1 墙上绘满了威武的龙，栩栩如生  

(The walls are painted with mighty and vivid 

dragons) 

2 两侧的十八罗汉神态各异，栩栩如生  

(On both sides there are standing 18 vivid Arhats 

with different manners) 

3 大雄宝殿气势恢弘，殿内人物栩栩如生  

(the Great Buddha Hall is grand and the statues 

there are vivid) 

4 每尊都栩栩如生，活灵活现  

(Each statue is vivid and lifelike) 

5 檐角上各有七个栩栩如生的飞禽走兽像，它

们各有其寓意  

(On each of the eave angles there are 7 vivid 

statues of animals and birds with special 

meanings) 

Table 5. Top 5 recommended sentences for “栩

栩如生” (vivid/vividly) in two different local 

contexts.  
 

 

Local 

Context 

word 

1 

word 

2 

word 

3 

word 

4 

word 

5 

word 

6 

word 

7 

word 

8 

word 

9 

word 

10 

1 0.9 0.3 0.9 0.6 0.7 0.8 0.6 0.8 1.0 0.9 

2 0.4 0.7 1.0 0.9 0.9 0.7 1.0 0.5 0.9 0.5 

3 0.9 N/A N/A N/A N/A 0.9 0.8 N/A N/A 0.7 

Average Precision@10 value of the 24 groups data                0.76 

Table 6. Precision@10 value of each word under their respective context and the total average. 
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5.3 Real Time Performance 

In order to ensure the real time process for each 

recommendation, we used CLucene to index and 

retrieve sentences and memory cache strategy to 

reduce the time cost of fetching sentences’ 

information. Table 7 shows the average and max 

responding time of each recommendation of 

randomly selected 200 different words (Our test 

environment is 64-bit Ubuntu 12.04 LTS OS on 

PC with 4GB memory and 3.10GHz Dual-Core 

CPU). 

 

Item Responding time 

Average 154 ms 

Max 181 ms 

Table 7. The average and max responding time 

of 200 different words’ recommending process 

6 Conclusion and Future Work 

In this paper, we presented WINGS, a Chinese 

input method extended with writing assistance 

that provides intelligent, real-time suggestions 

for writers. Overall, our system provides 

syntactically and semantically related words, as 

well as recommends contextually related 

sentences to users. As for the large corpus, on 

which the recommended words and sentences are 

based, and the corpus mining based on NLP 

techniques (e.g., word vector representation and 

topic model LDA), experimental results show 

that our system is both helpful and meaningful. 

In addition, given that the writers’ feedback is 

recorded, WINGS will become increasingly 

effective for users while in use. Thus, we believe 

that WINGS will considerably benefit writers. 

  In future work, we will conduct more user 

experiments to understand the benefits of our 

system to their writing. For example, we can 

integrate WINGS into a crowdsourcing system 

and analyze the improvement in our users’ 

writing. Moreover, our system may still be 

improved further. For example, we are interested 

in adding a function similar to Google Suggest, 

which is based on the query log of the search 

engine, in order to provide more valuable 

suggestions for users. 
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Abstract

DKPro Keyphrases is a keyphrase extrac-
tion framework based on UIMA. It offers
a wide range of state-of-the-art keyphrase
experiments approaches. At the same
time, it is a workbench for developing new
extraction approaches and evaluating their
impact. DKPro Keyphrases is publicly
available under an open-source license.1

1 Introduction

Keyphrases are single words or phrases that pro-
vide a summary of a text (Tucker and Whittaker,
2009) and thus might improve searching (Song et
al., 2006) in a large collection of texts. As man-
ual extraction of keyphrases is a tedious task, a
wide variety of keyphrase extraction approaches
has been proposed. Only few of them are freely
available which makes it hard for researchers to
replicate previous results or use keyphrase extrac-
tion in some other application, such as informa-
tion retrieval (Manning et al., 2008), or question
answering (Kwok et al., 2001).

In this paper, we describe our keyphrase extrac-
tion framework called DKPro Keyphrases. It inte-
grates a wide range of state-of-the-art approaches
for keyphrase extraction that can be directly used
with limited knowledge of programming. How-
ever, for developers of new keyphrase extrac-
tion approaches, DKPro Keyphrases also offers a
programming framework for developing new ex-
traction algorithms and for evaluation of result-
ing effects. DKPro Keyphrases is based on the
Unstructured Information Management Architec-
ture (Ferrucci and Lally, 2004), which provides a
rich source of libraries with preprocessing compo-
nents.

1http://code.google.com/p/dkpro-keyphrases/

Text

Preprocessing

Select keyphrases

Filter keyphrases

Rank keyphrases

Evaluate

Results

Figure 1: Architecture overview of DKPro
Keyphrases

2 Architecture

The architecture of DKPro Keyphrases models the
five fundamental steps of keyphrase extraction:
(i) Reading of input data and enriching it with
standard linguistic preprocessing, (ii) selecting
phrases as keyphrase candidates based on the pre-
processed text, (iii) filtering selected keyphrases,
(iv) ranking remaining keyphrases, and (v) evalu-
ating ranked keyphrases against a gold standard.
This process is visualized in Figure 1. In this
section, we will describe details of each step, in-
cluding components already included in DKPro
Keyphrases.

2.1 Preprocessing

DKPro Keyphrases relies on UIMA-based pre-
processing components developed in the natu-
ral language processing framework DKPro Core
(Gurevych et al., 2007; Eckart de Castilho and
Gurevych, 2009). Thus, a wide range of linguis-
tic preprocessing components are readily available
such as word segmentation, lemmatization, part-
of-speech tagging, named entity recognition, syn-
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tactic parsing, or co-reference resolution.

2.2 Selecting Keyphrases

In this step, DKPro Keyphrases selects all phrases
as keyphrases that match user-specified criteria. A
criterium is typically a linguistic type, e.g. tokens,
or more sophisticated types such as noun phrases.
The resulting list of keyphrases should cover all
gold keyphrases and at the same time be as selec-
tive as possible. We use the following sentence
with the two gold keyphrases “dog” and “old cat”
as a step through example:

A [dog] chases an [old cat] in my gar-
den.

Taking all uni- and bi-grams as keyphrases will
easily match both gold keyphrases, but it will also
result in many other less useful keyphrases like “in
my”.

In the given example, the keyphrase list consists
of nine tokens (lemmas, resp.) but covers only one
gold keyphrase (i.e. “dog”). Noun chunks and
named entities are alternative keyphrases, limiting
the set of keyphrases further. Experiments where
noun chunks are selected as keyphrases perform
best for this example. Named entities are too re-
strictive, but applicable for identifying relevant en-
tities in a text. This is useful for tasks that are
targeted towards entities, e.g. for finding experts
(Dörner et al., 2007) in a collection of domain-
dependent texts. The selection of a linguistic type
is not limited as preprocessing components might
introduce further types.

2.3 Filtering

Filtering can be used together with over-
generating selection approaches like taking all n-
grams to decrease the number of keyphrases be-
fore ranking. One possible approach is based
on POS patterns. For example, using the POS
patterns, Adjective-Noun, Adjective, and
Noun limits the set of possible keyphrases to
“dog”, “old cat”, “cat”, and “garden” in the pre-
vious example. This step can also been per-
formed as part of the selection step, however,
keeping it separated enables researchers to ap-
ply filters to keyphrases of any linguistic type.
DKPro Keyphrases provides the possibility to use
controlled-vocabulary keyphrase extraction by fil-
tering out all keyphrases which are not included in
a keyphrase list.

Developers of keyphrase extraction approaches
can create their own filter simply by extending
from a base class and adding filter-specific code.
Additionally, DKPro Keyphrases does not impose
workflow-specific requirements, such as a fixed
number of filters. This leaves room for keyphrase
extraction experiments testing new or extended fil-
ters.

2.4 Ranking

In this step, a ranker assigns a score to each re-
maining keyphrase candidate. DKPro Keyphrases
contains rankers based on the candidate position,
frequency, tf-idf, TextRank (Mihalcea and Tarau,
2004), and LexRank (Erkan and Radev, 2004).

DKPro Keyphrases also contains a special ex-
tension of tf-idf, called tf-idfweb, for which Google
web1t (Brants and Franz, 2006) is used for obtain-
ing approximate df counts. In case of keyphrase
extraction for a single document or for domain-
independent keyphrase extraction, web1t provides
reliable n-gram statistics without any domain-
dependence.

2.5 Evaluation

DKPro Keyphrases ships with all the metrics
that have been traditionally used for evaluating
keyphrase extraction. Kim et al. (2010) use
precision and recall for a different number of
keyphrases (5, 10 and 15 keyphrases). These met-
rics are widely used for evaluation in information
retrieval. Precision @5 is the ratio of true pos-
itives in the set of extracted keyphrases when 5
keyphrases are extracted. Recall @5 is the ratio of
true positives in the set of gold keyphrases when
5 keyphrases are extracted. Moreover, DKPro
Keyphrases evaluates with MAP and R-precision.
MAP is the mean average precision of extracted
keyphrases from the highest scored keyphrase to
the total number of extracted keyphrases. For each
position in the rank, the precision at that position
will be computed. Summing up the precision at
each recall point and then taking its average will
return the average precision for the text being eval-
uated. The mean average precision will be the
mean from the sum of each text’s average preci-
sion from the dataset. R-precision is the ratio of
true positives in the set of extracted keyphrases,
when the set is limited to the same size as the set
of gold keyphrases (Zesch and Gurevych, 2009).
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3 Experimental framework

In this section, we show how researchers can per-
form experiments covering many different config-
urations for preprocessing, selection, and ranking.
To facilitate the construction of experiments, the
framework contains a module to make its archi-
tecture compatible to the DKPro Lab framework
(Eckart de Castilho and Gurevych, 2011), thus al-
lowing to sweep through the parameter space of
configurations. The parameter space is the combi-
nation of all possible parameters, e.g. one parame-
ter with two possible values for preprocessing and
a second parameter with two values for rankers
lead to four possible combinations. We refer to pa-
rameter sweeping experiments when running the
experiment with all possible combinations.

DKPro Keyphrases divides the experimental
setup in three tasks. Tasks are processing steps
defined in the Lab framework, which – in case of
keyphrase extraction – are based on the steps de-
scribed in Section 2. In the first task, the input
text is fed into a pipeline and preprocessed. In the
second task, the keyphrases are selected and fil-
tered. In the third and final task they are ranked
and evaluated. The output of the first two tasks are
serialized objects which can be processed further
by the following task. The output of the third task
is a report containing all configurations and results
in terms of all evaluation metrics.

The division into three tasks speeds up process-
ing of the entire experiment. Each task has mul-
tiple configuration parameters which influence the
forthcoming tasks. Instead of running the prepro-
cessing tasks for every single possible combina-
tion, the intermediate objects are stored once and
then used for every possible configuration in the
keyphrase selection step.

To illustrate the advantages of experimental set-
tings in DKPro Keyphrases, we run the previously
used example sentence through the entire parame-
ter space. Hence, tokens, lemmas, n-grams, noun
chunks, and named entities will be combined with
all filters and all rankers (not yet considering all
possible parameters). This results in more than
10,000 configurations. Although the number of
configurations is high, the computation time is
low2 as not the entire pipeline needs to run that
often. This scales well for longer texts.

The experimental framework runs all possible
2Less than five minutes on a desktop computer with a 3.4

GHz 8-core processor.

combinations automatically and collects individ-
ual results in a report, such as a spreadsheet or
text file. This allows for comparing results of dif-
ferent rankers, mitigating the influence of differ-
ent preprocessing and filtering components. This
way, the optimal experimental configuration can
be found empirically. It is a great improvement
for researchers because a variety of system con-
figurations can be compared without the effort of
reimplementing the entire pipeline.

Code example 1 shows the main method of an
example experiment, selecting all tokens as pos-
sible keyphrases and ranking them with their tf-
idf values. Lines 1 to 34 show values for dimen-
sions which span the parameter space. A dimen-
sion consists of an identifier, followed by one or
more values. Lines 36 to 40 show the creation of
tasks, and in lines 42 to 48 the tasks and a re-
port are added to one batch task, which is then
executed. Researchers can run multiple configu-
rations by setting multiple values to a dimension.
Line 25 shows an example of a dimension with
two values (using the logarithm or unchanged text
frequency), in this case two configurations3 for the
ranker based on tf-idf scores.

Code example 1: Example experiment
1 ParameterSpace params = new

ParameterSpace(
2 Dimension.create("language", "en"),
3 Dimension.create("frequencies",

"web1t"),
4 Dimension.create("tfidfFeaturePath",

Token.class"),
5

6 Dimension.create("dataset",
datasetPath),

7 Dimension.create("goldSuffix", ".key"),
8

9 //Selection
10 Dimension.create("segmenter",

OpenNlpSegmenter.class),
11 Dimension.create("keyphraseFeaturePath",

Token.class),
12

13 //PosSequence filter
14 Dimension.create("runPosSequenceFilter",

true),
15 Dimension.create("posSequence",

standard),
16

17 //Stopword filter
18 Dimension.create("runStopwordFilter",

true),
19 Dimension.create("stopwordlists",

"stopwords.txt"),
20

21 // Ranking

3DKPro Keyphrases provides ways to configure experi-
ments using Groovy and JSON.
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22 Dimension.create("rankerClass",
TfidfRanking.class),

23

24 //TfIdf
25 Dimension.create("weightingModeTf",

NORMAL, LOG),
26 Dimension.create("weightingModeIdf",

LOG),
27 Dimension.create("tfidfAggregate",

MAX),
28

29 //Evaluator
30 Dimension.create("evalMatchingType",

MatchingType.Exact),
31 Dimension.create("evalN", 50),
32 Dimension.create("evalLowercase",

true),
33 Dimension.create("evalType",

EvaluatorType.Lemma),
34 );
35

36 Task preprocessingTask = new
PreprocessingTask();

37 Task filteringTask = new
KeyphraseFilteringTask();

38 candidateSelectionTask.addImport(
preprocessingTask,
PreprocessingTask.OUTPUT,
KeyphraseFilteringTask.INPUT);

39 Task keyphraseRankingTask = new
KeyphraseRankingTask();

40 keyphraseRankingTask.addImport(
filteringTask,
KeyphraseFilteringTask.OUTPUT,
KeyphraseRankingTask.INPUT);

41

42 BatchTask batch = new BatchTask();
43 batch.setParameterSpace(params);
44 batch.addTask(preprocessingTask);
45 batch.addTask(candidateSelectionTask);
46 batch.addTask(keyphraseRankingTask);
47 batch.addReport(

KeyphraseExtractionReport.class);
48 Lab.getInstance().run(batch);

A use case for the experimental framework is
the evaluation of new preprocessing components.
For example, keyphrase extraction should be eval-
uated with Twitter data: One collects a dataset
with tweets and their corresponding keyphrases
(possibly, the hash tags). The standard preprocess-
ing will most likely fail as non-canonical language
will be hard to process (e.g. hash tags or emoti-
cons).

The preprocessing components can be set as a
parameter and compared directly without chang-
ing the remaining parameters for filters and
rankers. This allows researchers to perform reli-
able extrinsic evaluation of their components in a
keyphrase extraction setting.

Figure 2: Screenshot of web demo in DKPro
Keyphrases

4 Visualization and wrappers

To foster analysis of keyphrase extraction ex-
periments, we created a web-based visualization
framework with Spring4. It allows for running off-
the-shelf experiments and manually inspecting re-
sults without the need to install any additional soft-
ware. Figure 2 shows a visualization of one pre-
configured experiment. The web demo is avail-
able online.5 Currently, a table overview of ex-
tracted keyphrases is implemented, but develop-
ers can change it to highlighting all keyphrases.
The latter is recommend for a binary classification
of keyphrases. This is the case, if a system only
returns keyphrases with a score above a certain
threshold. The table in Figure 2 shows keyphrases
with the assigned scores, which can be sorted to
get a ranking of keyphrases. However, the visual-
ization framework does not provide any evaluation
capabilities.

To help new users of DKPro Keyphrases, it in-
cludes a module with two demo experiments us-
ing preconfigured parameter sets. This is espe-
cially useful for applying keyphrase extraction in
other tasks, e.g. text summarization (Goldstein et

4http://projects.spring.io/spring-ws/
5https://dkpro.ukp.informatik.tu-

darmstadt.de/DKProWebDemo/livedemo/3
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al., 2000). Both demo experiments are frequently
used keyphrase extraction systems. The first one
is based on TextRank (Mihalcea and Tarau, 2004)
and the second one is based on the supervised sys-
tem KEA (Witten et al., 1999). Both configura-
tions do not require any additional installation of
software packages.

This module offers setters to configure param-
eters, e.g. the size of co-occurrence windows in
case of the TextRank extractor.

5 Related work

Most work on keyphrase extraction is not accom-
panied with free and open software. The tools
listed in this section allow users to combine differ-
ent configurations with respect to preprocessing,
keyphrase selection, filtering, and ranking. In the
following, we give an overview of software tools
for keyphrase extraction.

KEA (Witten et al., 1999) provides a Java API,
which offers automatic keyphrase extraction from
texts. They provide a supervised approach for
keyphrase extraction. For each keyphrase, KEA
computes frequency, position, and semantic relat-
edness as features. Thus, for using KEA, the user
needs to provide annotated training data. KEA
generates keyphrases from n-grams with length
from 1 to 3 tokens. A controlled vocabulary can
be used to filter keyphrases. The configuration for
keyphrase selection and filtering is limited com-
pared to DKPro Keyphrases, which offers capa-
bilities for changing the entire preprocessing or
adding filters.

Maui (Medelyan et al., 2009) enhances KEA
by allowing the computation of semantic related-
ness of keyphrases. It uses Wikipedia as a the-
saurus and computes the keyphraseness of each
keyphrase, which is the number of times a can-
didate was used as keyphrase in the training data
(Medelyan et al., 2009).

Although Maui provides training data along
with their software, this training data is highly
domain-specific. A shortcoming of KEA and
Maui is the lack of any evaluation capabilities or
the possibility to run parameter sweeping exper-
iments. DKPro Keyphrases provides evaluation
tools for automatic testing of many parameter set-
tings.

Besides KEA and Mau, which are Java sys-
tems, there are several modules in Python,

e.g. topia.termextract6, which offer capabili-
ties for tokenization, part-of-speech tagging and
keyphrase extraction. Keyphrase extraction from
topia.termextract is based on noun phrases and
ranks them according to their frequencies.

BibClassify7 is a python module which auto-
matically extracts keywords from a text based on
the occurrence of terms in a thesaurus. The ranker
is frequency-based like topia.termextract. Bib-
Classify and topia.termextract do not provide eval-
uation capabilities or parameter sweeping experi-
ments.

Besides these software tools, there exist web
services for keyphrase extraction. AlchemyAPI8

offers a web service for keyword extraction. It
may return keyphrases encoded in various markup
languages. TerMine9 offers a SOAP service for
extracting keyphrases from documents and a web
demo. The input must be a String and the extracted
terms will be returned as a String. Although web
services can be integrated easily due to their proto-
col stacks, they are not extensible and replicability
cannot be guaranteed over time.

6 Conclusions and future work

We presented DKPro Keyphrases, a framework for
flexible and reusable keyphrase extraction experi-
ments. This helps researchers to effectively de-
velop new keyphrase extraction components with-
out the need to re-implement state-of-the-art ap-
proaches.

The UIMA-based architecture of DKPro
Keyphrases allows users to easily evaluate
keyphrase extraction configurations. Researchers
can integrate keyphrase extraction with different
existing linguistic preprocessing components of-
fered by the open-source community and evaluate
them in terms of all commonly used evaluation
metrics.

As future work, we plan to wrap further
third-party libraries with keyphrase extraction ap-
proaches in DKPro Keyphrases and to add a super-
vised system using the unsupervised components
as features. We expect that a supervised system us-
ing a large variety of features would improve the
state of the art in keyphrase extraction.

6https://pypi.python.org/pypi/topia.termextract/
7http://invenio-demo.cern.ch/help/admin/bibclassify-

admin-guide
8http://www.alchemyapi.com/api/keyword-extraction/
9http://www.nactem.ac.uk/software/termine/
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Abstract

We introduce ReDites, a system for real-
time event detection, tracking, monitoring
and visualisation. It is designed to as-
sist Information Analysts in understand-
ing and exploring complex events as they
unfold in the world. Events are automat-
ically detected from the Twitter stream.
Then those that are categorised as be-
ing security-relevant are tracked, geolo-
cated, summarised and visualised for the
end-user. Furthermore, the system tracks
changes in emotions over events, sig-
nalling possible flashpoints or abatement.
We demonstrate the capabilities of ReD-
ites using an extended use case from the
September 2013 Westgate shooting inci-
dent. Through an evaluation of system la-
tencies, we also show that enriched events
are made available for users to explore
within seconds of that event occurring.

1 Introduction and Challenges

Social Media (and especially Twitter) has become
an extremely important source of real-time infor-
mation about a massive number of topics, ranging
from the mundane (what I had for breakfast) to the
profound (the assassination of Osama Bin Laden).

∗Corresponding author: miles@inf.ed.ac.uk

Detecting events of interest, interpreting and mon-
itoring them has clear economic, security and hu-
manitarian importance.

The use of social media message streams for
event detection poses a number of opportunities
and challenges as these streams are: very high in
volume, often contain duplicated, incomplete, im-
precise and incorrect information, are written in
informal style (i.e. short, unedited and conver-
sational), generally concern the short-term zeit-
geist; and finally relate to unbounded domains.
These characteristics mean that while massive and
timely information sources are available, domain-
relevant information may be mentioned very infre-
quently. The scientific challenge is therefore the
detection of the signal within that noise. This chal-
lenge is exacerbated by the typical requirement
that documents must be processed in (near) real-
time, such that events can be promptly acted upon.

The ReDites system meets these requirements
and performs event detection, tracking, summari-
sation, categorisation and visualisation. To the
best of our understanding, it is the first published,
large-scale, (near) real-time Topic Detection and
Tracking system that is tailored to the needs of in-
formation analysts in the security sector. Novel as-
pects of ReDites include the first large-scale treat-
ment of spuriously discovered events and tailoring
the event stream to the security domain.
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Figure 1: System Diagram

2 Related Work

A variety of event exploration systems have previ-
ously been proposed within the literature. For in-
stance, Trend Miner1 enables the plotting of term
times series, drawn from Social Media (Preoţiuc-
Pietro and Cohn, 2013). It has a summarisation
component and is also multilingual. In contrast,
our system is focussed instead upon documents
(Tweets) and is more strongly driven by real-
time considerations. The Social Sensor (Aiello et
al., 2013) system facilitates the tracking of pre-
defined events using social streams.

In contrast, we track all automatically discov-
ered events we find in the stream. The Twitci-
dent (Abel et al., 2012) project deals with user-
driven searching through Social Media with re-
spect to crisis management. However, unlike
ReDites, these crises are not automatically dis-
covered. The LRA Crisis Tracker2 has a similar
purpose as ReDites. However, while LRA uses
crowdsourcing, our ReDites system is fully auto-
matic.

3 System Overview and Architecture

Figure 1 gives a high-level system description.
The system itself is loosely coupled, with ser-
vices from different development teams coordi-
nating via a Thrift interface. An important as-
pect of this decoupled design is that it enables ge-
ographically dispersed teams to coordinate with
each other. Event processing is comprised of the
following main 4 steps:
1) New events are detected. An event is described
by the first Tweet that we find discussing it and
is defined as something that is captured within a
single Tweet (Petrovic et al., 2010).

1http://www.trendminer-project.eu/
2http://www.lracrisistracker.com/

2) When an event is first discovered it may initially
have little information associated with it. Further-
more, events evolve over time. Hence, the sec-
ond step involves tracking the event – finding new
posts relating to it as they appear and maintaining
a concise updated summary of them.
3) Not all events are of interest to our intended
audience, so we organise them. In particular, we
determine whether an event is security-related (or
otherwise), geolocate it, and detect how prominent
emotions relating to that event evolve.
4) Finally, we visualise the produced stream of
summarised, categorised and geolocated events
for the analyst(s), enabling them to better make
sense of the mass of raw information present
within the original Twitter stream.
Section 6 further describes these four steps.

4 Data and Statistics

For the deployment of ReDites, we use the Twit-
ter 1% streaming sample. This provides approx-
imately four million Tweets per day, at a rate of
about 50 Tweets a second. Table 1 gives some
illustrative statistics on a sample of data from
September 2013 to give a feel for the rate of data
and generated events we produce. Table 2 gives
timing information, corresponding with the major
components of our system: time to process and
time to transfer to the next component, which is
usually a service on another machine on the in-
ternet. The latency of each step is measured in
seconds over a 1000 event sample. ’Transfer’ la-
tencies is the time between one step completing
and the output arriving at the next step to be pro-
cessed (Thrift transfer time). Variance is the aver-
age deviation from the mean latency over the event
sample.

When processing the live stream, we ingest data
at an average rate of 50 Tweets per second and de-
tect an event (having geolocated and filtered out
non-English or spam Tweets) with a per-Tweet la-
tency of 0.6±0.55 seconds. Figure 2 gives laten-
cies for the various major components of the sys-
tem. All processing uses commodity machines.

5 The Westgate Shopping Mall Attack

As an illustrative example of a complex recent
event, we considered a terrorist attack on the 21st
of September, 2013.3 This event is used to demon-
strate how our system can be used to understand it.

3https://en.wikipedia.org/wiki/Westgate shopping mall shooting
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Measure Event Detection Tracking and Summ Emotion Ident Security Class
Detection Transfer Ranking Summ Transfer Ident Transfer Class

Latency (sec.) 0.6226 0.7929 2.2892 0.0409 0.0519 0.2881 0.1032 0.1765
Variance (sec.) 0.5518 0.2987 1.3079 0.0114 0.0264 0.1593 0.0195 0.0610

Table 2: Event exploration timing and timing variance (seconds)

Data Rate
Tweets 35 Million
Detected events 533k
Categorised (security-related) events 5795

Table 1: Data statistics, 1st September - 30th
September 2013

In summary, a shopping Mall in Kenya was at-
tacked from the 21st of September until the 24th
of September. This event was covered by tradi-
tional newswire, by victims caught up in it as well
as by terrorist sympathisers, often in real-time.
As we later show, even though we only operate
over 1% of the Twitter Stream, we are still able to
find many (sub) events connected with this attack.
There were 6657 mentions of Westgate in Septem-
ber 2013 in our 1% of sample Tweets.

6 Major Components

6.1 Event Detection

Building upon an established Topic Detection and
Tracking (TDT) methodology, which assumes that
each new event corresponds with seeing some
novel document. the event detection component
uses a hashing approach that finds novel events4

in constant time (Petrovic et al., 2010). To make
it scale and process thousands of documents each
second, it can optionally be distributed over a clus-
ter of machines (via Storm5) (McCreadie et al.,
2013). The system favours recall over precision
and has been shown to have high recall, but a low
precision (Petrovic et al., 2013). Given that we are
presenting discovered events to a user and we do
not want to overload them with false positives, we
need to take steps to increase precision (ie present
fewer false positives).

We use a content categoriser to determine
whether a discovered event is worth reporting.
Using more than 100k automatically discovered
events from the Summer of 2011, we created a
training set and manually labelled each Tweet:

4An event is defined as something happening at a given
time and place. Operationally, this means something that can
be described within a Tweet.

5http://storm.incubator.apache.org/

was it content bearing (what you might want to
read about in traditional newswire) or irrelevant
/ not useful. With this labelled data, we used
a Passive-Aggressive algorithm to build a con-
tent classifier. Features were simply unigrams in
Tweets. This dramatically improves precision, to
70%, with a drop in recall to 25% (when tested
on 73k unseen events, manually labelled by two
annotators). We can change the precision-recall
boundary as needed by adjusting the associated
decision boundary. We do not consider non-
English language Tweets in this work and they are
filtered out (Lui and Baldwin, 2012).

Geolocation is important, as we are particu-
larly interested in events that occur at a spe-
cific location. We therefore additionally geolo-
cate any Tweets that were not originally ge-
olocated. To geotag those Tweets that do not
have any geo-location information we use the
Tweet text and additional Tweet metadata (lan-
guage, city/state/country name, user description
etc), to learn a L1 penalised least squares regres-
sor (LASSO) to predict the latitude and longitude.
The model is learnt on nearly 20 million geo-
located Tweets collected from 2010-2014. Exper-
iments on a held-out test dataset show we can lo-
calise Tweets to within a mean distance of 433 km
of their true location. This performance is based
on the prediction of individual tweet location and
not, as in most previous work, on the location of a
user who is represented by a set of tweets. Further-
more we are not restricted to a single, well-defined
area (such as London) and we also evaluate over a
very large set of unfiltered tweets.

Turning to the Westgate example, the first men-
tion of it in our data was at 10:02 UTC. There were
57 mentions of Westgate in discovered events,
of which 42 mentioned Kenya and 44 mentioned
Nairobi. The first mention itself in Twitter was at
09:38 UTC. We declared it an event (having seen
enough evidence and post-processing it) less than
one second later:

Westgate under siege. Armed thugs. Gun-
shots reported. Called the managers, phones are
off/busy. Are cops on the way?

We also captured numerous informative sub-
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events covering different aspects and sides of the
central Westgate siege event, four of these are il-
lustrated below:

Post Time Tweet
10:05am RT @ItsMainaKageni: My friend Ruhila Adatia

passed away together with her unborn child. Please
keep her family and new husband in your thou

10:13am RT howden africa: Kenya police firing tear gas and
warning shots at Kenyan onlookers. Crowd getting
angry #westgate

10:10am RT @BreakingNews: Live video: Local news cov-
erage of explosions, gunfire as smoke billows from
Nairobi, Kenya, mall - @KTNKenya

10:10am ”Purportedly official Twitter account for al-Shabaab
Tweeting on the Kenyan massacre HSM Press
(http://t.co/XnCz9BulGj)

6.2 Tracking and Summarisation

The second component of the event exploration
system is Tracking and Summarisation (TaS). The
aim of this component is to use the underlying
Tweet stream to produce an overview for each
event produced by the event detection stage, up-
dating this overview as the event evolves. Track-
ing events is important when dealing with live, on-
going disasters, since new information can rapidly
emerge over time.

TaS takes as input a Tweet representing an event
and emits a list of Tweets summarising that event
in more detail. TaS is comprised of two dis-
tinct sub-components, namely: real-time tracking;
and event summarisation. The real-time track-
ing component maintains a sliding window of
Tweets from the underlying Tweet stream. As
an event arrives, the most informative terms con-
tained6 form a search query that is used to retrieve
new Tweets about the event. For example, tak-
ing the Tweet about the Westgate terrorist attack
used in the previous section as input on September
21st 2013 at 10:15am, the real-time tracking sub-
component retrieved the following related Tweets
from the Twitter Spritzer (1%) steam7 (only 5/100
are shown):

ID Post Time Tweet Score
1 10:05am Westgate under siege. Armed thugs. Gun-

shots reported. Called the managers, phones are
off/busy. Are cops on the way?

123.7

2 10:13am DO NOT go to Westgate Mall. Gunshots and
mayhem, keep away until further notice.

22.9

3 10:13am RT DO NOT go to Westgate Mall. Gunshots
and mayhem, keep away until further notice.

22.9

4 10:10am Good people please avoid Westgate Mall. @Po-
liceKE @IGkimaiyo please act ASAP, reports
of armed attack at #WestgateMall

22.2

5 10:07am RT @steve enzo: @kirimiachieng these thugs
won’t let us be

11.5

6Nouns, adjectives, verbs and cardinal numbers
7https://dev.twitter.com/docs/streaming-

apis/streams/public

The second TaS sub-component is event sum-
marisation. This sub-component takes as input the
Tweet ranking produced above and performs ex-
tractive summarisation (Nenkova and McKeown,
2012) upon it, i.e. it selects a subset of the ranked
Tweets to form a summary of the event. The goals
of event summarisation are two-fold. First, to re-
move any Tweets from the above ranking that are
not relevant to the event (e.g. Tweet 5 in the exam-
ple above). Indeed when an event is first detected,
there may be few relevant Tweets yet posted. The
second goal is to remove redundancy from within
the selected Tweets, such as Tweets 2 and 3 in the
above example, thereby focussing the produced
summary on novelty. To tackle the first of these
goals, we leverage the score distribution of Tweets
within the ranking to identify those Tweets that are
likely background noise. When an event is first
detected, few relevant Tweets will be retrieved,
hence the mean score over the Tweets is indicative
of non-relevant Tweets. Tweets within the rank-
ing whose scores diverge from the mean score in
the positive direction are likely to be on-topic. We
therefore, make an include/exclude decision for
each Tweet t in the ranking R:

include(t, R) =


1 if score(t)− SD(R) > 0

and |SD(R)− score(t)| >
θ · 1
|R|

∑
t′∈R |SD(R)− score(t′)|

0 otherwise

(1)
where SD(R) is the standard deviation of scores
inR, score(t) is the retrieval score for Tweet t and
θ is a threshold parameter that describes the mag-
nitude of the divergence from the mean score that
a Tweet must have before it is included within the
summary. Then, to tackle the issue of redundancy,
we select Tweets in a greedy time-ordered man-
ner (earliest first). A similarity (cosine) threshold
between the current Tweet and each Tweet previ-
ously selected is used to remove those that are tex-
tually similar, resulting in the following extractive
summary:

ID Post Time Tweet Score
1 10:05am Westgate under siege. Armed thugs.

Gunshots reported. Called the man-
agers, phones are off/busy. Are cops
on the way?

123.7

2 10:13am DO NOT go to Westgate Mall. Gun-
shots and mayhem, keep away until
further notice.

22.9

4 10:10am Good people please avoid Westgate
Mall. @PoliceKE @IGkimaiyo please
act ASAP, reports of armed attack at
#WestgateMall

22.2

Finally, the TaS component can be used to track
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events over time. In this case, instead of tak-
ing a new event as input from the event detec-
tion component, a previously summarised event
can be used as a surrogate. For instance, a user
might identify an event that they want to track.
The real-time search sub-component retrieves new
Tweets about the event posted since that event was
last summarised. The event summarisation sub-
component then removes non-relevant and redun-
dant Tweets with respect to those contained within
the previous summary, producing a new updated
summary.

6.3 Organising Discovered Events

The events we discover are not targeted at infor-
mation analysts. For example, they contain sports
updates, business acquisitions as well as those that
are genuinely relevant and can bear various opin-
ions and degrees of emotional expression. We
therefore take steps to filter and organise them for
our intended audience: we predict whether they
have a specific security-focus and finally predict
an emotional label for events (which can be useful
when judging changing viewpoints on events and
highlighting extreme emotions that could possibly
motivate further incidents).

6.3.1 Security-Related Event Detection
We are particularly interested in security-related
events such as violent events, natural disasters, or
emergency situations. Given a lack of in-domain
labelled data, we resort to a weakly supervised
Bayesian modelling approach based on the previ-
ously proposed Violence Detection Model (VDM)
(Cano et al., 2013) for identifying security events.

In order to differentiate between security and
non-security related events, we extract words re-
lating to security events from existing knowledge
sources such as DBpedia and incorporate them as
priors into the VDM model learning. It should be
noted that such a word lexicon only provides ini-
tial prior knowledge into the model. The model
will automatically discover new words describing
security-related events.

We trained the VDM model on a randomly
sampled 10,581 Tweets from the TREC Mi-
croblog 2011 corpus (McCreadie et al., 2012)
and tested the model on 1,759 manually labelled
Tweets which consist of roughly the same num-
ber of security-related and non-security related
Tweets. Our results show that the VDM model
achieved 85.8% in F-measure for the identification

of security-related Tweets, which is not far from
the F-measure of 90% obtained using the super-
vised Naive Bayes classifier despite using no la-
belled data in the model.

Here, we derived word priors from a total
of 32,174 documents from DBpedia and ex-
tracted 1,612 security-related words and 1,345
non-security-related words based on the measure-
ment of relative word entropy. We then trained
the VDM model by setting the topic number to
50 and using 7,613 event Tweets extracted from
the Tweets collected during July-August 2011 and
September 2013 in addition to 10,581 Tweets from
the TREC Microblog 2011 corpus. In the afore-
mentioned Westgate example, we classify 24% of
Tweets as security-related out of a total of 7,772
summary Tweets extracted by the TaS component.
Some of the security-related Tweets are listed be-
low8:

ID Post Time Tweet
1 9:46am Like Bin Laden kind of explosion?

”@The realBIGmeat:
There is an explosion at westgate!”

2 10:08am RT @SmritiVidyarthi: DO NOT go to Westgate
Mall. Gunshots and mayhem, keep away till further no-
tice.

3 10:10am RT @juliegichuru: Good people please avoid
Westgate. @PoliceKE @IGkimaiyo please act
ASAP, reports of armed attack at #WestgateMall.

4 10:13am there has bn shooting @ Westgate which is suspected
to b of gangs.......there is tension rt nw....

6.3.2 Emotion
Security-related events can be fraught, with emo-
tionally charged posts possibly evolving over time,
reflecting ongoing changes in underlying events.
Eight basic emotions, as identified in the psychol-
ogy literature (see (Sykora et al., 2013a) for a de-
tailed review of this literature) are covered, specif-
ically; anger, confusion, disgust, fear, happiness,
sadness, shame and surprise. Extreme values –as
well as their evolution– can be useful to an ana-
lyst (Sykora et al., 2013b). We detect enotions in
Tweets and support faceted browing. The emotion
component assigns labels to Tweets representing
these emotions. It is based upon a manually con-
structed ontology, which captures the relationships
between these emotions and terms (Sykora et al.,
2013a).

We sampled the summarised Tweets of the
Westgate attack, starting from the event detection
and following the messages over a course of seven
days. In the relevant Tweets, we detected that

8Note some Tweets happen on following days.
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8.6% had emotive terms in them, which is in line
with the aforementioned literature. Some example
expressions of emotion include:

Time Tweet Emotions
03:34 -) Ya so were those gunshots outside Fear

of gables?! I’m terrified ?
06:27 -) I’m so impressed @ d way. Kenyans r handling d siege. Surprise
14:32 -) All you xenophobic idiots spewing anti-Muslim Fear

bullshit need to -get in one of these donation lines Disgust
and see how wrong you ?

For Westgate, the emotions of sadness, fear and
surprise dominated. Very early on the emotions of
fear and sadness were expressed, as Twitter users
were terrified by the event and saddened by the
loss of lives. Sadness and fear were – over time –
the emotions that were stated most frequently and
constantly, with expressions of surprise, as users
were shocked about what was going on, and some
happiness relating to when people managed to
escape or were rescued from the mall. Generally
speaking, factual statements in the Tweets were
more prominent than emotive ones. This coincides
with the emotive Tweets that represented fear and
surprise in the beginning, as it was not clear what
had happened and Twitter users were upset and
tried to get factual information about the event.

6.4 Visual Analytics

The visualisation component is designed to facili-
tate the understanding and exploration of detected
events. It offers faceted browsing and multiple vi-
sualisation tools to allow an information analyst
to gain a rapid understanding of ongoing events.
An analyst can constrain the detected events us-
ing information both from the original Tweets (e.g.
hashtags, locations, user details) and from the up-
dated summaries derived by ReDites. The ana-
lyst can also view events using facet values, loca-
tions/keywords in topic maps and time/keywords
in multiple timelines. By combining informa-
tion dimensions, the analyst can determine pat-
terns across dimensions to determine if an event
should be acted upon – e.g the analyst can choose
to view Tweets, which summarise highly emotive
events, concerning middle eastern countries.

7 Discussion

We have presented ReDites, the first published
system that carries out large-scale event detection,
tracking summarisation and visualisation for the
security sector. Events are automatically identified
and those that are relevant to information analysts

are quickly made available for ongoing monitor-
ing. We showed how the system could be used
to help understand a complex, large-scale security
event. Although our system is initially specialised
to the security sector, it is easy to repurpose it to
other domains, such as natural disasters or smart
cities. Key aspects of our approach include scala-
bility and a rapid response to incoming data.
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Abstract

This paper presents the Excitement Open
Platform (EOP), a generic architecture and
a comprehensive implementation for tex-
tual inference in multiple languages. The
platform includes state-of-art algorithms,
a large number of knowledge resources,
and facilities for experimenting and test-
ing innovative approaches. The EOP is
distributed as an open source software.

1 Introduction

In the last decade textual entailment (Dagan et al.,
2009) has been a very active topic in Computa-
tional Linguistics, providing a unifying framework
for textual inference. Several evaluation exercises
have been organized around Recognizing Textual
Entailment (RTE) challenges and many method-
ologies, algorithms and knowledge resources have
been proposed to address the task. However, re-
search in textual entailment is still fragmented and
there is no unifying algorithmic framework nor
software architecture.

In this paper, we present the Excitement Open
Platform (EOP), a generic architecture and a com-
prehensive implementation for multilingual textual
inference which we make available to the scien-
tific and technological communities. To a large
extent, the idea is to follow the successful experi-
ence of the Moses open source platform (Koehn et
al., 2007) in Machine Translation, which has made
a substantial impact on research in that field. The
EOP is the result of a two-year coordinated work
under the international project EXCITEMENT.1 A
consortium of four academic partners has defined
the EOP architectural specifications, implemented
the functional interfaces of the EOP components,
imported existing entailment engines into the EOP

1http://www.excitement-project.eu

and finally designed and implemented a rich envi-
ronment to support open source distribution.

The goal of the platform is to provide function-
ality for the automatic identification of entailment
relations among texts. The EOP is based on a modu-
lar architecture with a particular focus on language-
independent algorithms. It allows developers and
users to combine linguistic pipelines, entailment al-
gorithms and linguistic resources within and across
languages with as little effort as possible. For ex-
ample, different entailment decision approaches
can share the same resources and the same sub-
components in the platform. A classification-based
algorithm can use the distance component of an
edit-distance based entailment decision approach,
and two different approaches can use the same set
of knowledge resources. Moreover, the platform
has various multilingual components for languages
like English, German and Italian. The result is an
ideal software environment for experimenting and
testing innovative approaches for textual inferences.
The EOP is distributed as an open source software2

and its use is open both to users interested in using
inference in applications and to developers willing
to extend the current functionalities.

The paper is structured as follows. Section 2
presents the platform architecture, highlighting
how the EOP component-based approach favors
interoperability. Section 3 provides a picture of
the current population of the EOP in terms of both
entailment algorithms and knowledge resources.
Section 4 introduces expected use cases of the plat-
form. Finally, Section 5 presents the main features
of the open source package.

2 Architecture

The EOP platform takes as input two text portions,
the first called the Text (abbreviated with T), the
second called the Hypothesis (abbreviated with H).

2http://hltfbk.github.io/
Excitement-Open-Platform/
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Figure 1: EOP architecture

The output is an entailment judgement, either ”En-
tailment” if T entails H, or ”NonEntailment” if the
relation does not hold. A confidence score for the
decision is also returned in both cases.

The EOP architecture (Padó et al., 2014) is based
on the concept of modularization with pluggable
and replaceable components to enable extension
and customization. The overall structure is shown
in Figure 1 and consists of two main parts. The
Linguistic Analysis Pipeline (LAP) is a series of
linguistic annotation components. The Entailment
Core (EC) performs the actual entailment recog-
nition. This separation ensures that (a) the com-
ponents in the EC only rely on linguistic analysis
in well-defined ways and (b) the LAP and EC can
be run independently of each other. Configuration
files are the principal means of configuring the EOP.
In the rest of this section we first provide an intro-
duction to the LAP, then we move to the EC and
finally describe the configuration files.

2.1 Linguistic Analysis Pipeline (LAP)

The Linguistic Analysis Pipeline is a collection of
annotation components for Natural Language Pro-
cessing (NLP) based on the Apache UIMA frame-
work.3 Annotations range from tokenization to
part of speech tagging, chunking, Named Entity
Recognition and parsing. The adoption of UIMA
enables interoperability among components (e.g.,
substitution of one parser by another one) while
ensuring language independence. Input and output
of the components are represented in an extended
version of the DKPro type system based on UIMA

3http://uima.apache.org/

Common Analysis Structure (CAS) (Gurevych et
al., 2007; Noh and Padó, 2013).

2.2 Entailment Core (EC)
The Entailment Core performs the actual entail-
ment recognition based on the preprocessed text
made by the Linguistic Analysis Pipeline. It con-
sists of one or more Entailment Decision Algo-
rithms (EDAs) and zero or more subordinate com-
ponents. An EDA takes an entailment decision
(i.e., ”entailment” or ”no entailment”) while com-
ponents provide static and dynamic information for
the EDA.

Entailment Decision Algorithms are at the top
level in the EC. They compute an entailment deci-
sion for a given Text/Hypothesis (T/H) pair, and
can use components that provide standardized al-
gorithms or knowledge resources. The EOP ships
with several EDAs (cf. Section 3).

Scoring Components accept a Text/Hypothesis
pair as an input, and return a vector of scores.
Their output can be used directly to build minimal
classifier-based EDAs forming complete RTE sys-
tems. An extended version of these components are
the Distance Components that can produce normal-
ized and unnormalized distance/similarity values
in addition to the score vector.

Annotation Components can be used to add dif-
ferent annotations to the Text/Hypothesis pairs. An
example of such a type of component is one that
produces word or phrase alignments between the
Text and the Hypothesis.

Lexical Knowledge Components describe se-
mantic relationships between words. In the
EOP, this knowledge is represented as directed
rules made up of two word–POS pairs, where
the LHS (left-hand side) entails the RHS (right-
hand side), e.g., (shooting star, Noun) =⇒
(meteorite,Noun). Lexical Knowledge Compo-
nents provide an interface that allows for (a) listing
all RHS for a given LHS; (b) listing all LHS for
a given RHS; and (c) checking for an entailment
relation for a given LHS–RHS pair. The interface
also wraps all major lexical knowledge sources cur-
rently used in RTE research, including manually
constructed ontologies like WordNet, and encyclo-
pedic resources like Wikipedia.

Syntactic Knowledge Components capture en-
tailment relationships between syntactic and
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lexical-syntactic expressions. We represent such
relationships by entailment rules that link (option-
ally lexicalized) dependency tree fragments that
can contain variables as nodes. For example, the
rule fall of X =⇒ X falls, or X sells Y to Z =⇒
Z buys Y from X express general paraphrasing pat-
terns at the predicate-argument level that cannot be
captured by purely lexical rules. Formally, each
syntactic rule consists of two dependency tree frag-
ments plus a mapping from the variables of the
LHS tree to the variables of the RHS tree.4

2.3 Configuration Files
The EC components can be combined into actual
inference engines through configuration files which
contain information to build a complete inference
engine. A configuration file completely describes
an experiment. For example, it specifies the re-
sources that the selected EDA has to use and the
data set to be analysed. The LAP needed for data
set preprocessing is another parameter that can be
configured too. The platform ships with a set of
predefined configuration files accompanied by sup-
porting documentation.

3 Entailment Algorithms and Resources

This section provides a description of the Entail-
ment Algorithms and Knowledge Resources that
are distributed with the EOP.

3.1 Entailment Algorithms
The current version of the EOP platform ships with
three EDAs corresponding to three different ap-
proaches to RTE: an EDA based on transformations
between T and H, an EDA based on edit distance
algorithms, and a classification based EDA using
features extracted from T and H.

Transformation-based EDA applies a sequence
of transformations on T with the goal of making
it identical to H. If each transformation preserves
(fully or partially) the meaning of the original text,
then it can be concluded that the modified text
(which is actually the Hypothesis) can be inferred
from the original one. Consider the following sim-
ple example where the text is ”The boy was located
by the police” and the Hypothesis is ”The child
was found by the police”. Two transformations for
”boy”→ ”child” and ”located”→ ”found” do the
job.

4Variables of the LHS may also map to null, when material
of the LHS must be present but is deleted in the inference step.

In the EOP we include a transformation based
inference system that adopts the knowledge based
transformations of Bar-Haim et al. (2007), while in-
corporating a probabilistic model to estimate trans-
formation confidences. In addition, it includes a
search algorithm which finds an optimal sequence
of transformations for any given T/H pair (Stern et
al., 2012).

Edit distance EDA involves using algorithms
casting textual entailment as the problem of map-
ping the whole content of T into the content of H.
Mappings are performed as sequences of editing
operations (i.e., insertion, deletion and substitu-
tion) on text portions needed to transform T into H,
where each edit operation has a cost associated with
it. The underlying intuition is that the probability
of an entailment relation between T and H is related
to the distance between them; see Kouylekov and
Magnini (2005) for a comprehensive experimental
study.

Classification based EDA uses a Maximum En-
tropy classifier to combine the outcomes of sev-
eral scoring functions and to learn a classification
model for recognizing entailment. The scoring
functions extract a number of features at various
linguistic levels (bag-of-words, syntactic dependen-
cies, semantic dependencies, named entities). The
approach was thoroughly described in Wang and
Neumann (2007).

3.2 Knowledge Resources

As described in Section 2.2, knowledge resources
are crucial to recognize cases where T and H use
different textual expressions (words, phrases) while
preserving entailment. The EOP platform includes
a wide range of knowledge resources, including lex-
ical and syntactic resources, where some of them
are grabbed from manual resources, like dictionar-
ies, while others are learned automatically. Many
EOP resources are inherited from pre-existing RTE
systems migrated into the EOP platform, but now
use the same interfaces, which makes them acces-
sible in a uniform fashion.

There are about two dozen lexical (e.g. word-
nets) and syntactic resources for three languages
(i.e. English, Italian and German). However,
since there is still a clear predominance of En-
glish resources, the platform includes lexical and
syntactic knowledge mining tools to bootstrap re-
sources from corpora, both for other languages and
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EDA Accuracy / F1
Transformation-based English RTE-3 67.13%
Transformation-based English RTE-6 49.55%
Edit-Distance English RTE-3 64.38%
Edit-Distance German RTE-3 59.88%
Edit-Distance Italian RTE-3 63.50%
Classification-based English RTE-3 65.25%
Classification-based German RTE-3 63.75%
Median of RTE-3 (English) submissions 61.75%
Median of RTE-6 (English) submissions 33.72%

Table 1: EDAs results

for specific domains. Particularly, the EOP plat-
form includes a language independent tool to build
Wikipedia resources (Shnarch et al., 2009), as well
as a language-independent framework for building
distributional similarity resources like DIRT (Lin
and Pantel, 2002) and Lin similarity(Lin, 1998).

3.3 EOP Evaluation

Results for the three EDAs included in the EOP
platform are reported in Table 1. Each line rep-
resents an EDA, the language and the dataset
on which the EDA was evaluated. For brevity,
we omit here the knowledge resources used for
each EDA, even though knowledge configuration
clearly affects performance. The evaluations were
performed on RTE-3 dataset (Giampiccolo et al.,
2007), where the goal is to maximize accuracy. We
(manually) translated it to German and Italian for
evaluations: in both cases the results fix a refer-
ence for the two languages. The two new datasets
for German and English are available both as part
of the EOP distribution and independently5. The
transformation-based EDA was also evaluated on
RTE-6 dataset (Bentivogli et al., 2010), in which
the goal is to maximize the F1 measure.

The results of the included EDAs are higher than
median values of participated systems in RTE-3,
and they are competing with state-of-the-arts in
RTE-6 results. To the best of our knowledge, the
results of the EDAs as provided in the platform are
the highest among those available as open source
systems for the community.

4 Use Cases

We see four primary use cases for the EOP. Their
requirements were reflected in our design choices.

Use Case 1: Applied Textual Entailment. This
category covers users who are not interested in the

5http://www.excitement-project.eu/
index.php/results

details of RTE but who are interested in an NLP
task in which textual entailment can take over part
of or all of the semantic processing, such as Ques-
tion Answering or Intelligent Tutoring. Such users
require a system that is as easy to deploy as possi-
ble, which motivates our offer of the EOP platform
as a library. They also require a system that pro-
vides good quality at a reasonable efficiency as
well as guidance as to the best choice of parame-
ters. The latter point is realized through our results
archive in the official EOP Wiki on the EOP site.

Use Case 2: Textual Entailment Development.
This category covers researchers who are interested
in Recognizing Textual Entailment itself, for exam-
ple with the goal of developing novel algorithms
for detecting entailment. In contrast to the first
category, this group need to look ”under the hood”
of the EOP platform and access the source code of
the EOP. For this reason, we have spent substantial
effort to provide the code in a well-structured and
well-documented form.

A subclass of this group is formed by researchers
who want to set up a RTE infrastructure for lan-
guages in which it does not yet exist (that is, al-
most all languages). The requirements of this class
of users comprises clearly specified procedures to
replace the Linguistic Analysis Pipeline, which are
covered in our documentation, and simple methods
to acquire knowledge resources for these languages
(assuming that the EDAs themselves are largely
language-independent). These are provided by the
language-independent knowledge acquisition tools
which we offer alongside the platform (cf. Section
3.2).

Use Case 3: Lexical Semantics Evaluation. A
third category consists of researchers whose pri-
mary interest is in (lexical) semantics.

As long as their scientific results can be phrased
in terms of semantic similarities or inference rules,
the EOP platform can be used as a simple and stan-
dardized workbench for these results that indicates
the impact that the semantic knowledge under con-
sideration has on deciding textual entailment. The
main requirement for this user group is the simple
integration of new knowledge resources into the
EOP platform. This is catered for through the defi-
nition of the generic knowledge component inter-
faces (cf. Section 2.2) and detailed documentation
on how to implement these interfaces.
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Use Case 4: Educational Use. The fourth and
final use case is as an educational tool to support
academic courses and projects on Recognizing Tex-
tual Entailment and inference more generally. This
use case calls, in common with the others, for easy
usability and flexibility. Specifically for this use
case, we have also developed a series of tutorials
aimed at acquainting new users with the EOP plat-
form through a series of increasingly complexity
exercises that cover all areas of the EOP. We are
also posting proposals for projects to extend the
EOP on the EOP Wiki.

5 EOP Distribution

The EOP infrastructure follows state-of-the-art soft-
ware engineering standards to support both users
and developers with a flexible, scalable and easy to
use software environment. In addition to communi-
cation channels, like the mailing list and the issue
tracking system, the EOP infrastructure comprises
the following set of facilities.

Version Control System: We use GitHub,6 a
web-based hosting service for code and documen-
tation storage, development, and issue tracking.

Web Site: The GitHub Automatic Page Genera-
tor was used to build the EOP web site and Wiki,
containing a general introduction to the software
platform, the terms of its license, mailing lists to
contact the EOP members and links to the code
releases.

Documentation: Both user and developer docu-
mentation is available from Wiki pages; the pages
are written with the GitHub Wiki Editor and hosted
on the GitHub repository. The documentation in-
cludes a Quick Start guide to start using the EOP
platform right away, and a detailed step by step
tutorial.

Results Archive: As a new feature for commu-
nity building, EOP users can, and are encouraged
to, share their results: the platform configuration
files used to produce results as well as contact infor-
mation can be saved and archived into a dedicated
page on the EOP GitHub repository. That allows
other EOP users to replicate experiments under
the same condition and/or avoid doing experiments
that have already been done.

6https://github.com/

Build Automation Tool: The EOP has been de-
veloped as a Maven7 multi-modules project, with
all modules sharing the same Maven standard struc-
ture, making it easier to find files in the project once
one is used to Maven.

Maven Artifacts Repository: Using a Maven
repository has a twofold goal: (i) to serve as an
internal private repository of all software libraries
used within the project (libraries are binary files
and should not be stored under version control sys-
tems, which are intended to be used with text files);
(ii) to make the produced EOP Maven artifacts
available (i.e., for users who want to use the EOP
as a library in their own code). We use Artifactory8

repository manager to store produced artifacts.

Continuous Integration: The EOP uses Jenk-
ins9 for Continuous Integration, a software develop-
ment practice where developers of a team integrate
their work frequently (e.g., daily).

Code Quality Tool: Ensuring the quality of the
produced software is one of the most important
aspects of software engineering. The EOP uses
tools like PMD10 that can automatically be run
during development to help the developers check
the quality of their software.

5.1 Project Repository

The EOP Java source code is hosted on the EOP
Github repository and managed using Git. The
repository consists of three main branches: the
release branch contains the code that is supposed to
be in a production-ready state, whereas the master
branch contains the code to be incorporated into the
next release. When the source code in the master
branch reaches a stable point and is ready to be
released, all of the changes are merged back into
release. Finally, the gh-pages branch contains the
web site pages.

5.2 Licensing

The software of the platform is released under the
terms of General Public License (GPL) version
3.11 The platform contains both components and
resources designed by the EOP developers, as well
as others that are well known and freely available

7http://maven.apache.org/
8http://www.jfrog.com/
9http://jenkins-ci.org/

10http://pmd.sourceforge.net
11http://www.gnu.org/licenses/gpl.html
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in the NLP research community. Additional com-
ponents and resources whose license is not compat-
ible with the EOP license have to be downloaded
and installed separately by the user.

6 Conclusion

This paper has presented the main characteristics
of Excitement Open Platform platform, a rich envi-
ronment for experimenting and evaluating textual
entailment systems. On the software side, the EOP
is a complex endeavor to integrate tools and re-
sources in Computational Linguistics, including
pipelines for three languages, three pre-existing
entailment engines, and about two dozens of lex-
ical and syntactic resources. The EOP assumes a
clear and modular separation between linguistic
annotations, entailment algorithms and knowledge
resources which are used by the algorithms. A
relevant benefit of the architectural design is that
a high level of interoperability is reached, provid-
ing a stimulating environment for new research in
textual inferences.

The EOP platform has been already tested in sev-
eral pilot research projects and educational courses,
and it is currently distributed as open source soft-
ware under the GPL-3 license. To the best of our
knowledge, the entailment systems and their con-
figurations provided in the platform are the best
systems available as open source for the commu-
nity. As for the future, we are planning several
initiatives for the promotion of the platform in the
research community, as well as its active experi-
mentation in real application scenarios.
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Tae-Gil Noh and Sebastian Padó. 2013. Using
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Abstract

We describe the WordsEye Linguistics
tool (WELT), a novel tool for the docu-
mentation and preservation of endangered
languages. WELT is based on Words-
Eye (Coyne and Sproat, 2001), a text-to-
scene tool that automatically generates 3D
scenes from written input. WELT has two
modes of operation. In the first mode, En-
glish input automatically generates a pic-
ture which can be used to elicit a de-
scription in the target language. In the
second mode, the linguist formally docu-
ments the grammar of an endangered lan-
guage, thereby creating a system that takes
input in the endangered language and gen-
erates a picture according to the grammar;
the picture can then be used to verify the
grammar with native speakers. We will
demonstrate WELT’s use on scenarios in-
volving Arrernte and Nahuatl.

1 Introduction

Although languages have appeared and disap-
peared throughout history, today languages are
facing extinction at an unprecedented pace. Over
40% of the estimated 7,000 languages in the world
are at risk of disappearing. When languages die
out, we lose access to an invaluable resource for
studying the culture, history, and experience of
peoples around the world (Alliance for Linguistic
Diversity, 2013). Efforts to document languages
and develop tools in support of collecting data on
them become even more important with the in-
creasing rate of extinction. Bird (2009) empha-
sizes a particular need to make use of computa-
tional linguistics during fieldwork.

To address this issue, we are developing the
WordsEye Linguistics Tool, or WELT. In the first
mode of operation, we provide a field linguist with

tools for running custom elicitation sessions based
on a collection of 3D scenes. In the second, input
in an endangered language generates a picture rep-
resenting the input’s meaning according to a for-
mal grammar.

WELT provides important advantages for elic-
itation over the pre-fabricated sets of static pic-
tures commonly used by field linguists today. The
field worker is not limited to a fixed set of pictures
but can, instead, create and modify scenes in real
time, based on the informants’ answers. This al-
lows them to create additional follow-up scenes
and questions on the fly. In addition, since the
pictures are 3D scenes, the viewpoint can easily
be changed, allowing exploration of linguistic de-
scriptions based on different frames of reference.
This will be particularly useful in eliciting spatial
descriptions. Finally, since scenes and objects can
easily be added in the field, the linguist can cus-
tomize the images used for elicitation to be maxi-
mally relevant to the current informants.

WELT also provides a means to document the
semantics of a language in a formal way. Lin-
guists can customize their studies to be as deep or
shallow as they wish; however, we believe that a
major advantage of documenting a language with
WELT is that it enables such studies to be much
more precise. The fully functioning text-to-scene
system created as a result of this documentation
will let linguists easily test the theories they de-
velop with native speakers, making changes to
grammars and semantics in real time. The result-
ing text-to-scene system can be an important tool
for language preservation, spreading interest in the
language among younger generations of the com-
munity and recruiting new speakers.

We will demonstrate the features of WELT
for use in fieldwork, including designing elic-
itation sessions, building scenes, recording au-
dio, and adding descriptions and glosses to a
scene. We will use examples from sessions we
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have conducted with a native speaker of Nahu-
atl, an endangered language spoken in Mexico.
We will demonstrate how to document seman-
tics with WELT, using examples from Arrernte,
an Australian aboriginal language spoken in Alice
Springs. We will also demonstrate a basic Arrernte
text-to-scene system created in WELT.

In the following sections, we will mention re-
lated work (Section 2), discuss the WordsEye sys-
tem that WELT is based on (Section 3), describe
WELT in more detail, highlighting the functional-
ity that will appear in our demonstration (Section
4), and briefly mention our future plans for WELT
(Section 5).

2 Related Work

One of the most widely-used computer toolkits for
field linguistics is SIL Fieldworks. FieldWorks is
a collection of software tools; the most relevant
for our research is FLEx, Fieldworks Language
Explorer. FLEx includes tools for eliciting and
recording lexical information, dictionary develop-
ment, interlinearization of texts, analysis of dis-
course features, and morphological analysis. An
important part of FLEx is its “linguist-friendly”
morphological parser (Black and Simons, 2006),
which uses an underlying model of morphology
familiar to linguists, is fully integrated into lexicon
development and interlinear text analysis, and pro-
duces a human-readable grammar sketch as well
as a machine-interpretable parser.

Several computational tools aim to simplify the
formal documentation of syntax by eliminating
the need to master particular grammar formalisms.
First is the PAWS starter kit (Black and Black,
2012), a system that prompts linguists with a series
of guided questions about the target language and
uses their answers to produce a PC-PATR gram-
mar (McConnel, 1995). The LinGO Grammar
Matrix (Bender et al., 2002) is a similar tool de-
veloped for HPSG that uses a type hierarchy to
represent cross-linguistic generalizations.

The most commonly used resource for for-
mally documenting semantics across languages
is FrameNet (Filmore et al., 2003). FrameNets
have been developed for many languages, includ-
ing Spanish, Japanese, and Portuguese. Most
start with English FrameNet and adapt it for the
new language; a large portion of the frames end
up being substantially the same across languages
(Baker, 2008). ParSem (Butt et al., 2002) is a

collaboration to develop parallel semantic repre-
sentations across languages, by developing seman-
tic structures based on LFG. Neither of these re-
sources, however, are targeted at helping non-
computational linguists formally document a lan-
guage, as compared to the morphological parser in
FLEx or the syntactic documentation in PAWS.

3 WordsEye Text-to-Scene System

WordsEye (Coyne and Sproat, 2001) is a system
for automatically converting natural language text
into 3D scenes representing the meaning of that
text. WordsEye supports language-based control
of spatial relations, textures and colors, collec-
tions, facial expressions, and poses; it handles
simple anaphora and coreference resolution, al-
lowing for a variety of ways of referring to ob-
jects. The system assembles scenes from a library
of 2,500 3D objects and 10,000 images tied to an
English lexicon of about 15,000 nouns.

The system includes a user interface where the
user can type simple sentences that are processed
to produce a 3D scene. The user can then modify
the text to refine the scene. In addition, individual
objects and their parts can be selected and high-
lighted with a bounding box to focus attention.

Several thousand real-world people have used
WordsEye online (http://www.wordseye.com). It
has also been used as a tool in education, to en-
hance literacy (Coyne et al., 2011b). In this paper,
we describe how we are using WordsEye to create
a comprehensive tool for field linguistics.

Vignette Semantics and VigNet To interpret in-
put text, WordsEye uses a lexical resource called
VigNet (Coyne et al., 2011a). VigNet is inspired
by and based on FrameNet (Baker et al., 1998),
a resource for lexical semantics. In FrameNet,
lexical items are grouped together in frames ac-
cording to their shared semantic structure. Every
frame contains a number of frame elements (se-
mantic roles) which are participants in this struc-
ture. The English FrameNet defines the mapping
between syntax and semantics for a lexical item by
providing lists of valence patterns that map syntac-
tic functions to frame elements.

VigNet extends FrameNet in two ways in or-
der to capture “graphical semantics’,’ the knowl-
edge needed to generate graphical scenes from
language. First, graphical semantics are added
to the frames by adding primitive graphical (typ-
ically, spatial) relations between the frame ele-
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ment fillers. Second, VigNet distinguishes be-
tween meanings of words that are distinguished
graphically. For example, the specific objects
and spatial relations in the graphical semantics for
cook depend on the object being cooked and on
the culture in which it is being cooked (cooking
turkey in Baltimore vs. cooking an egg in Alice
Springs), even though at an abstract level cook an
egg in Alice Springs and cook a turkey in Bal-
timore are perfectly compositional semantically.
Frames augmented with graphical semantics are
called vignettes.

4 WordsEye Linguistics Tool (WELT)

In this section, we describe the two modes of
WELT, focusing on the aspects of our system that
will appear in our demonstration.

4.1 Tools for Linguistic Fieldwork

WELT includes tools that allow linguists to elicit
language with WordsEye. Each elicitation session
is organized around a set of WordsEye scenes. We
will demonstrate how a linguist would use WELT
in fieldwork, including (1) creating an elicitation
session, either starting from scratch, or by import-
ing scenes from a previous session; (2) building
scenes in WordsEye, saving them to a WELT ses-
sion, and modifying scenes previously added to
the session, either overwriting the original scene or
saving the changes as a new scene; (3) adding tex-
tual descriptions, glosses, and notes to a scene; and
(4) recording audio, which is automatically synced
to open scenes, and playingit back tto review any
given scene. A screen shot of the scene annotation
window is included in Figure 1.

To test the fieldwork capabilities of WELT,
we created a set of scenes based on the Max
Planck topological relations picture series (Bower-
man and Pederson, 1992). We used these scenes to
elicit descriptions from a native Nahuatl speaker;
some examples of scenes and descriptions are in-
cluded in Figure 2.

4.2 Formal Documentation of a Language

WELT also provides the means to formally doc-
ument the semantics of a language and create a
text-to-scene system for that language. The formal
documentation allows precise description of the
lexical semantics of a language. We will demon-
strate both the user interface for documenting se-
mantics, as well as a text-to-scene system for Ar-

Figure 1: WELT interface for annotating a scene

rernte created with WELT.
When a sentence is processed by WordsEye, it

goes through three main stages: (1) morphological
analysis and syntactic parsing, (2) semantic anal-
ysis, and (3) graphical realization. We will walk
through these modules in the context of WELT,
discussing (a) the formal documentation required
for that component, (b) the processing of an ex-
ample sentence through that component, and (c)
the parts of that component that will feature in our
demonstration. We will use the Arrernte sentence
shown in (1) as a running example.

(1) artwe le goal arrerneme
man ERG goal put.nonpast
The man kicks a goal.

Morphology and Syntax WELT first parses a
sentence into its morphology and syntax. Since
the focus of WELT is documentation of semantics,
the exact mechanisms for parsing the morphology
and syntax may vary. To document Arrernte, we
are using XFST (Karttunen et al., 1997) to model
the morphology and XLE (Crouch et al., 2006) to
model the syntax in the LFG formalism (Kaplan
and Bresnan, 1982). These are mature systems
that we believe are sufficient for the formal doc-
umentation of morphology and syntax. In future,
we will provide interfaces to the third-party tools
so that common information, like the lexicon, can
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(a) in amatì tìakentija se kutSara
the paper cover one spoon

(b) in kwawitì tìapanawi tìakoja se mansana
the stick pass.thru in.middle one apple

Figure 2: Nahuatl examples elicited with WELT

be shared.
Running each word of the sentence through

the morphological analyzer in XFST transforms
the verb arrerneme into ‘arrerne+NONPAST.’ The
other tokens in the sentence remain unchanged.
Parsing the sentence with XLE gives the c-
structure shown in Figure 3(a) and the f-structure
shown in Figure 3(b). The f-structure will be
passed on to the semantics module.

(a)

(b)

Figure 3: C-structure (a) and f-structure (b) for
artwe le goal arrerneme.

We have added one additional feature to the
morphology and syntax module of WELT’s text-
to-scene system: an interface for selecting an f-
structure from multiple options produced by XLE,
in case the grammar is ambiguous. This way, a
linguist can use the WELT text-to-scene system

to verify their semantic documentation even if the
syntactic documentation is fairly rough. We will
demonstrate this feature when demonstrating the
Arrernte text-to-scene system.

Semantics The WELT semantics is represented
using VigNet, which has been developed for
WordsEye based on English. We will assume that
large parts of VigNet are language-independent
(for instance, the set of low-level graphical rela-
tions used to express the graphical semantics is
based on physics and human anatomy and does not
depend on language). Therefore, it should not be
necessary to create a completely new VigNet for
every language that will be used in WELT. In fu-
ture, we will develop tools for modifying VigNet
to handle linguistic and cultural differences as they
occur.

In order to use VigNet with other languages,
we need to map between the formal syntax of the
language being studied and the (English) lexical
semantics required currently by VigNet. One in-
stance showing why this is necessary occurs in our
example Arrrente sentence. When discussing foot-
ball in English, one would say that someone kicks
a goal or makes a goal. In Arrente, one would say
goal arrerneme, which translates literally to “put
a goal.” Although the semantics of both sentences
are the same, the entry for “put” in the English
VigNet does not include this meaning, but the Ar-
rernte text-to-scene system needs to account for it.

To address such instances, we have created an
interface for a linguist to specify a set of rules that
map from syntax to semantics. The rules take syn-
tactic f-structures as input and output a high-level
semantic representation compatible with VigNet.
The left-hand side of a rule consists of a set of con-
ditions on the f-structure elements and the right-
hand side consists of the semantic structure that
should be returned. Figure 4(a) is an example of
a rule mapping Arrernte syntax to semantics, cre-
ated in WELT.

In addition to these rules, the linguist creates a
simple table mapping lexical items into VigNet se-
mantic concepts, so that nouns can be converted to
graphical objects. We have created a mapping for
the lexical items in the Arrernte grammar; a partial
mapping is shown in Table 1.

We now describe the semantic processing of our
example Arrernte sentence, assuming a set of rules
consisting solely of the one in Figure 4(a) and the
noun mapping in Table 1. The f-structure in Fig-
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(a) (b)

Figure 4: Syntax-semantics rule (a) and semantic category browser (b) from WELT

Lexical Item artwe panikane angepe akngwelye apwerte tipwele
VigNet Concept PERSON.N CUP.N CROW.N DOG.N ROCK-ITEM.N TABLE.N

Table 1: A mapping from nouns (lexical items) to VigNet semantic concepts

ure 3(b) has main predicate arrerne with two ar-
guments; the object is goal. Therefore, it matches
the left-hand-side of our rule. The output of
the rule specifies predicate CAUSE MOTION.KICK

with three arguments. The latter two are straight-
forward; the Theme is the VigNet object FOOTY-
BALL.N, and the Goal is FOOTYGOAL.N. To deter-
mine the Agent, we need to find the VigNet con-
cept corresponding to var-1, which occupies the
subject position in the f-structure. The subject in
our f-structure is artwe, and according to Table 1,
it maps to the VigNet concept PERSON.N. The re-
sulting semantic representation is augmented with
its graphical semantics, taken from the vignette
for CAUSE MOTION.KICK (vignette definition not
shown for lack of space). The final representation
is shown in Figure 5, with lexical semantics at the
top and graphical semantics below. The Words-
Eye system then builds the scene from these con-
straints and renders it in 3D.

CAUSE_MOTION.KICK

FOOTYBALL

Theme

FOOTYGOAL

Goal

PERSON

Agent

20 ft

FRONT-OF

Dist

ORIENT-TOPOSITION-BETWEEN

Figure GroundGoal Ground

IN-POSE

FigureSource SubjectFigure

kick

Value

Figure 5: The semantics (lexical and graphical) for
sentence (1)

WELT provides an interface for creating rules
by defining the tree structures for the left-hand-
side and right-hand-side of the rule. Every node on
the left-hand-side can optionally contain boolean
logic, if for example we want to allow the sub-
ject to be [(artwe ‘man’ OR arhele ‘woman’) AND
NOT ampe ‘child’]; so rules can be as simple or

complex as desired. Rules need not specify lexical
items directly; it is also possible to refer to more
general semantic categories. For example, a rule
could select for all verbs of motion, or specify a
particular constraint on the subject or object. In
figure 4(a), for instance, we may want to only al-
low animate subjects.

Semantic categories are chosen through a
browser that allows the user to search through all
the semantic categories defined in VigNet. For ex-
ample, if we want to find the semantic category
to use as a constraint on our example subject, we
might start by searching for human. This takes us
to a portion of a tree of semantic concepts cen-
tered around HUMAN.N. The semantic categories
are displayed one level at a time, so we initially
see only the concepts directly above and directly
below the word we searched for. From there, it’s
easy to select the concepts we are interested in,
and go up or down the tree until we find the one we
want. Below HUMAN.N are HUMAN-FEMALE.N
and HUMAN-MALE.N, but we are more interested
in the more general categories above the node. A
screen shot showing the result of this search is
shown in Figure 4(b). Above HUMAN.N is HU-
MANOID.N; above that, ANIMATE-BEING.N. Do-
ing a quick check of further parents and chil-
dren, we can see that for the subject of ‘put goal,’
we would probably want to choose ANIMATE-
BEING.N over LIVING-THING.N.

The table mapping lexical items to VigNet con-
cepts is built in a similar way; the lexicon is au-
tomatically extracted from the LFG grammar, and
the user can search and browse semantic concepts
to find the appropriate node for each lexical item.

We will demonstrate the WELT user inter-
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face which supports the creation of syntax-to-
semantics rules, creates the mapping between
nouns in the lexicon and VigNet concepts, and ver-
ifies the rules using the WELT text-to-scene sys-
tem. We will show examples from our documenta-
tion of Arrernte and demonstrate entering text into
the Arrernte text-to-scene system to generate pic-
tures.

5 Summary and Future Work

We have described a novel tool for linguists work-
ing with endangered languages. It provides a new
way to elicit data from informants, an interface
for formally documenting the lexical semantics of
a language, and allows the creation of a text-to-
scene system for any language.

This project is in its early stages, so we are plan-
ning many additional features and improvements.
For both modes of WELT, we want to generate pic-
tures appropriate for the target culture. To han-
dle this, we will add the ability to include cus-
tom objects and modify VigNet with new vignettes
or new graphical semantics for existing vignettes.
We also plan to build tools to import and export
the work done in WELT in order to facilitate col-
laboration among linguists working on similar lan-
guages or cultures. Sharing sets of scenes will al-
low linguists to reuse work and avoid duplicated
effort. Importing different versions of VigNet will
make it easier to start out with WELT on a new
language if it is similar to one that has already
been studied. We might expect, for instance, that
other Australian aboriginal languages will require
the same kinds of cultural modifications to VigNet
that we make for Arrernte, or that two languages
in the same family might also have similar syntax
to semantics rules.
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Abstract

We describe the design and use of the
Stanford CoreNLP toolkit, an extensible
pipeline that provides core natural lan-
guage analysis. This toolkit is quite widely
used, both in the research NLP community
and also among commercial and govern-
ment users of open source NLP technol-
ogy. We suggest that this follows from
a simple, approachable design, straight-
forward interfaces, the inclusion of ro-
bust and good quality analysis compo-
nents, and not requiring use of a large
amount of associated baggage.

1 Introduction

This paper describe the design and development of
Stanford CoreNLP, a Java (or at least JVM-based)
annotation pipeline framework, which provides
most of the common core natural language pro-
cessing (NLP) steps, from tokenization through to
coreference resolution. We describe the original
design of the system and its strengths (section 2),
simple usage patterns (section 3), the set of pro-
vided annotators and how properties control them
(section 4), and how to add additional annotators
(section 5), before concluding with some higher-
level remarks and additional appendices. While
there are several good natural language analysis
toolkits, Stanford CoreNLP is one of the most
used, and a central theme is trying to identify the
attributes that contributed to its success.

2 Original Design and Development

Our pipeline system was initially designed for in-
ternal use. Previously, when combining multiple
natural language analysis components, each with
their own ad hoc APIs, we had tied them together
with custom glue code. The initial version of the
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(dcoref)*

(gender, sentiment)!

Figure 1: Overall system architecture: Raw text
is put into an Annotation object and then a se-
quence of Annotators add information in an analy-
sis pipeline. The resulting Annotation, containing
all the analysis information added by the Annota-
tors, can be output in XML or plain text forms.

annotation pipeline was developed in 2006 in or-
der to replace this jumble with something better.
A uniform interface was provided for an Annota-
tor that adds some kind of analysis information to
some text. An Annotator does this by taking in an
Annotation object to which it can add extra infor-
mation. An Annotation is stored as a typesafe het-
erogeneous map, following the ideas for this data
type presented by Bloch (2008). This basic archi-
tecture has proven quite successful, and is still the
basis of the system described here. It is illustrated
in figure 1. The motivations were:
• To be able to quickly and painlessly get linguis-

tic annotations for a text.
• To hide variations across components behind a

common API.
• To have a minimal conceptual footprint, so the

system is easy to learn.
• To provide a lightweight framework, using plain

Java objects (rather than something of heav-
ier weight, such as XML or UIMA’s Common
Analysis System (CAS) objects).
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In 2009, initially as part of a multi-site grant
project, the system was extended to be more easily
usable by a broader range of users. We provided
a command-line interface and the ability to write
out an Annotation in various formats, including
XML. Further work led to the system being re-
leased as free open source software in 2010.

On the one hand, from an architectural perspec-
tive, Stanford CoreNLP does not attempt to do ev-
erything. It is nothing more than a straightforward
pipeline architecture. It provides only a Java API.1

It does not attempt to provide multiple machine
scale-out (though it does provide multi-threaded
processing on a single machine). It provides a sim-
ple concrete API. But these requirements satisfy
a large percentage of potential users, and the re-
sulting simplicity makes it easier for users to get
started with the framework. That is, the primary
advantage of Stanford CoreNLP over larger frame-
works like UIMA (Ferrucci and Lally, 2004) or
GATE (Cunningham et al., 2002) is that users do
not have to learn UIMA or GATE before they can
get started; they only need to know a little Java.
In practice, this is a large and important differ-
entiator. If more complex scenarios are required,
such as multiple machine scale-out, they can nor-
mally be achieved by running the analysis pipeline
within a system that focuses on distributed work-
flows (such as Hadoop or Spark). Other systems
attempt to provide more, such as the UIUC Cu-
rator (Clarke et al., 2012), which includes inter-
machine client-server communication for process-
ing and the caching of natural language analyses.
But this functionality comes at a cost. The system
is complex to install and complex to understand.
Moreover, in practice, an organization may well
be committed to a scale-out solution which is dif-
ferent from that provided by the natural language
analysis toolkit. For example, they may be using
Kryo or Google’s protobuf for binary serialization
rather than Apache Thrift which underlies Cura-
tor. In this case, the user is better served by a fairly
small and self-contained natural language analysis
system, rather than something which comes with
a lot of baggage for all sorts of purposes, most of
which they are not using.

On the other hand, most users benefit greatly
from the provision of a set of stable, robust, high

1Nevertheless, it can call an analysis component written in
other languages via an appropriate wrapper Annotator, and
in turn, it has been wrapped by many people to provide Stan-
ford CoreNLP bindings for other languages.

quality linguistic analysis components, which can
be easily invoked for common scenarios. While
the builder of a larger system may have made over-
all design choices, such as how to handle scale-
out, they are unlikely to be an NLP expert, and
are hence looking for NLP components that just
work. This is a huge advantage that Stanford
CoreNLP and GATE have over the empty tool-
box of an Apache UIMA download, something
addressed in part by the development of well-
integrated component packages for UIMA, such
as ClearTK (Bethard et al., 2014), DKPro Core
(Gurevych et al., 2007), and JCoRe (Hahn et al.,
2008). However, the solution provided by these
packages remains harder to learn, more complex
and heavier weight for users than the pipeline de-
scribed here.

These attributes echo what Patricio (2009) ar-
gued made Hibernate successful, including: (i) do
one thing well, (ii) avoid over-design, and (iii)
up and running in ten minutes or less! Indeed,
the design and success of Stanford CoreNLP also
reflects several other of the factors that Patricio
highlights, including (iv) avoid standardism, (v)
documentation, and (vi) developer responsiveness.
While there are many factors that contribute to the
uptake of a project, and it is hard to show causal-
ity, we believe that some of these attributes ac-
count for the fact that Stanford CoreNLP is one of
the more used NLP toolkits. While we certainly
have not done a perfect job, compared to much
academic software, Stanford CoreNLP has gained
from attributes such as clear open source licens-
ing, a modicum of attention to documentation, and
attempting to answer user questions.

3 Elementary Usage

A key design goal was to make it very simple to
set up and run processing pipelines, from either
the API or the command-line. Using the API, run-
ning a pipeline can be as easy as figure 2. Or,
at the command-line, doing linguistic processing
for a file can be as easy as figure 3. Real life is
rarely this simple, but the ability to get started us-
ing the product with minimal configuration code
gives new users a very good initial experience.

Figure 4 gives a more realistic (and complete)
example of use, showing several key properties of
the system. An annotation pipeline can be applied
to any text, such as a paragraph or whole story
rather than just a single sentence. The behavior of
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Annotator pipeline = new StanfordCoreNLP();
Annotation annotation = new Annotation(

"Can you parse my sentence?");
pipeline.annotate(annotation);

Figure 2: Minimal code for an analysis pipeline.

export StanfordCoreNLP_HOME /where/installed
java -Xmx2g -cp $StanfordCoreNLP_HOME/*

edu.stanford.nlp.StanfordCoreNLP
-file input.txt

Figure 3: Minimal command-line invocation.

import java.io.*;

import java.util.*;

import edu.stanford.nlp.io.*;

import edu.stanford.nlp.ling.*;

import edu.stanford.nlp.pipeline.*;

import edu.stanford.nlp.trees.*;

import edu.stanford.nlp.trees.TreeCoreAnnotations.*;

import edu.stanford.nlp.util.*;

public class StanfordCoreNlpExample {

public static void main(String[] args) throws IOException {

PrintWriter xmlOut = new PrintWriter("xmlOutput.xml");

Properties props = new Properties();

props.setProperty("annotators",

"tokenize, ssplit, pos, lemma, ner, parse");

StanfordCoreNLP pipeline = new StanfordCoreNLP(props);

Annotation annotation = new Annotation(

"This is a short sentence. And this is another.");

pipeline.annotate(annotation);

pipeline.xmlPrint(annotation, xmlOut);

// An Annotation is a Map and you can get and use the

// various analyses individually. For instance, this

// gets the parse tree of the 1st sentence in the text.

List<CoreMap> sentences = annotation.get(

CoreAnnotations.SentencesAnnotation.class);

if (sentences != null && sentences.size() > 0) {

CoreMap sentence = sentences.get(0);

Tree tree = sentence.get(TreeAnnotation.class);

PrintWriter out = new PrintWriter(System.out);

out.println("The first sentence parsed is:");

tree.pennPrint(out);

}

}

}

Figure 4: A simple, complete example program.

annotators in a pipeline is controlled by standard
Java properties in a Properties object. The most
basic property to specify is what annotators to run,
in what order, as shown here. But as discussed be-
low, most annotators have their own properties to
allow further customization of their usage. If none
are specified, reasonable defaults are used. Run-
ning the pipeline is as simple as in the first exam-
ple, but then we show two possibilities for access-
ing the results. First, we convert the Annotation
object to XML and write it to a file. Second, we
show code that gets a particular type of informa-
tion out of an Annotation and then prints it.

Our presentation shows only usage in Java, but
the Stanford CoreNLP pipeline has been wrapped
by others so that it can be accessed easily from
many languages, including Python, Ruby, Perl,
Scala, Clojure, Javascript (node.js), and .NET lan-

guages, including C# and F#.

4 Provided annotators

The annotators provided with StanfordCoreNLP
can work with any character encoding, making use
of Java’s good Unicode support, but the system
defaults to UTF-8 encoding. The annotators also
support processing in various human languages,
providing that suitable underlying models or re-
sources are available for the different languages.
The system comes packaged with models for En-
glish. Separate model packages provide support
for Chinese and for case-insensitive processing of
English. Support for other languages is less com-
plete, but many of the Annotators also support
models for French, German, and Arabic (see ap-
pendix B), and building models for further lan-
guages is possible using the underlying tools. In
this section, we outline the provided annotators,
focusing on the English versions. It should be
noted that some of the models underlying annota-
tors are trained from annotated corpora using su-
pervised machine learning, while others are rule-
based components, which nevertheless often re-
quire some language resources of their own.

tokenize Tokenizes the text into a sequence of to-
kens. The English component provides a PTB-
style tokenizer, extended to reasonably handle
noisy and web text. The corresponding com-
ponents for Chinese and Arabic provide word
and clitic segmentation. The tokenizer saves the
character offsets of each token in the input text.

cleanxml Removes most or all XML tags from
the document.

ssplit Splits a sequence of tokens into sentences.
truecase Determines the likely true case of tokens

in text (that is, their likely case in well-edited
text), where this information was lost, e.g., for
all upper case text. This is implemented with
a discriminative model using a CRF sequence
tagger (Finkel et al., 2005).

pos Labels tokens with their part-of-speech (POS)
tag, using a maximum entropy POS tagger
(Toutanova et al., 2003).

lemma Generates the lemmas (base forms) for all
tokens in the annotation.

gender Adds likely gender information to names.
ner Recognizes named (PERSON, LOCATION,

ORGANIZATION, MISC) and numerical
(MONEY, NUMBER, DATE, TIME, DU-
RATION, SET) entities. With the default
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annotators, named entities are recognized
using a combination of CRF sequence taggers
trained on various corpora (Finkel et al., 2005),
while numerical entities are recognized using
two rule-based systems, one for money and
numbers, and a separate state-of-the-art system
for processing temporal expressions (Chang
and Manning, 2012).

regexner Implements a simple, rule-based NER
over token sequences building on Java regular
expressions. The goal of this Annotator is to
provide a simple framework to allow a user to
incorporate NE labels that are not annotated in
traditional NL corpora. For example, a default
list of regular expressions that we distribute
in the models file recognizes ideologies (IDE-
OLOGY), nationalities (NATIONALITY), reli-
gions (RELIGION), and titles (TITLE).

parse Provides full syntactic analysis, including
both constituent and dependency representa-
tion, based on a probabilistic parser (Klein and
Manning, 2003; de Marneffe et al., 2006).

sentiment Sentiment analysis with a composi-
tional model over trees using deep learning
(Socher et al., 2013). Nodes of a binarized tree
of each sentence, including, in particular, the
root node of each sentence, are given a senti-
ment score.

dcoref Implements mention detection and both
pronominal and nominal coreference resolution
(Lee et al., 2013). The entire coreference graph
of a text (with head words of mentions as nodes)
is provided in the Annotation.

Most of these annotators have various options
which can be controlled by properties. These can
either be added to the Properties object when cre-
ating an annotation pipeline via the API, or spec-
ified either by command-line flags or through a
properties file when running the system from the
command-line. As a simple example, input to the
system may already be tokenized and presented
one-sentence-per-line. In this case, we wish the
tokenization and sentence splitting to just work by
using the whitespace, rather than trying to do any-
thing more creative (be it right or wrong). This can
be accomplished by adding two properties, either
to a properties file:

tokenize.whitespace: true
ssplit.eolonly: true

in code:

/** Simple annotator for locations stored in a gazetteer. */

package org.foo;

public class GazetteerLocationAnnotator implements Annotator {

// this is the only method an Annotator must implement

public void annotate(Annotation annotation) {

// traverse all sentences in this document

for (CoreMap sentence:annotation.get(SentencesAnnotation.class)) {

// loop over all tokens in sentence (the text already tokenized)

List<CoreLabel> toks = sentence.get(TokensAnnotation.class);

for (int start = 0; start < toks.size(); start++) {

// assumes that the gazetteer returns the token index

// after the match or -1 otherwise

int end = Gazetteer.isLocation(toks, start);

if (end > start) {

for (int i = start; i < end; i ++) {

toks.get(i).set(NamedEntityTagAnnotation.class,"LOCATION");

}

}

}

}

}

}

Figure 5: An example of a simple custom anno-
tator. The annotator marks the words of possibly
multi-word locations that are in a gazetteer.

props.setProperty("tokenize.whitespace", "true");
props.setProperty("ssplit.eolonly", "true");

or via command-line flags:

-tokenize.whitespace -ssplit.eolonly

We do not attempt to describe all the properties
understood by each annotator here; they are avail-
able in the documentation for Stanford CoreNLP.
However, we note that they follow the pattern of
being x.y, where x is the name of the annotator
that they apply to.

5 Adding annotators

While most users work with the provided annota-
tors, it is quite easy to add additional custom an-
notators to the system. We illustrate here both how
to write an Annotator in code and how to load it
into the Stanford CoreNLP system. An Annotator
is a class that implements three methods: a sin-
gle method for analysis, and two that describe the
dependencies between analysis steps:

public void annotate(Annotation annotation);
public Set<Requirement> requirementsSatisfied();
public Set<Requirement> requires();

The information in an Annotation is updated in
place (usually in a non-destructive manner, by
adding new keys and values to the Annotation).
The code for a simple Annotator that marks loca-
tions contained in a gazetteer is shown in figure 5.2

Similar code can be used to write a wrapper Anno-
tator, which calls some pre-existing analysis com-
ponent, and adds its results to the Annotation.

2The functionality of this annotator is already provided by
the regexner annotator, but it serves as a simple example.
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While building an analysis pipeline, Stanford
CoreNLP can add additional annotators to the
pipeline which are loaded using reflection. To pro-
vide a new Annotator, the user extends the class
edu.stanford.nlp.pipeline.Annotator
and provides a constructor with the signature
(String, Properties). Then, the user adds
the property

customAnnotatorClass.FOO: BAR

to the properties used to create the pipeline. If
FOO is then added to the list of annotators, the
class BAR will be loaded to instantiate it. The
Properties object is also passed to the constructor,
so that annotator-specific behavior can be initial-
ized from the Properties object. For instance, for
the example above, the properties file lines might
be:

customAnnotatorClass.locgaz: org.foo.GazetteerLocationAnnotator

annotators: tokenize,ssplit,locgaz

locgaz.maxLength: 5

6 Conclusion

In this paper, we have presented the design
and usage of the Stanford CoreNLP system, an
annotation-based NLP processing pipeline. We
have in particular tried to emphasize the proper-
ties that we feel have made it successful. Rather
than trying to provide the largest and most engi-
neered kitchen sink, the goal has been to make it
as easy as possible for users to get started using
the framework, and to keep the framework small,
so it is easily comprehensible, and can easily be
used as a component within the much larger sys-
tem that a user may be developing. The broad us-
age of this system, and of other systems such as
NLTK (Bird et al., 2009), which emphasize acces-
sibility to beginning users, suggests the merits of
this approach.

A Pointers

Website: http://nlp.stanford.edu/software/

corenlp.shtml

Github: https://github.com/stanfordnlp/CoreNLP
Maven: http://mvnrepository.com/artifact/edu.

stanford.nlp/stanford-corenlp

License: GPL v2+

Stanford CoreNLP keeps the models for ma-
chine learning components and miscellaneous
other data files in a separate models jar file. If you
are using Maven, you need to make sure that you

list the dependency on this models file as well as
the code jar file. You can do that with code like the
following in your pom.xml. Note the extra depen-
dency with a classifier element at the bottom.

<dependency>
<groupId>edu.stanford.nlp</groupId>
<artifactId>stanford-corenlp</artifactId>
<version>3.3.1</version>

</dependency>
<dependency>

<groupId>edu.stanford.nlp</groupId>
<artifactId>stanford-corenlp</artifactId>
<version>3.3.1</version>
<classifier>models</classifier>

</dependency>

B Human language support

We summarize the analysis components supported
for different human languages in early 2014.

Annotator Ara- Chi- Eng- Fre- Ger-
bic nese lish nch man

Tokenize X X X X X
Sent. split X X X X X
Truecase X
POS X X X X X
Lemma X
Gender X
NER X X X
RegexNER X X X X X
Parse X X X X X
Dep. Parse X X
Sentiment X
Coref. X

C Getting the sentiment of sentences

We show a command-line for sentiment analysis.
$ cat sentiment.txt

I liked it.

It was a fantastic experience.

The plot move rather slowly.

$ java -cp "*" -Xmx2g edu.stanford.nlp.pipeline.StanfordCoreNLP -annotators

tokenize,ssplit,pos,lemma,parse,sentiment -file sentiment.txt

Adding annotator tokenize

Adding annotator ssplit

Adding annotator pos

Reading POS tagger model from edu/stanford/nlp/models/pos-tagger/

english-left3words/english-left3words-distsim.tagger ... done [1.0 sec].

Adding annotator lemma

Adding annotator parse

Loading parser from serialized file edu/stanford/nlp/models/lexparser/

englishPCFG.ser.gz ... done [1.4 sec].

Adding annotator sentiment

Ready to process: 1 files, skipped 0, total 1

Processing file /Users/manning/Software/stanford-corenlp-full-2014-01-04/

sentiment.txt ... writing to /Users/manning/Software/

stanford-corenlp-full-2014-01-04/sentiment.txt.xml {

Annotating file /Users/manning/Software/stanford-corenlp-full-2014-01-04/

sentiment.txt [0.583 seconds]

} [1.219 seconds]

Processed 1 documents

Skipped 0 documents, error annotating 0 documents

Annotation pipeline timing information:

PTBTokenizerAnnotator: 0.0 sec.

WordsToSentencesAnnotator: 0.0 sec.

POSTaggerAnnotator: 0.0 sec.
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MorphaAnnotator: 0.0 sec.

ParserAnnotator: 0.4 sec.

SentimentAnnotator: 0.1 sec.

TOTAL: 0.6 sec. for 16 tokens at 27.4 tokens/sec.

Pipeline setup: 3.0 sec.

Total time for StanfordCoreNLP pipeline: 4.2 sec.

$ grep sentiment sentiment.txt.xml

<sentence id="1" sentimentValue="3" sentiment="Positive">

<sentence id="2" sentimentValue="4" sentiment="Verypositive">

<sentence id="3" sentimentValue="1" sentiment="Negative">

D Use within UIMA

The main part of using Stanford CoreNLP within
the UIMA framework (Ferrucci and Lally, 2004)
is mapping between CoreNLP annotations, which
are regular Java classes, and UIMA annotations,
which are declared via XML type descriptors
(from which UIMA-specific Java classes are gen-
erated). A wrapper for CoreNLP will typically de-
fine a subclass of JCasAnnotator ImplBase whose
process method: (i) extracts UIMA annotations
from the CAS, (ii) converts UIMA annotations to
CoreNLP annotations, (iii) runs CoreNLP on the
input annotations, (iv) converts the CoreNLP out-
put annotations into UIMA annotations, and (v)
saves the UIMA annotations to the CAS.

To illustrate part of this process, the ClearTK
(Bethard et al., 2014) wrapper converts CoreNLP
token annotations to UIMA annotations and saves
them to the CAS with the following code:

int begin = tokenAnn.get(CharacterOffsetBeginAnnotation.class);

int end = tokenAnn.get(CharacterOffsetEndAnnotation.class);

String pos = tokenAnn.get(PartOfSpeechAnnotation.class);

String lemma = tokenAnn.get(LemmaAnnotation.class);

Token token = new Token(jCas, begin, end);

token.setPos(pos);

token.setLemma(lemma);

token.addToIndexes();

where Token is a UIMA type, declared as:
<typeSystemDescription>

<name>Token</name>

<types>

<typeDescription>

<name>org.cleartk.token.type.Token</name>

<supertypeName>uima.tcas.Annotation</supertypeName>

<features>

<featureDescription>

<name>pos</name>

<rangeTypeName>uima.cas.String</rangeTypeName>

</featureDescription>

<featureDescription>

<name>lemma</name>

<rangeTypeName>uima.cas.String</rangeTypeName>

</featureDescription>

</features>

</typeDescription>

</types>

</typeSystemDescription>
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Abstract
We present DKPro TC, a framework for
supervised learning experiments on tex-
tual data. The main goal of DKPro TC is
to enable researchers to focus on the actual
research task behind the learning problem
and let the framework handle the rest. It
enables rapid prototyping of experiments
by relying on an easy-to-use workflow en-
gine and standardized document prepro-
cessing based on the Apache Unstruc-
tured Information Management Architec-
ture (Ferrucci and Lally, 2004). It ships
with standard feature extraction modules,
while at the same time allowing the user
to add customized extractors. The exten-
sive reporting and logging facilities make
DKPro TC experiments fully replicable.

1 Introduction

Supervised learning on textual data is a ubiquitous
challenge in Natural Language Processing (NLP).
Applying a machine learning classifier has be-
come the standard procedure, as soon as there is
annotated data available. Before a classifier can
be applied, relevant information (referred to as
features) needs to be extracted from the data. A
wide range of tasks have been tackled in this way
including language identification, part-of-speech
(POS) tagging, word sense disambiguation, sen-
timent detection, and semantic similarity.

In order to solve a supervised learning task,
each researcher needs to perform the same set of
steps in a predefined order: reading input data,
preprocessing, feature extraction, machine learn-
ing, and evaluation. Standardizing this process
is quite challenging, as each of these steps might
vary a lot depending on the task at hand. To com-
plicate matters further, the experimental process

is usually embedded in a series of configuration
changes. For example, introducing a new fea-
ture often requires additional preprocessing. Re-
searchers should not need to think too much about
such details, but focus on the actual research task.
DKPro TC is our take on the standardization of
an inherently complex problem, namely the imple-
mentation of supervised learning experiments for
new datasets or new learning tasks.

We will make some simplifying assumptions
wherever they do not harm our goal that the frame-
work should be applicable to the widest possible
range of supervised learning tasks. For example,
DKPro TC only supports a limited set of machine
learning frameworks, as we argue that differences
between frameworks will mainly influence run-
time, but will have little influence on the final con-
clusions to be drawn from the experiment. The
main goal of DKPro TC is to enable the researcher
to quickly find an optimal experimental configura-
tion. One of the major contributions of DKPro TC
is the modular architecture for preprocessing and
feature extraction, as we believe that the focus of
research should be on a meaningful and expressive
feature set. DKPro TC has already been applied to
a wide range of different supervised learning tasks,
which makes us confident that it will be of use to
the research community.

DKPro TC is mostly written in Java and freely
available under an open source license.1

2 Requirements

In the following, we give a more detailed overview
of the requirements and goals we have identified
for a general-purpose text classification system.
These requirements have guided the development
of the DKPro TC system architecture.

1http://dkpro-tc.googlecode.com
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Single-label Multi-label Regression

Document Mode · Spam Detection
· Sentiment Detection

· Text Categorization
· Keyphrase Assignment · Text Readability

Unit/Sequence Mode · Named Entity Recognition
· Part-of-Speech Tagging · Dialogue Act Tagging · Word Difficulty

Pair Mode · Paraphrase Identification
· Textual Entailment · Relation Extraction · Text Similarity

Table 1: Supervised learning scenarios and feature modes supported in DKPro TC, with example NLP
applications.

Flexibility Users of a system for supervised
learning on textual data should be able to choose
between different machine learning approaches
depending on the task at hand. In supervised ma-
chine learning, we have to distinguish between ap-
proaches based on classification and approaches
based on regression. In classification, given a
document d ∈ D and a set of labels C =
{c1, c2, ..., cn}, we want to label each document
d with L ⊂ C, where L is the set of relevant
or true labels. In single-label classification, each
document d is labeled with exactly one label, i.e.
|L| = 1, whereas in multi-label classification, a
set of labels is assigned, i.e. |L| ≥ 1. Single-
label classification can further be divided into bi-
nary classification (|C| = 2) and multi-class clas-
sification (|C| > 2). In regression, real numbers
instead of labels are assigned.

Feature extraction should follow a modular de-
sign in order to facilitate reuse and to allow seam-
less integration of new features. However, the way
in which features need to be extracted from the in-
put documents depends on the the task at hand.
We have identified several typical scenarios in su-
pervised learning on textual data and propose the
following feature modes:

• In document mode, each input document will
be used as its own entity to be classified, e.g.
an email classified as wanted or unwanted
(spam).

• In unit/sequence mode, each input document
contains several units to be classified. The
units in the input document cannot be divided
into separate documents, either because the
context of each unit needs to be preserved
(e.g. to disambiguate named entities) or be-
cause they form a sequence which needs to
be kept (in sequence tagging).

• The pair mode is intended for problems
which require a pair of texts as input, e.g.
a pair of sentences to be classified as para-
phrase or non-paraphrase. It represents a
special case of multi-instance learning (Sur-
deanu et al., 2012), in which a document con-
tains exactly two instances.

Considering the outlined learning approaches and
feature modes, we have summarized typical sce-
narios in supervised learning on textual data in Ta-
ble 1 and added example applications in NLP.

Replicability and Reusability As it has been
recently noted by Fokkens et al. (2013), NLP ex-
periments are not replicable in most cases. The
problem already starts with undocumented pre-
processing steps such as tokenization or sentence
boundary detection that might have heavy impact
on experimental results. In a supervised learning
setting, this situation is even worse, as e.g. fea-
ture extraction is usually only partially described
in the limited space of a research paper. For ex-
ample, a paper might state that “n-gram features”
were used, which encompasses a very broad range
of possible implementations.

In order to make NLP experiments replicable, a
text classification framework should (i) encourage
the user to reuse existing components which they
can refer to in research papers rather than writ-
ing their own components, (ii) document all per-
formed steps, and (iii) make it possible to re-run
experiments with minimal effort.

Apart from helping the replicability of experi-
ments, reusing components allows the user to con-
centrate on the new functionality that is specific
to the planned experiment instead of having to
reinvent the wheel. The parts of a text classifi-
cation system which can typically be reused are
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preprocessing components, generic feature extrac-
tors, machine learning algorithms, and evaluation.

3 Architecture

We now give an overview of the DKPro TC archi-
tecture that was designed to take into account the
requirements outlined above. A core design deci-
sion is to model each of the typical steps in text
classification (reading input data and preprocess-
ing, feature extraction, machine learning and eval-
uation) as separate tasks. This modular architec-
ture helps the user to focus on the main problem,
i.e. developing and selecting good features.

In the following, we describe each module in
more detail, starting with the workflow engine that
is used to assemble the tasks into an experiment.

3.1 Configuration and Workflow Engine

We rely on the DKPro Lab (Eckart de Castilho
and Gurevych, 2011) workflow engine, which al-
lows fine-grained control over the dependencies
between single tasks, e.g. the pre-processing of a
document obviously needs to happen before the
feature extraction. In order to shield the user
from the complex “wiring” of tasks, DKPro TC
currently provides three pre-defined workflows:
Train/Test, Cross-Validation, and Prediction (on
unseen data). Each workflow supports the feature
modes described above: document, unit/sequence,
and pair.

The user is still able to control the behavior of
the workflow by setting parameters, most impor-
tantly the sources of input data, the set of feature
extractors, and the classifier to be used. Internally,
each parameter is treated as a single dimension
in the global parameter space. Users may pro-
vide more than one value for a certain parame-
ter, e.g. specific feature sets or several classifiers.
The workflow engine will automatically run all
possible parameter value combinations (a process
called parameter sweeping).

3.2 Reading Input Data

Input data for supervised learning tasks comes in
myriad different formats which implies that read-
ing data cannot be standardized, but needs to be
handled individually for each data set. However,
the internal processing should not be dependent on
the input format. We therefore use the Common
Analysis Structure (CAS), provided by the Apache
Unstructured Information Management Architec-

ture (UIMA), to represent input documents and
annotations in a standardized way.

Under the UIMA model, reading input data
means to transform arbitrary input data into a
CAS representation. DKPro TC already provides
a wide range of readers from UIMA component
repositories such as DKPro Core.2 The reader
also needs to assign to each classification unit an
outcome attribute that represents the relevant label
(single-label), labels (multi-label), or a real value
(regression). In unit/sequence mode, the reader
additionally needs to mark the units in the CAS.
In pair mode, a pair of texts (instead of a single
document) is stored within one CAS.

3.3 Preprocessing
In this step, additional information about the docu-
ment is added to the CAS, which efficiently stores
large numbers of stand-off annotations. In pair
mode, the preprocessing is automatically applied
to both documents.

DKPro TC allows the user to run arbitrary
UIMA-based preprocessing components as long
as they are compatible with the DKPro type sys-
tem that is currently used by DKPro Core and
EOP.3 Thus, a large set of ready-to-use prepro-
cessing components for more than ten languages
is available, containing e.g. sentence boundary de-
tection, lemmatization, POS-tagging, or parsing.

3.4 Feature Extraction
DKPro TC ships a constantly growing number of
feature extractors. Feature extractors have access
to the document text as well as all the additional
information that has been added in the form of
UIMA stand-off annotations during the prepro-
cessing step. Users of DKPro TC can add cus-
tomized feature extractors for particular use cases
on demand.

Among the ready-to-use feature extractors con-
tained in DKPro TC, there are several ones ex-
tracting grammatical information, e.g. the plural-
singular ratio or the ratio of modal to all verbs.
Other features collect information about stylistic
cues of a document, e.g. the number of exclama-
tions or the type-token-ratio. DKPro TC is able to
extract n-grams or skip n-grams of tokens, charac-
ters, and POS tags.

Some feature extractors need access to informa-
tion about the entire document collection, e.g. in

2http://dkpro-core-asl.googlecode.com
3http://hltfbk.github.io/Excitement-Open-Platform/
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order to weigh lexical features with tf.idf scores.
Such extractors have to declare that they depend
on collection level information and DKPro TC
will automatically include a special task that is
executed before the actual features are extracted.
Depending on the feature mode which has been
configured, DKPro TC will extract information
on document level, unit- and/or sequence-level, or
document pair level.

DKPro TC stores extracted features in its inter-
nal feature store. When the extraction process is
finished, a configurable data writer converts the
content from the feature store into a format which
can be handled by the utilized machine learning
tool. DKPro TC currently ships data writers for
the Weka (Hall et al., 2009), Meka4, and Mallet
(McCallum, 2002) frameworks. Users can also
add dedicated data writers that output features in
the format used by the machine learning frame-
work of their choice.

3.5 Supervised Learning

For the actual machine learning, DKPro TC cur-
rently relies on Weka (single-label and regres-
sion), Meka (multi-label), and Mallet (sequence
labeling). It contains a task which trains a freely
configurable classifier on the training data and
evaluates the learned model on the test data.

Before training and evaluation, the user may ap-
ply dimensionality reduction to the feature set, i.e.
select a limited number of (expectedly meaning-
ful) features to be included for training and eval-
uating the classifier. DKPro TC uses the feature
selection capabilities of Weka (single-label and re-
gression) and Mulan (multi-label) (Tsoumakas et
al., 2010).

DKPro TC can also predict labels on unseen
(i.e. unlabeled) data, using a trained classifier. In
that case, no evaluation will be carried out, but the
classifier’s prediction for each document will be
written to a file.

3.6 Evaluation and Reporting

DKPro TC calculates common evaluation scores
including accuracy, precision, recall, and F1-
score. Whenever sensible, scores are reported for
each individual label as well as aggregated over
all labels. To support users in further analyz-
ing the performance of a classification workflow,
DKPro TC outputs the confusion matrix, the ac-

4http://meka.sourceforge.net

tual predictions assigned to each document, and a
ranking of the most useful features based on the
configured feature selection algorithm. Additional
task-specific reporting can be added by the user.

As mentioned before, a major goal of
DKPro TC is to increase the replicability of NLP
experiments. Thus, for each experiment, all con-
figuration parameters are stored and will be re-
ported together with the classification results.

4 Tweet Classification: A Use Case

We now give a brief summary of what a supervised
learning task might look like in DKPro TC using
a simple Twitter sentiment classification example.
Assuming that we want to classify a set of tweets
either as “emotional” or “neutral”, we can use the
setup shown in Listing 1. The example uses the
Groovy programming language which yields bet-
ter readable code, but pure Java is also supported.
Likewise, a DKPro TC experiment can also be set
up with the help of a configuration file, e.g. in
JSON or via Groovy scripts.

First, we create a workflow as a BatchTask-
CrossValidation which can be used to run
a cross-validation experiment on the data (using
10 folds as configured by the corresponding pa-
rameter). The workflow uses LabeledTweet-
Reader in order to import the experiment data
from source text files into the internal document
representation (one document per tweet). This
reader adds a UIMA annotation that specifies the
gold standard classification outcome, i.e. the rel-
evant label for the tweet. In this use case, pre-
processing consists of a single step: running the
ArkTweetTagger (Gimpel et al., 2011), a spe-
cialized Twitter tokenizer and POS-tagger that is
integrated in DKPro Core. The feature mode is set
to document (one tweet per CAS), and the learning
mode to single-label (each tweet is labeled with
exactly one label), cf. Table 1.

Two feature extractors are configured: One for
returning the number of hashtags and another one
returning the ratio of emoticons to tokens in the
tweet. Listing 2 shows the Java code for the sec-
ond extractor. Two things are noteworthy: (i) doc-
ument text and UIMA annotations are readily
available through the JCas object, and (ii) this is
really all that the user needs to write in order to
add a new feature extractor.

The next item to be configured is the Weka-
DataWriter which converts the internal fea-
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BatchTaskCrossValidation batchTask = [
experimentName: "Twitter-Sentiment",
preprocessingPipeline: createEngineDescription(ArkTweetTagger), // Preprocessing
parameterSpace: [ // multi-valued parameters in the parameter space will be swept

Dimension.createBundle("reader", [
readerTrain: LabeledTweetReader,
readerTrainParams: [LabeledTweetReader.PARAM_CORPUS_PATH, "src/main/resources/tweets.txt"]]),

Dimension.create("featureMode", "document"),
Dimension.create("learningMode", "singleLabel"),
Dimension.create("featureSet", [EmoticonRatioExtractor.name, NumberOfHashTagsExtractor.name]),
Dimension.create("dataWriter", WekaDataWriter.name),
Dimension.create("classificationArguments", [NaiveBayes.name, RandomForest.name])],

reports: [BatchCrossValidationReport], // collects results from folds
numFolds: 10];

Listing 1: Groovy code to configure a DKPro TC cross-validation BatchTask on Twitter data.

public class EmoticonRatioFeatureExtractor
extends FeatureExtractorResource_ImplBase implements DocumentFeatureExtractor
{

@Override
public List<Feature> extract(JCas annoDb) throws TextClassificationException {

int nrOfEmoticons = JCasUtil.select(annoDb, EMO.class).size();
int nrOfTokens = JCasUtil.select(annoDb, Token.class).size();
double ratio = (double) nrOfEmoticons / nrOfTokens;
return new Feature("EmoticonRatio", ratio).asList();

}
}

Listing 2: A DKPro TC document mode feature extractor measuring the ratio of emoticons to tokens.

ture representation into the Weka ARFF format.
For the classification, two machine learning algo-
rithms will be iteratively tested: a Naive Bayes
classifier and a Random Forest classifier. Pass-
ing a list of parameters into the parameter space
will automatically make DKPro TC test all pos-
sible parameter combinations. The classification
task automatically trains a model on the training
data and stores the results of the evaluation on
the test data for each fold on the disk. Finally,
the evaluation scores for each fold are collected
by the BatchCrossValidationReport and
written to a single file using a tabulated format.

5 Related Work

This section will give a brief overview about tools
with a scope similar to DKPro TC. We only list
freely available software, most of which is open-
source. Unless otherwise indicated, all of the tools
are written in Java.

ClearTK (Ogren et al., 2008) is conceptually
closest to DKPro TC and shares many of its dis-
tinguishing features like the modular feature ex-
tractors. It provides interfaces to machine learn-
ing libraries such as Mallet or libsvm, offers wrap-
pers for basic NLP components, and comes with
a feature extraction library that facilitates the de-
velopment of custom feature extractors within the
UIMA framework. In contrast to DKPro TC, it is
rather designed as a programming library than a

customizable research environment for quick ex-
periments and does not provide predefined text
classification setups. Furthermore, it does not sup-
port parameter sweeping and has no explicit sup-
port for creating experiment reports.

Argo (Rak et al., 2013) is a web-based work-
bench with support for manual annotation and au-
tomatic analysis of mainly bio-medical data. Like
DKPro TC, Argo is based on UIMA, but focuses
on sequence tagging, and it lacks DKPro TC’s pa-
rameter sweeping capabilities.

NLTK (Bird et al., 2009) is a general-purpose
NLP toolkit written in Python. It offers com-
ponents for a wide range of preprocessing tasks
and also supports feature extraction and machine
learning for supervised text classification. Like
DKPro TC, it can be used to quickly setup baseline
experiments. As opposed to DKPro TC, NLTK
lacks a modular structure with respect to prepro-
cessing and feature extraction and does not sup-
port parameter sweeping.

Weka (Hall et al., 2009) is a machine learning
framework that covers only the last two steps of
DKPro TC’s experimental process, i.e. machine
learning and evaluation. However, it offers no ded-
icated support for preprocessing and feature gener-
ation. Weka is one of the machine learning frame-
works that can be used within DKPro TC for ac-
tual machine learning.

Mallet (McCallum, 2002) is another machine
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learning framework implementing several super-
vised and unsupervised learning algorithms. As
opposed to Weka, is also supports sequence tag-
ging, including Conditional Random Fields, as
well as topic modeling. Mallet can be used as ma-
chine learning framework within DKPro TC.

Scikit-learn (Pedregosa et al., 2011) is a ma-
chine learning framework written in Python. It
offers basic functionality for preprocessing, fea-
ture selection, and parameter tuning. It provides
some methods for preprocessing such as convert-
ing documents to tf.idf vectors, but does not offer
sophisticated and customizable feature extractors
for textual data like DKPro TC.

6 Summary and Future Work

We have presented DKPro TC, a comprehensive
and flexible framework for supervised learning on
textual data. DKPro TC makes setting up exper-
iments and creating new features fast and simple,
and can therefore be applied for rapid prototyp-
ing. Its extensive logging capabilities emphasize
the replicability of results. In our own research
lab, DKPro TC has successfully been applied to a
wide range of tasks including author identification,
text quality assessment, and sentiment detection.

There are some limitations to DKPro TC which
we plan to address in future work. To reduce the
runtime of experiments with very large document
collections, we want to add support for parallel
processing of documents. While the current main
goal of DKPro TC is to bootstrap experiments on
new data sets or new applications, we also plan to
make DKPro TC workflows available as resources
to other applications, so that a model trained with
DKPro TC can be used to automatically label tex-
tual data in different environments.
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Abstract

In this demonstration we present WoSIT,
an API for Word Sense Induction (WSI)
algorithms. The toolkit provides imple-
mentations of existing graph-based WSI
algorithms, but can also be extended with
new algorithms. The main mission of
WoSIT is to provide a framework for the
extrinsic evaluation of WSI algorithms,
also within end-user applications such as
Web search result clustering and diversifi-
cation.

1 Introduction
The Web is by far the world’s largest information
archive, whose content – made up of billions of
Web pages – is growing exponentially. Unfortu-
nately the retrieval of any given piece of infor-
mation is an arduous task which challenges even
prominent search engines such as those developed
by Google, Yahoo! and Microsoft. Even today,
such systems still find themselves up against the
lexical ambiguity issue, that is, the linguistic prop-
erty due to which a single word may convey dif-
ferent meanings.

It has been estimated that around 4% of Web
queries and 16% of the most frequent queries are
ambiguous (Sanderson, 2008). A major issue as-
sociated with the lexical ambiguity phenomenon
on the Web is the low number of query words sub-
mitted by Web users to search engines. A pos-
sible solution to this issue is the diversification of
search results obtained by maximizing the dissimi-
larity of the top-ranking Web pages returned to the
user (Agrawal et al., 2009; Ashwin Swaminathan
and Kirovski, 2009). Another solution consists of
clustering Web search results by way of clustering
engines such as Carrot1 and Yippy2 and presenting
them to the user grouped by topic.

1http://search.carrot2.org
2http://yippy.com

Diversification and Web clustering algorithms,
however, do not perform any semantic analysis of
search results, clustering them solely on the basis
of their lexical similarity. Recently, it has been
shown that the automatic acquisition of the mean-
ings of a word of interest, a task referred to as
Word Sense Induction, can be successfully inte-
grated into search result clustering and diversifica-
tion (Navigli and Crisafulli, 2010; Di Marco and
Navigli, 2013) so as to outperform non-semantic
state-of-the-art Web clustering systems.

In this demonstration we describe a new toolkit
for Word Sense Induction, called WoSIT, which
i) provides ready implementations of existing
WSI algorithms; ii) can be extended with addi-
tional WSI algorithms; iii) enables the integration
of WSI algorithms into search result clustering
and diversification, thereby providing an extrinsic
evaluation tool. As a result the toolkit enables the
objective comparison of WSI algorithms within an
end-user application in terms of the degree of di-
versification of the search results of a given am-
biguous query.

2 WoSIT
In Figure 1 we show the workflow of the WoSIT
toolkit, composed of three main phases: WSI;
semantically-enhanced search result clustering
and diversification; evaluation. Given a target
query q whose meanings we want to automati-
cally acquire, the toolkit first builds a graph for q,
obtained either from a co-occurrence database, or
constructed programmatically by using any user-
provided input. The co-occurrence graph is then
input to a WSI algorithm, chosen from among
those available in the toolkit or implemented by
the user. As a result, a set of word clusters
is produced. This concludes the first phase of
the WoSIT workflow. Then, the word clusters
produced are used for assigning meanings to the
search results returned by a search engine for the
query q, i.e. search result disambiguation. The
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Figure 1: The WoSIT workflow.

outcome is that we obtain a clustering of search
results. Finally, during the third phase, we apply
the evaluation module which performs an evalua-
tion of the search result clustering quality and the
diversification performance.

We now describe in detail the three main phases
of WoSIT.

2.1 Word Sense Induction

The first phase of WoSIT consists of the automatic
identification of the senses of a query of inter-
est, i.e. the task of Word Sense Induction. Al-
though WoSIT enables the integration of custom
implementations which can potentially work with
any WSI paradigm, the toolkit provides ready-to-
use implementations of several graph-based algo-
rithms that work with word co-occurrences. All
these algorithms carry out WSI in two steps: co-
occurrence graph construction (Section 2.1.1) and
discovery of word senses (Section 2.1.2).

2.1.1 Co-occurrence graph construction

Given a target query q, we build a co-occurrence
graph Gq = (V,E) such that V is the set of
words co-occurring with q and E is the set of undi-
rected edges, each denoting a co-occurrence be-
tween pairs of words in V . In Figure 2 we show
an example of a co-occurrence graph for the target
word excalibur.

WoSIT enables the creation of the co-
occurrence graph either programmatically, by
adding edges and vertices according to any user-
specific algorithm, or starting from the statis-
tics for co-occurring words obtained from a co-
occurrence database (created, e.g., from a text cor-
pus, as was done by Di Marco and Navigli (2013)).

In either case, weights for edges have to be pro-
vided in terms of the correlation strength between
pairs of words (e.g. using Dice, Jaccard or other
co-occurrence measures).

The information about the co-occurrence
database, e.g. a MySQL database, is provided
programmatically or via parameters in the prop-
erties configuration file (db.properties).
The co-occurrence database has to follow a
given schema provided in the toolkit docu-
mentation. An additional configuration file
(wosit.properties) also allows the user
to specify additional constraints, e.g. the
minimum weight value of co-occurrence (the
wordGraph.minWeight parameter) to be
added as edges to the graph.

The graphs produced can also be saved to binary
(i.e. serialized) or text file:

g.saveToSer(fileName);

g = WordGraph.loadFromSer(fileName);

g.saveToTxt(fileName);

g = WordGraph.loadFromTxt(fileName);

We are now ready to provide our co-occurrence
graph, created with just a few lines of code, as in-
put to a WSI algorithm, as will be explained in the
next section.

2.1.2 Discovery of Word Senses

Once the co-occurrence graph for the query q is
built, it can be input to any WSI algorithm which
extends the GraphClusteringAlgorithm
class in the toolkit. WoSIT comes with a number
of ready-to-use such algorithms, among which:
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• Balanced Maximum Spanning Tree (B-
MST) (Di Marco and Navigli, 2013), an ex-
tension of a WSI algorithm based on the
calculation of a Maximum Spanning Tree
(Di Marco and Navigli, 2011) aimed at bal-
ancing the number of co-occurrences in each
sense cluster.
• HyperLex (Véronis, 2004), an algorithm

which identifies hubs in co-occurrence
graphs, thereby identifying basic meanings
for the input query.
• Chinese Whispers (Biemann, 2006), a ran-

domized algorithm which partitions nodes by
means of the iterative transfer of word sense
information across the co-occurrence graph
(Biemann, 2006).
• Squares, Triangles and Diamonds

(SquaT++) (Di Marco and Navigli, 2013),
an extension of the SquaT algorithm (Navigli
and Crisafulli, 2010) which exploits three
cyclic graph patterns to determine and
discard those vertices (or edges) with weak
degree of connectivity in the graph.

We also provide an implementation of a word
clustering algorithm, i.e. Lin98 (Lin, 1998),
which does not rely on co-occurrence graphs, but
just on the word co-occurrence information to it-
eratively refine word clusters on the basis of their
“semantic” relationships.

A programmatic example of use of the B-MST
WSI algorithm is as follows:

BMST mst = new BMST(g);

mst.makeClustering();

Clustering wordClusters =

mst.getClustering();

where g is a co-occurrence graph created as ex-
plained in Section 2.1.1, provided as input to
the constructor of the algorithm’s class. The

makeClustering method implements the in-
duction algorithm and creates the word clus-
ters, which can then be retrieved calling the
getClustering method. As a result an in-
stance of the Clustering class is provided.

As mentioned above, WoSIT also enables
the creation of custom WSI implementa-
tions. This can be done by extending the
GraphClusteringAlgorihm abstract class.
The new algorithm just has to implement two
methods:

public void makeClustering();

public Clustering getClustering();

As a result, the new algorithm is readily inte-
grated into the WoSIT toolkit.

2.2 Semantically-enhanced Search Result
Clustering and Diversification

We now move to the use of the induced senses of
our target query q within an application, i.e. search
result clustering and diversification.

Search result clustering. The next step (cf. Fig-
ure 1) is the association of the search results re-
turned by a search engine for query q with the most
suitable word cluster (i.e. meaning of q). This can
be done in two lines:

SnippetAssociator associator =

SnippetAssociator.getInstance();

SnippetClustering clustering =

associator.associateSnippet(

targetWord,

searchResults,

wordClusters,

AssociationMetric.DEGREE_OVERLAP);

The first line obtains an instance of the class
which performs the association between search re-
sult snippets and the word clusters obtained from
the WSI algorithm. The second line calls the asso-
ciation method associateSnippet which in-
puts the target word, the search results obtained
from the search engine, the word clusters and, fi-
nally, the kind of metric to use for the associa-
tion. Three different association metrics are im-
plemented in the toolkit:

• WORD OVERLAP performs the association by
maximizing the size of the intersection be-
tween the word sets in each snippet and the
word clusters;
• DEGREE OVERLAP performs the association

by calculating for each word cluster the sum
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of the vertex degrees in the co-occurrence
graph of the words occurring in each snippet;
• TOKEN OVERLAP is similar in spirit to
WORD OVERLAP, but takes into account each
token occurrence in the snippet bag of words.

Search result diversification. The above two
lines of code return a set of snippet clusters and, as
a result, semantically-enhanced search result clus-
tering is performed. At the end, the resulting clus-
tering can be used to provide a diversified rerank-
ing of the results:

List<Snippet> snippets =

clustering.diversify(sorter);

The diversify method returns a flat list of
snippet results obtained according to the Sorter
object provided in input. The Sorter abstract
class is designed to rerank the snippet clusters ac-
cording to some predefined rule. For instance, the
CardinalitySorter class, included in the
toolkit, sorts the clusters according to the size of
each cluster. Once a sorting order has been es-
tablished, an element from each snippet cluster is
added to an initially-empty list; next, a second el-
ement from each cluster is added, and so on, until
all snippets are added to the list.

The sorting rules implemented in the toolkit are:

• CardinalitySorter: sorts the clusters
according to their size, i.e. the number of ver-
tices in the cluster;
• MeanSimilaritySorter: sorts the clus-

ters according to the average association
score between the snippets in the cluster and
the backing word cluster (defined by the se-
lected association metrics).

Notably, the end user can then implement his or
her own custom sorting procedure by simply ex-
tending the Sorter class.

2.2.1 Search Result Datasets

The framework comes with two search result
datasets of ambiguous queries: the AMBI-
ENT+MORESQUE dataset made available by
Bernardini et al. (2009) and Navigli and Crisa-
fulli (2010), respectively, and the SemEval-2013-
Task11 dataset.3 New result datasets can be pro-
vided by users complying with the dataset format
described below.

3For details visit http://lcl.uniroma1.it/
wosit/.

A search result dataset in WoSIT is made up of
at least two files:

• topics.txt, which contains the queries
(topics) of interest together with their nu-
meric ids. For instance:

id description

1 polaroid

2 kangaroo

3 shakira

... ...

• results.txt, which lists the search re-
sults for each given query, in terms of URL,
page title and page snippet:

ID url title snippet
1.1 http://www.polaroid.com/ Polaroid | Home ...
1.2 http://www.polaroid.com/products products...
1.3 http://en.wikipedia.org/wiki/Polaroid_Cor...
... ...

Therefore, the two files provide the queries and the
corresponding search results returned by a search
engine. In order to enable an automatic evaluation
of the search result clustering and diversification
output, two additional files have to be provided:

• subTopics.txt, which for each query
provides the list of meanings for that query,
e.g.:

ID description
1.1 Polaroid Corporation, a multinational con...
1.2 Instant film photographs are sometimes kn...
1.3 Instant camera (or Land camera), sometime...
... ...

• STRel.txt, which provides the manual as-
sociations between each search result and the
most suitable meaning as provided in the
subTopics.txt file. For instance:

subTopicID resultID

1.1 1.1

1.1 1.2

1.1 1.3

... ...

2.3 WSI Evaluator

As shown in Figure 1 the final component of our
workflow is the evaluation of WSI when integrated
into search result clustering and diversification (al-
ready used by Navigli and Vannella (2013)). This
component, called the WSI Evaluator, takes as
input the snippet clusters obtained for a given
query together with the fully annotated search re-
sult dataset, as described in the previous section.
Two kinds of evaluations are carried out, described
in what follows.
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1 Dataset searchResults = Dataset.getInstance();

2 DBConfiguration db = DBConfiguration.getInstance();

3 for(String targetWord : dataset.getQueries())

4 {

5 WordGraph g = WordGraph.createWordGraph(targetWord, searchResults, db);

6 BMST mst = new BMST(g);

7 mst.makeClustering();

8 SnippetAssociator snippetAssociator = SnippetAssociator.getInstance();

9 SnippetClustering snippetClustering = snippetAssociator.associateSnippet(

10 targetWord, searchResults, mst.getClustering(), AssociationMetric.WORD_OVERLAP);

11 snippetClustering.export("output/outputMST.txt", true);

12 }

13 WSIEvaluator.evaluate(searchResults, "output/outputMST.txt");

Figure 3: An example of evaluation code for the B-MST clustering algorithm.

2.3.1 Evaluation of the clustering quality

The quality of the output produced by
semantically-enhanced search result cluster-
ing is evaluated in terms of Rand Index (Rand,
1971, RI), Adjusted Rand Index (Hubert and
Arabie, 1985, ARI), Jaccard Index (JI) and,
finally, precision and recall as done by Crabtree et
al. (2005), together with their F1 harmonic mean.

2.3.2 Evaluation of the clustering diversity

To evaluate the snippet clustering diversity the
measures of S-recall@K and S-precision@r (Zhai
et al., 2003) are calculated. These measures de-
termine how many different meanings of a query
are covered in the top-ranking results shown to the
user. We calculate these measures on the output of
the three different association metrics illustrated in
Section 2.2.

3 A Full Example
We now show a full example of usage of the
WoSIT API. The code shown in Figure 3 initially
obtains a search result dataset (line 1), selects a
database (line 2) and iterates over its queries (line
3). Next, a co-occurrence graph for the current
query is created from a co-occurrence database
(line 5) and an instance of the B-MST WSI algo-
rithm is created with the graph as input (line 6).
After executing the algorithm (line 7), the snippets
for the given query are clustered (lines 8-10). The
resulting snippet clustering is appended to an out-
put file (line 11). Finally, the WSI evaluator is run
on the resulting snippet clustering using the given
dataset (line 13).

3.1 Experiments

We applied the WoSIT API to the AMBI-
ENT+MORESQUE dataset using 4 induction al-

Algorithm Assoc. Web1T
metr. ARI JI F1 # cl.

SquaT++
WO 69.65 75.69 59.19 2.1
DO 69.21 75.45 59.19 2.1
TO 69.67 75.69 59.19 2.1

B-MST
WO 60.76 71.51 64.56 5.0
DO 66.48 69.37 64.84 5.0
TO 63.17 71.21 64.04 5.0

HyperLex
WO 60.86 72.05 65.41 13.0
DO 66.27 68.00 71.91 13.0
TO 62.82 70.87 65.08 13.0

Chinese Whispers
WO 67.75 75.37 60.25 12.5
DO 65.95 69.49 70.33 12.5
TO 67.57 74.69 60.50 12.5

Table 1: Results of WSI algorithms with a Web1T
co-occurrence database and the three association
metrics (Word Overlap, Degree Overlap and To-
ken Overlap). The reported measures are Ad-
justed Rand Index (ARI), Jaccard Index (JI) and
F1. We also show the average number of clusters
per query produced by each algorithm.

gorithms among those available in the toolkit,
where co-occurrences were obtained from the
Google Web1T corpus (Brants and Franz, 2006).
In Table 1 we show the clustering quality results
output by the WoSIT evaluator, whereas in Fig-
ure 4 we show the diversification performance in
terms of S-recall@K.

3.2 Conclusions

In this demonstration we presented WoSIT, a full-
fledged toolkit for Word Sense Induction algo-
rithms and their integration into search result clus-
tering and diversification. The main contributions
are as follows: first, we release a Java API for
performing Word Sense Induction which includes
several ready-to-use implementations of existing
algorithms; second, the API enables the use of the
acquired senses for a given query for enhancing
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Figure 4: S-recall@K performance.

search result clustering and diversification; third,
we provide an evaluation component which, given
an annotated dataset of search results, carries out
different kinds of evaluation of the snippet cluster-
ing quality and diversity.

WoSIT is the first available toolkit which pro-
vides an end-to-end approach to the integration of
WSI into a real-world application. The toolkit en-
ables an objective comparison of WSI algorithms
as well as an evaluation of the impact of apply-
ing WSI to clustering and diversifying search re-
sults. As shown by Di Marco and Navigli (2013),
this integration is beneficial and allows outperfor-
mance of non-semantic state-of-the-art Web clus-
tering systems.

The toolkit, licensed under a Creative Com-
mons Attribution-Non Commercial-Share Alike
3.0 License, is available at http://lcl.
uniroma1.it/wosit/.
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Abstract

Interactive or Incremental Statistical Ma-
chine Translation (IMT) aims to provide a
mechanism that allows the statistical mod-
els involved in the translation process to be
incrementally updated and improved. The
source of knowledge normally comes from
users who either post-edit the entire trans-
lation or just provide the translations for
wrongly translated domain-specific termi-
nologies. Most of the existing work on
IMT uses batch learning paradigm which
does not allow translation systems to make
use of the new input instantaneously. We
introduce an adaptive MT framework with
a Rule Definition Language (RDL) for
users to amend MT results through trans-
lation rules or patterns. Experimental re-
sults show that our system acknowledges
user feedback via RDL which improves
the translations of the baseline system on
three test sets for Vietnamese to English
translation.

1 Introduction

In current Statistical Machine Translation (SMT)
framework, users are often seen as passive con-
tributors to MT performance. Even if there is a
collaboration between the users and the system, it
is carried out in a batch learning paradigm (Ortiz-
Martinez et al., 2010), where the training of the
SMT system and the collaborative process are car-
ried out in different stages. To increase the produc-
tivity of the whole translation process, one has to
incorporate human correction activities within the
translation process. Barrachina et al. (2009) pro-
posed an iterative process in which the translator
activity is used by the system to compute its best

∗∗Work done during an internship at I2R, A*STAR.

(or n-best) translation suffix hypotheses to com-
plete the prefix. Ortiz-Martinez et al. (2011) pro-
posed an IMT framework that includes stochas-
tic error-correction models in its statistical formal-
ization to address the prefix coverage problems
in Barrachina et al. (2009). Gonzalez-Rubio et
al. (2013) proposed a similar approach with a spe-
cific error-correction model based on a statistical
interpretation of the Levenshtein distance (Leven-
shtein, 1966). On the other hand, Ortiz-Martinez
et al. (2010) presented an IMT system that is able
to learn from user feedback by incrementally up-
dating the statistical models used by the system.
The key aspect of this proposed system is the use
of HMM-based alignment models trained by an in-
cremental EM algorithm.

Here, we present a system similar to Ortiz-
Martinez et al. (2010). Instead of updating the
translation model given a new sentence pair, we
provide a framework for users to describe trans-
lation rules using a Rule Definition Language
(RDL). Our RDL borrows the concept of the rule-
based method that allows users to control the
translation output by writing rules using their lin-
guistic and domain knowledge. Although statis-
tical methods pre-dominate the machine transla-
tion research currently, rule-based methods are
still promising in improving the translation qual-
ity. This approach is especially useful for low
resource languages where large training corpus
is not always available. The advantage of rule-
based methods is that they can well handle par-
ticular linguistic phenomena which are peculiar to
languages and domains. For example, the TCH
MT system at IWSLT 2008 (Wang et al., 2008)
used dictionary and hand-crafted rules (e.g. regu-
lar expression) to process NEs. Their experiments
showed that handling NE separately (e.g., person
name, location name, date, time, digit) results in
translation quality improvement.

In this paper, we present an adaptive and in-
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Figure 1: The proposed rule-augmented SMT
framework.

teractive MT system that allows users to correct
the translation and integrate the adaptation into
the next translation cycle. Our experiments show
that the system is specifically effective in han-
dling translation errors related to out of vocabulary
words (OOVs), language expressions, name enti-
ties (NEs), abbreviations, terminologies, idioms,
etc. which cannot be easily addressed in the ab-
sence of in-domain parallel data.

2 System Overview

Figure 1 shows the translation and interactive pro-
cess of our system. The system is trained with a
batch of parallel texts to create a baseline model.
Users improve the translation by adding RDL
rules to change or correct the unsatisfactory trans-
lation. New RDL rules are tested in a working
environment before uploading to the production
environment where they would be used by subse-
quent translation requests.

In our system, RDL Management checks, vali-
dates and indexes the translation rules. The Rule-
Augmented Decoder has two components: (1) the
RDL Matcher to find applicable RDL rules for a
given source text to create dynamic translation hy-
potheses; and (2) the Augmented Decoder to pro-
duce the final consensus translation using both dy-
namic hypotheses and static hypotheses from the
baseline model.

3 Rule Definition Language (RDL)

The Rule Definition Language (RDL) comprises a
RDL grammar, a RDL parser and a RDL matching
algorithm.

3.1 RDL Grammar
Our RDL grammar is represented with a Backus-
Naur Form (BNF)s syntax. The major feature of

Node Type Description
Token Any string of characters in the defined

basic processing unit of the language.
String A constant string of characters.
Identifier A term represents a pre-defined role

(e.g. integer, date, sequence, . . . ).
Meta-node A term executes a specific function

(e.g. casing, selection/option, con-
nection).

Context cue A term describes source context’s ex-
istence.

Function A term executes a pre-defined task.

Table 1: A brief description of RDL nodes.

Figure 2: An Example of RDL Rule.

RDL grammar is the support of pre-defined identi-
fiers and meta-operators which go beyond the nor-
mal framework of regular expression. We also
included a set of pre-defined functions to further
constraint the application and realization of the
rules. This framework allows us to incorporate
semantic information into the rule definition and
derive translation hypotheses using both semantic
and lexical information. A RDL rule is identified
by a unique rule ID and five constituents, includ-
ing Source pattern, rule Condition, Target transla-
tion, Reordering rule and user ConFidence. The
source pattern and target translation can be con-
structed using different combination of node types
as described in Table 1. The rules can be further
conditioned by using some pre-defined functions
and the system allows users to reorder the transla-
tion of the target node. Figure 2 gives an example
of a RDL rule where identifier @Num is used.

3.2 RDL Parsing and Indexing

The RDL Parser checks the syntax of the rules
before indexing and storing them into the rule
database. We utilize the compiler generator (WoB
et al., 2003) to generate a RDL template parser and
then embed all semantic parsing components into
the template to form our RDL Parser.

As rule matching is performed during transla-
tion, searching of the relevant rules have to be very
fast and efficient. We employed the modified ver-
sion of an inverted index scheme (Zobel and Mof-
fat, 2006) for our rule indexing. The algorithm is
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Figure 3: A linked item chain for a rule source
(@a @b [c] [“d e”] [“f g h”] (“i” | “j k”)).

represented in Algorithm 1.

Data: ruleID & srcPatn
Result: idxTbl
// To build data structure − Forward Step
doForward(srcPatn, linkedItmChain);
// To create index table − Backward Step
doBackward(linkedItmChain, ruleID, idxTbl);

Algorithm 1: Algorithm for RDL rule indexing.

The main idea of the rule indexing algorithm is
to index all string-based nodes in the source pat-
tern of the RDL rule. Each node is represented
using 3-tuple. They are ruleID, number of nodes
in source pattern and all plausible positions of the
node during rule matching. The indexing is car-
ried out via a Forward Step and Backward Step.
The Forward Step builds a linked item chain which
traverses all possible position transitions from one
node to another as illustrated in Figure 3. Note that
S and E are the Start and End Node. The link indi-
cates the order of transition from a node to another.
The numbers refer to the possible positions of an
item in source. The Backward Step starts at the
end of the source pattern; traverses back the link
to index each node using the 3-tuple constructed
in the Forward Step. This data structure allows us
to retrieve, add or update RDL rules efficiently and
incrementally without re-indexing.

3.3 RDL Matching Algorithm

Each word in the source string will be matched
against the index table to retrieve relevant RDL
rules during decoding. The aim is to retrieve all
RDL rules in which the word is used as part of
the context in the source pattern. We sort all the
rules based on the word positions recorded dur-
ing indexing, match their source patterns against
the input string within the given span, check the
conditions and generate the hypotheses if the rules
fulfill all the constraints.

4 Rule-Augmented Decoder

The rule-augmented decoder integrates the dy-
namic hypotheses generated during rule match-
ing with the baseline hypotheses during decoding.
Given a sentence f from a source language F, the
fundamental equation of SMT (Brown et al., 1993)
to translate it into a target sentence e of a target
language E is stated in Equation 1.

ebest = argmaxePr(e|f)
= argmaxePr(f |e)Pr(e)

= argmaxe

N∑
n=1

λnhn(e, f)

(1)

Here, Pr(f |e) is approximated by a translation
model that represents the correlation between the
source and the target sentence and Pr(e) is ap-
proximated by a language model presenting the
well-formedness of the candidate translation e.
Most of the SMT systems follow a log-linear ap-
proach (Och and Ney, 2002), where direct mod-
elling of the posterior probabilityPr(f |e) of Equa-
tion 1 is used. The decoder searches for the best
translation given a set of model hm(e, f) by max-
imizing the log-linear feature score (Och and Ney,
2004) as in Equation 1.

For each hypothesis generated by the RDL rule,
an appropriate feature vector score is needed to en-
sure that it will not disturb the probability distribu-
tion of each model and contributes to hypothesis
selection process of SMT decoder.

4.1 Model Score Estimation
The aim of the RDL implementation is to address
the translation of language-specific expressions
(such as date-time, number, title, etc.) and do-
main-specific terminologies. Sometimes, transla-
tion rules and bilingual phrases can be easily ob-
served and obtained from experienced translators
or linguists. However, it is difficult to estimate the
probability of the RDL rules manually to reflect
the correct word or phrase distribution in real data.
Many approaches have been proposed to solve the
OOV problem and estimate word translation prob-
abilities without using parallel data. Koehn et
al. (2000) estimated word translation probabilities
from unrelated monolingual corpora using the EM
algorithm. Habash et al. (2008) presented differ-
ent techniques to extend the phrase table for on-
line handling of OOV. In their approach, the ex-
tended phrases are added to the baseline phrase
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table with a default weight. Arora et al. (2008)
extended the phrase table by adding new phrase
translations for all source language words that do
not have a single-word entry in the original phrase-
table, but appear in the context of larger phrases.
They adjusted the probabilities of each entry in the
extended phase table.

We performed different experiments to estimate
the lexical translation feature vector for each dy-
namic hypothesis generated by our RDL rules. We
obtain the best performance by estimating the fea-
ture vector score using the baseline phrase table
through context approximation. For each hypoth-
esis generated by the RDL rule, we retrieve en-
tries from the phrase table which have at least one
similar word with the source of the generated hy-
pothesis. We sort the entries based on the sim-
ilarities between the generated and retrieved hy-
potheses using both source and target phrase. The
medium score of the sorted list is assigned to the
generated hypothesis.

5 System Features

The main features of our system are (1) the flexi-
bilities provided to the user to create different lev-
els of translation rules, from simple one-to-one
bilingual phrases to complex generalization rules
for capturing the translation of specific linguis-
tic phenomena; and (2) the ability to validate and
manage translation rules online and incrementally.

5.1 RDL Rule Management

Our system framework is language independent
and has been implemented on a Vietnamese to En-
glish translation project. Figure 4 shows the RDL
Management Screen where a user can add, mod-
ify or delete a translation rule using RDL. A RDL
rule can be created using nodes. Each node can
be defined using string or system predefined meta-
identifiers with or without meta-operators as de-
scribed in Table 1. Based on the node type selected
by the user, the system further restricts the user to
appropriate conditions and translation functions.
The user can define the order of the translation out-
put of each node and at the same time, inform the
system whether to use a specific RDL exclusively
during decoding, in which any phrases from the
baseline phrase table overlapping with that span
will be ignored1. The system also provides an edi-

1Similar to Moses XML markup exclusive feature
http://www.statmt.org/moses/?n=Moses.

Figure 4: RDL Management screen with identi-
fiers & meta-functions supported.

tor for expert users to code the rules using the RDL
controlled language. Each rule is validated by the
RDL parser (discussed in section 3.2), which will
display errors or warning messages when an in-
valid syntax is encountered.

5.2 RDL Rule Validation

Our decoder manages two types of phrase table.
One is the static phrase-table obtained through
the SMT training in parallel texts; the other is
the dynamic table that comprises of the hypothe-
ses generated on-the-fly during RDL rule match-
ing. To ensure only fully tested rules are used in
the production environment, the system supports
two types of dynamic phrase table. The work-
ing phrase-table holds the latest updates made by
the users. The users can test the translation with
these latest modifications using a specific transla-
tion protocol. When users are satisfied with these
modifications, they can perform an operation to
upload the RDL rules to the production phrase-
table, where the RDLs are used for all translation

AdvancedFeatures#ntoc9
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Named Entity Category Number of Rules
Date-time 120
Measurement 92
Title 13
Designation 12
Number 19
Terminology 178
Location 13
Organization 48
Total 495

Table 2: Statistics of created RDL rules for
Vietnamese-to-English NE Translation.

requests. Uploaded rules can be deleted, modified
and tested again in the working environment be-
fore updated to the production environment. Fig-
ure 5b and Figure 5c show the differences in trans-
lation output before and after applied the RDL rule
in Figure 5a.

6 A Case Study for Vietnamese−English
Translation

We performed an experiment using the proposed
RDL framework for a Vietnamese to English
translation system. As named entity (NE) con-
tributes to most of the OOV occurrences and im-
pacts the system performance for out-of-domain
test data in our system, we studied the NE usage
in a large Vietnamese monolingual corpus com-
prising 50M words to extract RDL rules. We cre-
ated RDL rules for 8 popular NE types including
title, designation, date-time, measurement, loca-
tion, organization, number and terminology. We
made use of a list of anchor words for each NE
category and compiled our RDL rules based on
these anchor words. As a result, we compiled a
total of 495 rules for 8 categories and it took about
3 months for the rule creation. Table 2 shows the
coverage of our compiled rules.

6.1 Experiment & Results

Our experiments were performed on a training set
of about 875K parallel sentences extracted from
web news and revised by native linguists over 2
years. The corpus has 401K and 225K unique En-
glish and Vietnamese tokens. We developed 1008
and 2548 parallel sentences, each with 4 refer-
ences, for development and testing, respectively.
All the reference sentences are created and revised
by different native linguists at different times. We
also trained a very large English language model
using data from Gigaword, Europarl and English

Figure 5: Translation Demo with RDL rules.

Data Set nS nT nMR
TrainFull (VN) 875,579 28,251,775 627,125
TrainFull (EN) 875,579 20,191,526 -
Test1 (VN) 1009 34,717 737
Test1 (4 refs) (EN) 1009 ≈25,713 -
Test2 (VN) 1033 29,546 603
Test2 (4 refs) (EN) 1033 ≈22,717 -
Test3 (VN) 506 16,817 344
Test3 (4 refs) (EN) 506 ≈12,601 -
Dev (VN) 1008 34,803 -
Dev (4 refs) (EN) 1008 ≈25,631 -

Table 3: Statistics of Vietnamese-to-English paral-
lel data. nS, nT, and nMR are number of sentence
pairs and tokens, and count of matched rules, re-
spectively.

web texts of Vietnamese authors to validate the
impact of RDL rules on large-scale and domain-
rich corpus. The experimental results show that
created RDL rules improve the translation perfor-
mance on all 3 test sets. Table 3 and Table 4 show
respective data statistics and results of our evalua-
tion. More specifically, the BLEU scores increase
3%, 3.6% and 1.4% on the three sets, respectively.

7 Conclusion

We have presented a system that provides a con-
trol language (Kuhn, 2013) specialized for MT for
users to create translation rules. Our RDL differs
from Moses’s XML mark-up in that it offers fea-
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Data Set System BLEU NIST METEOR
Set 1 Baseline 39.21 9.2323 37.81

+RDL (all) 39.51 9.2658 37.98
Set 2 Baseline 40.25 9.5174 38.24

+RDL (all) 40.61 9.6092 38.84
Set 3 Baseline 36.77 8.6953 37.65

+RDL (all) 36.91 8.7062 37.69

Table 4: Experimental results with RDL rules.

tures that go beyond the popular regular expres-
sion framework. Without restricting the mark-up
on the source text, we allow multiple translations
to be specified for the same span or overlapping
span.

Our experimental results show that RDL
rules improve the overall performance of the
Vietnamese-to-English translation system. The
framework will be tested for other language pairs
(e.g. Chinese-to-English, Malay-to-English) in
the near future. We also plan to explore advanced
methods to identify and score “good” dynamic
hypotheses on-the-fly and integrate them into cur-
rent SMT translation system (Simard and Foster,
2013).
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Abstract

This paper introduces the Ky-
otoEBMT Example-Based Machine
Translation framework. Our system
uses a tree-to-tree approach, employing
syntactic dependency analysis for
both source and target languages
in an attempt to preserve non-local
structure. The effectiveness of our
system is maximized with online ex-
ample matching and a flexible decoder.
Evaluation demonstrates BLEU scores
competitive with state-of-the-art SMT
systems such as Moses. The current
implementation is intended to be
released as open-source in the near
future.

1 Introduction

Corpus-based approaches have become a ma-
jor focus of Machine Translation research.
We present here a fully-fledged Example-
Based Machine Translation (EBMT) plat-
form making use of both source-language
and target-language dependency structure.
This paradigm has been explored compar-
atively less, as studies on Syntactic-based
SMT/EBMT tend to focus on constituent
trees rather than dependency trees, and
on tree-to-string rather than tree-to-tree ap-
proaches. Furthermore, we employ separate
dependency parsers for each language rather
than projecting the dependencies from one lan-
guage to another, as in (Quirk et. al, 2005).

The dependency structure information is
used end-to-end: for improving the quality
of the alignment of the translation examples,
for constraining the translation rule extraction
and for guiding the decoding. We believe that
dependency structure, which considers more

than just local context, is important in order
to generate fluent and accurate translations
of complex sentences across distant language
pairs.

Our experiments focus on technical do-
main translation for Japanese-Chinese and
Japanese-English, however our implementa-
tion is applicable to any domain and language
pair for which there exist translation examples
and dependency parsers.

A further unique characteristic of our sys-
tem is that, again contrary to the majority of
similar systems, it does not rely on precompu-
tation of translation rules. Instead it matches
each input sentence to the full database of
translation examples before extracting trans-
lation rules online. This has the merit of max-
imizing the information available when creat-
ing and combining translation rules, while re-
taining the ability to produce excellent trans-
lations for input sentences similar to an exist-
ing translation example.

The system is mostly developed in C++ and
incorporates a web-based translation interface
for ease of use. The web interface (see Fig-
ure 1) also displays information useful for error
analysis such as the list of translation exam-
ples used. Experiments are facilitated through
the inclusion of a curses-based graphical in-
terface for performing tuning and evaluation.
The decoder supports multiple threads.

We are currently making preparations for
the project to be released with an open-
source license. The code will be available at
http://nlp.ist.i.kyoto-u.ac.jp/kyotoebmt/.

2 System Overview
Figure 2 shows the basic structure of the pro-
posed translation pipeline.

The training process begins with parsing
and aligning parallel sentences from the train-
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Figure 1: A screenshot of the web interface
showing a Japanese-English translation. The
interface provides the source and target side
dependency tree, as well as the list of exam-
ples used with their alignments. The web in-
terface facilitates easy and intuitive error anal-
ysis, and can be used as a tool for computer-
aided translation.

ing corpus. Alignment uses a Bayesian sub-
tree alignment model based on dependency
trees. This contains a tree-based reorder-
ing model and can capture non-local reorder-
ings, which sequential word-based models of-
ten cannot handle effectively. The alignments
are then used to build an example database
(‘translation memory’) containing ‘examples’
or ‘treelets’ that form the hypotheses to be
combined during decoding.

Translation is performed by first parsing
an input sentence then searching for treelets
matching entries in the example database.
The retrieved treelets are combined by a de-
coder that optimizes a log linear model score.
The example retrieval and decoding steps are
explained in more detail in sections 3 and 4
respectively. The choice of features and the
tuning of the log linear model is described in
section 5.

Figure 3 shows the process of combining ex-
amples matching the input tree to create an
output sentence.

Figure 2: Translation pipeline. An example
database is first trained from a parallel cor-
pus. Translation is performed by the decoder,
which combines initial hypotheses generated
by the example retrieval module. Weights can
be improved with batch tuning.

3 Example retrieval and translation
hypothesis construction

An important characteristic of our system is
that we do not extract and store translation
rules in advance: the alignment of translation
examples is performed offline. However, for a
given input sentence i, the steps for finding
examples partially matching i and extracting
their translation hypotheses is an online pro-
cess. This approach could be considered to be
more faithful to the original EBMT approach
advocated by Nagao (1984). It has already
been proposed for phrase-based (Callison-
Burch et al., 2005), hierarchical (Lopez, 2007),
and syntax-based (Cromières and Kurohashi,
2011) systems. It does not however, seem to
be very commonly integrated in syntax-based
MT.

This approach has several benefits. The first
is that we are not required to impose a limit
on the size of translation hypotheses. Systems
extracting rules in advance typically restrict
the size and number of extracted rules for fear
of becoming unmanageable. In particular, if
an input sentence is the same or very similar
to one of our translation examples, we will be
able to retrieve a perfect translation. A second
advantage is that we can make use of the full
context of the example to assign features and
scores to each translation hypothesis.

The main drawback of our approach is that
it can be computationally more expensive to
retrieve arbitrarily large matchings in the ex-
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Figure 3: The process of translation. The source sentence is parsed and matching subtrees from
the example database are retrieved. From the examples, we extract translation hypotheses than
can contain optional target words and several position for each non-terminals. For example the
translation hypothesis containing “textbook” has three possible position for the non-terminal X3
(as a left-child before “a”, as a left-child after “a” or as a right-child). The translation hypotheses
are then combined during decoding. Choice of optional words and final Non-Terminal positions
is also done during decoding.

ample database online than it is to match pre-
computed rules. We use the techniques de-
scribed in (Cromières and Kurohashi, 2011)
to perform this step as efficiently as possible.

Once we have found an example translation
(s, t) for which s partially matches i, we pro-
ceed to extract a translation hypothesis from
it. A translation hypothesis is defined as a
generic translation rule for a part p of the in-
put sentence that is represented as a target-
language treelet, with non-terminals repre-
senting the insertion positions for the transla-
tions of other parts of the sentence. A trans-
lation hypothesis is created from a translation
example as follows:

1. We project the part of s that is matched
into the target side t using the alignment
of s and t. This is trivial if each word of
s and t is aligned, but this is not typi-
cally the case. Therefore our translation

hypotheses will often have some target
words/nodes marked as optionals: this
means that we will decide if they should
be added to the final translation only at
the moment of combination.

2. We insert the non-terminals as child
nodes of the projected subtree. This is
simple if i, s and t have the same struc-
ture and are perfectly aligned, but again
this is not typically the case. A conse-
quence is that we will sometimes have sev-
eral possible insertion positions for each
non-terminal. The choice of insertion po-
sition is again made during combination.

4 Decoding

After having extracted translation hypotheses
for as many parts of the input tree as possible,
we need to decide how to select and combine
them. Our approach here is similar to what
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Figure 4: A translation hypothesis endoded
as a lattice. This representation allows us to
handle efficiently the ambiguities of our trans-
lation rules. Note that each path in this lat-
tice corresponds to different choices of inser-
tion position for X2, morphological forms of
“be”, and the optional insertion of “at”.

has been proposed for Corpus-Based Machine
Translation. We first choose a number of fea-
tures and create a linear model scoring each
possible combination of hypotheses (see Sec-
tion 5). We then attempt to find the combi-
nation that maximizes this model score.

The combination of rules is constrained by
the structure of the input dependency tree. If
we only consider local features1, then a simple
bottom-up dynamic programming approach
can efficiently find the optimal combination
with linear O(|H|) complexity2. However,
non-local features (such as language models)
will force us to prune the search space. This
pruning is done efficiently through a varia-
tion of cube-pruning (Chiang, 2007). We
use KenLM3 (Heafield, 2011) for computing
the target language model score. Decoding
is made more efficient by using some of the
more advanced features of KenLM such as
state-reduction ((Li and Khudanpur, 2008),
(Heafield et al., 2011)) and rest-cost estima-
tions(Heafield et al., 2012).

Compared with the original cube-pruning
algorithm, our decoder is designed to handle
an arbitrary number of non-terminals. In ad-
dition, as we have seen in Section 3, the trans-
lation hypotheses we initially extract from ex-
amples are ambiguous in term of which target
word is going to be used and which will be the
final position of each non-terminal. In order to
handle such ambiguities, we use a lattice-based
internal representation that can encode them
efficiently (see Figure 4). This lattice represen-
tation also allows the decoder to make choices
between various morphological variations of a

1The score of a combination will be the sum of the
local scores of each translation hypothesis.

2H = set of translation hypotheses
3http://kheafield.com/code/kenlm/

word (e.g. be/is/are).

5 Features and Tuning

During decoding we use a linear model to score
each possible combination of hypotheses. This
linear model is based on a linear combination
of both local features (local to each translation
hypothesis) and non-local features (such as a
5-gram language model score of the final trans-
lation). The decoder considers in total a com-
bination of 34 features, a selection of which are
given below.

• Example penalty and example size

• Translation probability

• Language model score

• Optional words added/removed

The optimal weights for each feature are
estimated using the Pairwise Ranking Op-
timization (PRO) algorithm (Hopkins and
May, 2011) and parameter optimization with
MegaM4. We use the implementation of PRO
that is provided with the Moses SMT system
and the default settings of MegaM.

6 Experiments

In order to evaluate our system, we conducted
translation experiments on four language
pairs: Japanese-English (JA–EN), English-
Japanese (EN–JA), Japanese-Chinese (JA–
ZH) and Chinese-Japanese (ZH–JA).

For Japanese-English, we evaluated on the
NTCIR-10 PatentMT task data (patents)
(Goto et al., 2013) and compared our system
with the official baseline scores. For Japanese-
Chinese, we used parallel scientific paper ex-
cerpts from the ASPEC5 corpus and com-
pared against the same baseline system as for
Japanese-English. The corpora contain 3M
parallel sentences for Japanese-English and
670K for Japanese-Chinese.

The two baseline systems are based on the
open-source GIZA++/Moses pipeline. The
baseline labeled “Moses” uses the classic
phrase-based engine, while “Moses-Hiero” uses
the Hierarchical Phrase-Based decoder. These

4http://www.umiacs.umd.edu/~hal/megam/
5http://orchid.kuee.kyoto-u.ac.jp/ASPEC/
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System JA–EN EN–JA JA–ZH ZH–JA
Moses 28.86 33.61 32.90 42.79

Moses-Hiero 28.56 32.98 — —
Proposed 29.00 32.15 32.99 37.64

Table 1: Scores

System BLEU Translation
Moses 31.09 Further, the expansion stroke, the sectional area of the inner tube 12,

and the oil is supplied to the lower oil chamber S2 from the oil reservoir
chamber R × stroke.

Moses-
Hiero

21.49 Also, the expansion stroke, the cross-sectional area of the inner tube
12 × stroke of oil supplied from the oil reservoir chamber R lower oil
chamber S2.

Proposed 44.99 Further in this expansion stroke, the oil at an amount obtained by mul-
tiplying cross sectional area of the inner tube 12 from the oil reservoir
chamber R is resupplied to the lower oil chamber S2.

Reference 100.00 In this expansion stroke, oil in an amount obtained by multiplying the
cross sectional area of the inner tube 12 by the stroke is resupplied from
the upper oil reservoir chamber R to the lower oil chamber S2.

Table 2: Example of JA–EN translation with better translation quality than baselines.

correspond to the highest performing official
baselines for the NTCIR-10 PatentMT task.

As it appeared Moses was giving similar
and slightly higher BLEU scores than Moses-
Hiero for Japanese-English, we restricted eval-
uation to the standard settings for Moses for
our Japanese-Chinese experiments.

The following dependency parsers were
used. The scores in parentheses are the ap-
proximate parsing accuracies (micro-average),
which were evaluated by hand on a random
subset of sentences from the test data. The
parsers were trained on domains different to
those used in the experiments.

• English: NLParser6 (92%) (Charniak and
Johnson, 2005)

• Japanese: KNP (96%) (Kawahara and
Kurohashi, 2006)

• Chinese: SKP (88%) (Shen et al., 2012)

6.1 Results
The results shown are for evaluation on the
test set after tuning. Tuning was conducted
over 50 iterations on the development set using
an n-best list of length 500.

Table 2 shows an example sentence showing
significant improvement over the baseline. In

6Converted to dependency parses with in-house
tool.

particular, non-local structure has been pre-
served by the proposed system, such as the
modification of ‘oil’ by the ‘in an amount... by
the stroke’ phrase. Another example is the in-
correct location of ‘× stroke’ in the Moses out-
put. The proposed system produces a much
more fluent output than the hierarchical-based
baseline Moses-Hiero.

The proposed system also outperforms the
baseline for JA–ZH, however falls short for
ZH–JA. We believe this is due to the low qual-
ity of parsing for Chinese input.

The decoder requires on average 0.94 sec-
onds per sentence when loading from precom-
piled hypothesis files. As a comparison, Moses
(default settings) takes 1.78 seconds per sen-
tence, loading from a binarized and filtered
phrase table.

7 Conclusion

This paper introduces an example-based
translation system exploiting both source and
target dependency analysis and online exam-
ple retrieving, allowing the availability of full
translation examples at translation time.

We believe that the use of dependency pars-
ing is important for accurate translation across
distant language pairs, especially in settings
such as ours with many long sentences. We
have designed a complete translation frame-
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work around this idea, using dependency-
parsed trees at each step from alignment to
example retrieval to example combination.

The current performance (BLEU) of our
system is similar to (or even slightly bet-
ter than) state-of-the-art open-source SMT
systems. As we have been able to obtain
steady performance improvements during de-
velopment, we are hopeful that this trend will
continue and we will shortly obtain even bet-
ter results. Future plans include enriching
the feature set, adding a tree-based language
model and considering forest input for multi-
ple parses to provide robustness against pars-
ing errors. When the code base is sufficiently
stable, we intend to release the entire system
as open-source, in the hope of providing a
more syntactically-focused alternative to ex-
isting open-source SMT engines.
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Abstract
kLog is a framework for kernel-based
learning that has already proven success-
ful in solving a number of relational tasks
in natural language processing. In this pa-
per, we present kLogNLP, a natural lan-
guage processing module for kLog. This
module enriches kLog with NLP-specific
preprocessors, enabling the use of exist-
ing libraries and toolkits within an elegant
and powerful declarative machine learn-
ing framework. The resulting relational
model of the domain can be extended by
specifying additional relational features in
a declarative way using a logic program-
ming language. This declarative approach
offers a flexible way of experimentation
and a way to insert domain knowledge.

1 Introduction
kLog (Frasconi et al., 2012) is a logical and re-
lational language for kernel-based learning. It has
already proven successful for several tasks in com-
puter vision (Antanas et al., 2012; Antanas et al.,
2013) and natural language processing. For ex-
ample, in the case of binary sentence classifica-
tion, we have shown an increase of 1.2 percent
in F1-score on the best performing system in the
CoNLL 2010 Shared Task on hedge cue detec-
tion (Wikipedia dataset) (Verbeke et al., 2012a).
On a sentence labeling task for evidence-based
medicine, a multi-class multi-label classification
problem, kLog showed improved results over both
the state-of-the-art CRF-based system of Kim et
al. (2011) and a memory-based benchmark (Ver-
beke et al., 2012b). Also for spatial relation ex-
traction from natural language, kLog has shown
to provide a flexible relational representation to
model the task domain (Kordjamshidi et al., 2012).

kLog has two distinguishing features. First, it is
able to transform relational into graph-based rep-
resentations, which allows to incorporate struc-
tural features into the learning process. Subse-

quently, kernel methods are used to work in an ex-
tended high-dimensional feature space, which is
much richer than most of the direct proposition-
alisation approaches. Second, it uses the logic
programming language Prolog for defining and
using (additional) background knowledge, which
renders the model very interpretable and provides
more insights into the importance of individual
(structural) features.

These properties prove especially advantageous
in the case of NLP. The graphical approach of
kLog is able to exploit the full relational represen-
tation that is often a natural way to express lan-
guage structures, and in this way allows to fully
exploit contextual features. On top of this rela-
tional learning approach, the declarative feature
specification allows to include additional back-
ground knowledge, which is often essential for
solving NLP problems.

In this paper, we present kLogNLP1, an NLP
module for kLog. Starting from a dataset and a
declaratively specified model of the domain (based
on entity-relationship modeling from database the-
ory), it transforms the dataset into a graph-based
relational format. We propose a general model
that fits most tasks in NLP, which can be extended
by specifying additional relational features in a
declarative way. The resulting relational represen-
tation then serves as input for kLog, and thus re-
sults in a full relational learning pipeline for NLP.

kLogNLP is most related to Learning-Based
Java (LBJ) (Rizzolo and Roth, 2010) in that it of-
fers a declarative pipeline for modeling and learn-
ing tasks in NLP. The aims are similar, namely ab-
stracting away the technical details from the pro-
grammer, and leaving him to reason about the
modeling. However, whereas LBJ focuses more
on the learning side (by the specification of con-
straints on features which are reconciled at in-
ference time, using the constrained conditional

1Software available at http://dtai.cs.
kuleuven.be/klognlp
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Figure 1: General kLog workflow extended with the kLogNLP module
model framework), due to its embedding in kLog,
kLogNLP focuses on the relational modeling, in
addition to declarative feature construction and
feature generation using graph kernels. kLog in it-
self is related to several frameworks for relational
learning, for which we refer the reader to (Fras-
coni et al., 2012).

The remainder of this paper is organized ac-
cording to the general kLog workflow, preceded
with the kLogNLP module, as outlined in Fig-
ure 1. In Section 2, we discuss the modeling of the
data, and present a general relational data model
for NLP tasks. Also the option to declaratively
construct new features using logic programming is
outlined. In the subsequent parts, we will illustrate
the remaining steps in the kLog pipeline, namely
graphicalization and feature generation (Section
3), and learning (Section 4) in an NLP setting. The
last section draws conclusions and presents ideas
for future work.

2 Data Modeling
kLog employs a learning from interpretations set-
ting (De Raedt et al., 2008). In learning from
interpretations, each interpretation is a set of tu-
ples that are true in the example, and can be
seen as a small relational database. Listing 3, to
be discussed later, shows a concise example. In
the NLP setting, an interpretation most commonly
corresponds to a document or a sentence. The
scope of an interpretation is either determined by
the task (e.g., for document classification, the in-
terpretations will at least need to comprise a sin-
gle document), or by the amount of context that
is taken into account (e.g., in case the task is sen-
tence classification, the interpretation can either be
a single sentence, or a full document, depending
on the scope of the context that you want to take
into account).

Since kLog is rooted in database theory, the
modeling of the problem domain is done using an
entity-relationship (E/R) model (Chen, 1976). It
gives an abstract representation of the interpreta-
tions. E/R models can be seen as a tool that is tai-

word

depRel

nextW

wordID

depType

lemma

POS-tag

wordString

namedEntity

hasWord

sentID

nextS coref

synonymoussentence

Figure 2: Entity-relationship diagram of the
kLogNLP model
lored to model the domain at hand. As the name
indicates, E/R models consist of entities, which we
will represent as purple rectangles, and relations,
represented as orange diamonds. Both entities and
relations can have several attributes (yellow ovals).
Key attributes (green ovals) uniquely identify an
instance of an entity. We will now discuss the
E/R model we propose as a starting point in the
kLogNLP pipeline.

2.1 kLogNLP model
Since in NLP, most tasks are situated at either
the document, sentence, or token level, we pro-
pose the E/R model in Figure 2 as a general do-
main model suitable for most settings. It is able
to represent interpretations of documents as a se-
quence (nextS) of sentence entities, which
are composed of a sequence (nextW) of word
entities. Next to the sequence relations, also the
dependency relations between words (depRel)
are taken into account, where each relation has
its type (depType) as a property. Furthermore,
also the coreference relationship between words
or phrases (coref) and possibly synonymy re-
lations (synonymous) are taken into account.
The entities in our model also have a primary key,
namely wordID and sentID for words and sen-
tences respectively. Additional properties can be
attached to words such as the wordString it-
self, its lemma and POS-tag, and an indication
whether the word is a namedEntity.

This E/R model of Figure 2 is coded declara-
tively in kLog as shown in Listing 1. The kLog
syntax is an extension of the logical programming
language Prolog. In the next step this script will
be used for feature extraction and generation. Ev-
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ery entity or relationship is declared with the key-
word signature. Each signature is of a certain
type; either extensional or intensional.
kLogNLP only acts at the extensional level. Each
signature is characterized by a name and a list
of typed arguments. There are three possible ar-
gument types. First of all, the type can be the
name of an entity set which has been declared
in another signature (e.g., line 4 in Listing 1; the
nextS signature represents the sequence relation
between two entities of type sentence, namely
sent 1 and sent 2). The type self is used to
denote the primary key of an entity. An example is
word id (line 6), which denotes the unique iden-
tifier of a certain word in the interpretation. The
last possible type is property, in case the argu-
ment is neither a reference to another entity nor a
primary key (e.g., postag, line 9).

We will first discuss extensional signatures, and
the automated extensional feature extraction pro-
vided by kLogNLP, before illustrating how the
user can further enrich the model with intensional
predicates.

1 begin_domain.
2 signature sentence(sent_id::self)::

extensional.
3

4 signature nextS(sent_1::sentence, sent_2
::sentence)::extensional.

5

6 signature word(word_id::self,
7 word_string::property,
8 lemma::property,
9 postag::property,

10 namedentity::property
11 )::extensional.
12

13 signature nextW(word_1::word, word_2::
word)::extensional.

14

15 signature corefPhrase(coref_id::self)::
extensional.

16 signature isPartOfCorefPhrase(
coref_phrase::corefPhrase, word::
word)::extensional.

17 signature coref(coref_phrase_1::
corefPhrase, coref_phrase_2::
corefPhrase)::extensional.

18

19 signature synonymous(word_1::word,
word_2::word)::extensional.

20

21 signature dependency(word_1::word,
22 word_2::word,
23 dep_rel::property
24 )::extensional.
25

26 kernel_points([word]).
27 end_domain.

Listing 1: Declarative representation of the
kLogNLP model

2.2 Extensional Feature Extraction
kLog assumes a closed-world, which means that
atoms that are not known to be true, are assumed
to be false. For extensional signatures, this en-
tails that all ground atoms need to be listed ex-
plicitly in the relational database of interpreta-
tions. These atoms are generated automatically
by the kLogNLP module based on the kLog script
and the input dataset. Considering the defined at-
tributes and relations in the model presented in
Listing 1, the module interfaces with NLP toolk-
its to preprocess the data to the relational format.
The user can remove unnecessary extensional sig-
natures or modify the number of attributes given in
the standard kLogNLP script as given in Listing 1
according to the needs of the task under consider-
ation.

An important choice is the inclusion of the
sentence signature. By inclusion, the gran-
ularity of the interpretation is set to the docu-
ment level, which implies that more context can
be taken into account. By excluding this signa-
ture, the granularity of the interpretation is set to
the sentence level.

Currently, kLogNLP interfaces with the follow-
ing NLP toolkits:

NLTK The Python Natural Language Toolkit
(NLTK) (Bird et al., 2009) offers a suite
of text processing libraries for tokenization,
stemming, tagging and parsing, and offers an
interface to WordNet.

Stanford CoreNLP Stanford CoreNLP2 pro-
vides POS tagging, NER, parsing and
coreference resolution functionality.

The preprocessing toolkit to be used can be
set using the kLogNLP flags mechanism, as il-
lustrated by line 3 of Listing 2. Subsequently,
the dataset predicate (illustrated in line 4 of
Listing 2) calls kLogNLP to preprocess a given
dataset3. This is done according to the speci-
fied kLogNLP model, i.e., the necessary prepro-
cessing modules to be called in the preprocess-
ing toolkit are determined based on the presence
of the entities, relationships, and their attributes in
the kLogNLP script. For example, the presence

2http://nlp.stanford.edu/software/
corenlp.shtml

3Currently supported dataset formats are directories con-
sisting of (one or more) plain text files or XML files consist-
ing of sentence and/or document elements.
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of namedentity as a property of word results
in the addition of a named entity recognizer in the
preprocessing toolkit. The resulting set of inter-
pretations is output to a given file. In case sev-
eral instantiations of a preprocessing module are
available in the toolkit, the preferred one can be
chosen by setting the name of the property accord-
ingly. The names as given in Listing 1 outline the
standard settings for each module. For instance, in
case the Snowball stemmer is preferred above the
standard (Wordnet) lemmatizer in NLTK, it can be
selected by changing lemma into snowball as
name for the word lemma property (line 8).

1 experiment :-
2 % kLogNLP
3 klognlp_flag(preprocessor,

stanfordnlp),
4 dataset(’/home/hedgecuedetection/

train/’,’trainingset.pl’),
5 attach(’trainingset.pl’),
6 % Kernel parametrization
7 new_feature_generator(my_fg,nspdk),
8 klog_flag(my_fg,radius,1),
9 klog_flag(my_fg,distance,1),

10 klog_flag(my_fg,match_type, hard),
11 % Learner parametrization
12 new_model(my_model,libsvm_c_svc),
13 klog_flag(my_model,c,0.1),
14 kfold(target, 10, my_model, my_fg).

Listing 2: Full predicate for 10-fold classification
experiment

Each interpretation can be regarded as a small
relational database. We will illustrate the exten-
sional feature extraction step on the CoNLL-2010
dataset on hedge cue detection, a binary classifi-
cation task where the goal is to detect uncertainty
in sentences. This task is situated at the sentence
level, so we left out the sentence and nextS
signatures, as no context from other sentences was
taken into account. A part of a resulting interpre-
tation is shown in Listing 3.

1 word(w1,often,often,rb,0,1).
2 depRel(w1,w5,adv).
3 nextW(w1,w2).
4 word(w2,the,the,dt,0,2).
5 depRel(w2,w4,nmod).
6 nextW(w2,w3).
7 word(w3,response,response,nn,0,3).
8 nextW(w3,w4).
9 depRel(w3,w4,nmod).

10 word(w4,may,may,md,0,5).
11 nextW(w4,w5).

Listing 3: Part of an interpretation

Optionally, additional extensional signatures
can easily be added to the knowledge base by the
user, as deemed suitable for the task under consid-
eration. At each level of granularity (document,

sentence, or word level), the user is given the
corresponding interpretation and entity IDs, with
which additional extensional facts can be added
using the dedicated Python classes. We will now
turn to declarative feature construction. The fol-
lowing steps are inherently part of the kLog frame-
work. We will briefly illustrate their use in the
context of NLP.

2.3 Declarative Feature Construction
The kLog script presented in Listing 1 can now
be extended using declarative feature construction
with intensional signatures. In contrast to ex-
tensional signatures, intensional signatures intro-
duce novel relations using a mechanism resem-
bling deductive databases. This type of signatures
is mostly used to add domain knowledge about the
task at hand. The ground atoms are defined implic-
itly using Prolog definite clauses.

For example, in case of sentence labeling for
evidence-based medicine, the lemma of the root
word proved to be a distinguishing feature (Ver-
beke et al., 2012b), which can be expressed as

1 signature lemmaRoot(sent_id::sentence,
lemmaOfRoot::property)::intensional.

2 lemmaRoot(S,L) :-
3 hasWord(S, I),
4 word(I,_,L,_,_,_),
5 depRel(I,_,root).

Also more complex features can be constructed.
For example, section headers in documents (again
in the case of sentence labeling using document
context) can be identified as follows:

1 hasHeaderWord(S,X) :-
2 word(W,X,_,_,_,_),
3 hasWord(S,W),
4 (atom(X) -> name(X,C) ; C = X),
5 length(C,Len),
6 Len > 4,
7 all_upper(C).
8

9 signature isHeaderSentence(sent_id::
sentence)::intensional.

10 isHeaderSentence(S) :-
11 hasHeaderWord(S,_).
12

13 signature hasSectionHeader(sent_id::
sentence, header::property)::
intensional.

14 hasSectionHeader(S,X) :-
15 nextS(S1,S),
16 hasHeaderWord(S1,X).
17 hasSectionHeader(S,X) :-
18 nextS(S1,S),
19 not isHeaderSentence(S),
20 once(hasSectionHeader(S1,X)).

In this case, first the sentences that contain a
header word are identified using the helper pred-
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Figure 3: Graphicalization of the (partial) interpretation in Listing 3. For the sake of clarity, attributes of
entities and relationships are depicted inside the respective entity or relationship.
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A

Figure 4: Illustration of the NSPDK feature concept. Left: instance G with 2 vertices v, u as roots for
neighborhood subgraphs (A, B) at distance 2. Right: some of the neighborhood pairs, which form the
NSPDK features, at distance d = 2 and radius r = 0 and 1 respectively. Note that neighborhood subgraphs
can overlap.
icate hasHeaderWord, where a header word is
defined as an upper case string that has more than
four letters (lines 1-7). Next, all sentences that rep-
resent a section header are identified using the in-
tensional signature isHeaderSentence (lines
9-11), and each sentence in the paragraphs follow-
ing a particular section header is labeled with this
header, using the hasSectionHeader predi-
cate (lines 13-20).

Due to the relational approach, the span can be
very large. Furthermore, since these features are
defined declaratively, there is no need to reprocess
the dataset each time a new feature is introduced,
which renders experimentation very flexible4.

3 Graphicalization and Feature
Generation

In this step, a technique called graphicalization
transforms the relational representations from the
previous step into graph-based ones and derives
features from a grounded entity/relationship dia-
gram using graph kernels. This can be interpreted
as unfolding the E/R diagram over the data. An ex-
ample of the graphicalization of the interpretation
part in Listing 3 can be found in Figure 3.

From the resulting graphs, features can be ex-
tracted using a feature generation technique that is
based on Neighborhood Subgraph Pairwise Dis-

4Note that changes in the extensional signatures do re-
quire reprocessing the dataset. However, for different runs of
an experiment with varying parameters for the feature gener-
ator or the learner, kLogNLP uses a caching mechanism to
check if the extensional signatures have changed, when call-
ing the dataset predicate.

tance Kernel (NSPDK) (Costa and De Grave,
2010), a particular type of graph kernel. Infor-
mally the idea of this kernel is to decompose a
graph into small neighborhood subgraphs of in-
creasing radii r ≤ rmax. Then, all pairs of such
subgraphs whose roots are at a distance not greater
than d ≤ dmax are considered as individual fea-
tures. The kernel notion is finally given as the frac-
tion of features in common between two graphs.

Formally, the kernel is defined as:

κr,d(G,G′) =
∑

A,B∈R−1
r,d

(G)

A′,B′∈R−1
r,d

(G′)

1A∼=A′ · 1B∼=B′ (1)

whereR−1
r,d(G) indicates the multiset of all pairs

of neighborhoods of radius r with roots at distance
d that exist inG, and where 1 denotes the indicator
function and ∼= the isomorphism between graphs.
For the full details, we refer the reader to (Costa
and De Grave, 2010). The neighborhood pairs are
illustrated in Figure 4 for a distance of 2 between
two arbitrary roots (v and u).

In kLog, the feature set is generated in a combi-
natorial fashion by explicitly enumerating all pairs
of neighborhood subgraphs; this yields a high-
dimensional feature space that is much richer than
most of the direct propositionalization approaches.
The result is an extended high-dimensional fea-
ture space on which a statistical learning algorithm
can be applied. The feature generator is initialized
using the new feature generator predicate
and hyperparameters (e.g., maximum distance and
radius, and match type) can be set using the kLog
flags mechanism (Listing 2, lines 6-10).
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4 Learning
In the last step, different learning tasks can be per-
formed on the resulting extended feature space. To
this end, kLog interfaces with several solvers, in-
cluding LibSVM (Chang and Lin, 2011) and SVM
SGD (Bottou, 2010). Lines 11-15 (Listing 2) illus-
trate the initialization of LibSVM and its use for
10-fold cross-validation.

5 Conclusions and Future Work

In this paper, we presented kLogNLP, a natu-
ral language processing module for kLog. Based
on an entity-relationship representation of the do-
main, it transforms a dataset into the graph-based
relational format of kLog. The basic kLogNLP
model can be easily extended with additional
background knowledge by adding relations us-
ing the declarative programming language Prolog.
This offers a more flexible way of experimenta-
tion, as new features can be constructed on top
of existing ones without the need to reprocess the
dataset. In future work, interfaces will be added
to other (domain-specific) NLP frameworks (e.g.,
the BLLIP parser with the self-trained biomedical
parsing model (McClosky, 2010)) and additional
dataset formats will be supported.
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Abstract

In this paper, we present a flexible ap-
proach to the efficient and exhaustive man-
ual annotation of text documents. For this
purpose, we extend WebAnno (Yimam et
al., 2013) an open-source web-based an-
notation tool.1 While it was previously
limited to specific annotation layers, our
extension allows adding and configuring
an arbitrary number of layers through a
web-based UI. These layers can be an-
notated separately or simultaneously, and
support most types of linguistic annota-
tions such as spans, semantic classes, de-
pendency relations, lexical chains, and
morphology. Further, we tightly inte-
grate a generic machine learning compo-
nent for automatic annotation suggestions
of span annotations. In two case studies,
we show that automatic annotation sug-
gestions, combined with our split-pane UI
concept, significantly reduces annotation
time.

1 Introduction

The annotation of full text documents is a costly
and time-consuming task. Thus, it is important to
design annotation tools in such a way that the an-
notation process can happen as swiftly as possible.
To this end, we extend WebAnno with the capabil-
ity of suggesting annotations to the annotator.

A general-purpose web-based annotation tool
can greatly lower the entrance barrier for linguistic
annotation projects, as tool development costs and
preparatory work are greatly reduced. WebAnno
1.0 only partially fulfilled desires regarding gen-
erality: Although it covered already more kinds

1WebAnno is open-source software under the terms of the
Apache Software License 2.0. This paper describes v1.2:
http://webanno.googlecode.com

of annotations than most other tools, it supported
only a fixed set of customizable annotation lay-
ers (named entities, part-of-speech, lemmata, co-
reference, dependencies). Thus, we also remove a
limitation of the tool, which was previously bound
to specific, hardcoded annotation layers.

We have generalized the architecture to support
three configurable generic structures: spans, rela-
tions, and chains. These support all of the original
layers and allow the user to define arbitrary custom
annotation layers based on either of these struc-
tures. Additionally, our approach allows maintain-
ing multiple properties on annotations, e.g. to sup-
port morphological annotations, while previously
only one property per annotation was supported.

Automatic suggestion of annotations is based
on machine learning, which is common practice
in annotation tools. However, most of existing
web-based annotation tools, such as GATE (Cun-
ningham et al., 2011) or brat (Stenetorp et al.,
2012), depend on external preprocessing and post-
processing plugins or on web services. These tools
have limitations regarding adaptability (difficulty
to adapt to other annotation tasks), reconfigurabil-
ity (generating a classifier when new features and
training documents are available is complicated),
and reusability (requires manual intervention to
add newly annotated documents into the iteration).

For our approach, we assume that an annota-
tor actually does manually verify all annotations
to produce a completely labeled dataset. This task
can be sped up by automatically suggesting anno-
tations that the annotator may then either accept
or correct. Note that this setup and its goal differs
from an active learning scenario, where a system
actively determines the most informative yet unan-
notated example to be labeled, in order to quickly
arrive at a high-quality classifier that is then to be
applied to large amounts of unseen data.

Our contribution is the integration of machine
learning into the tool to support exhaustive an-
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notation of documents providing a shorter loop
than comparable tools (Cunningham et al., 2011;
Stenetorp et al., 2012), because new documents
are added to the training set as soon as they are
completed by the annotators. The machine learn-
ing support currently applies to sequence classifi-
cation tasks only. It is complemented by our ex-
tension allowing to define custom annotation lay-
ers, making it applicable to a wide range of anno-
tation tasks with only little configuration effort.

Section 2 reviews related work about the uti-
lization of automatic supports and customiza-
tion of annotation schemes in existing annotation
tools. The integration of automatic suggestions
into WebAnno, the design principles followed, and
two case studies are explained in Section 3. Sec-
tion 4 presents the implementation of customiz-
able annotation layers into the tool. Finally, Sec-
tion 5 summarizes the main contributions and fu-
ture directions of our work.

2 Related Work

Automatic annotation support The impact of
using lexical and statistical resources to produce
pre-annotation automatically to increase the anno-
tation speed has been studied widely for various
annotation tasks. For the task of medical named
entity labeling, Lingren et al. (2013) investigate
the impact of automatic suggestions on annotation
speed and potential biases using dictionary-based
annotations. This technique results in 13.83% to
21.5% time saving and in an inter-annotator agree-
ment (IAA) increase by several percentage points.

WordFreak (Morton and LaCivita, 2003) in-
cludes an automation component, where instances
with a low machine learning confidence are pre-
sented for annotation in an active learning setup.
Beck et al. (2013) demonstrate that the use of ac-
tive learning for machine translation reduces the
annotation effort and show a reduced annotation
load on three out of four datasets.

The GoldenGATE editor (Sautter et al., 2007)
integrates NLP tools and assistance features for
manual XML editing. The tool is used in correct-
ing/editing an automatically annotated document
with an editor where both text and XML markups
are modified. GoldenGATE is merely used to fa-
cilitate the correction of an annotation while pre-
annotation is conducted outside of the tool.

Automatic annotation support in brat (Stenetorp
et al., 2012) was carried out for a semantic class

disambiguation task to investigate how such au-
tomation facilitates the annotators’ progress. They
report a 15.4% reduction in total annotation time.
However, the automation process in brat 1) de-
pends on bulk annotation imports and web service
configurations, which is labor intensive, 2) is task
specific so that it requires a lot of effort to adapt it
to different annotation tasks, 3) there is no way of
using the corrected result for the next iteration of
training the automatic tool.

The GATE Teamware (Bontcheva et al., 2013)
automation component is most similar to our
work. It is based either on plugins and externally
trained classification models, or uses web services.
Thus, it is highly task specific and requires exten-
sive configuration. The automatic annotation sug-
gestion component in our tool, in contrast, is easily
configurable and adaptable to different annotation
tasks and allows the use of annotations from the
current annotation project.

Custom annotation layers Generic annotation
data models are typically directed graph models
(e.g. GATE, UIMA CAS (Götz and Suhre, 2004),
GrAF (Ide and Suderman, 2007)). In addition, an
annotation schema defines possible kinds of anno-
tations, their properties and relations. While these
models offer great expressiveness and flexibility, it
is difficult to adequately transfer their power into
a convenient annotation editor. For example, one
schema may prescribe that the part-of-speech tag
is a property on a Token annotation, another one
may prescribe that the tag is a separate annotation,
which is linked to the token. An annotator should
not be exposed to these details in the UI and should
be able to just edit a part-of-speech tag, ignorant of
the internal representation.

This problem is typically addressed in two
ways. Either, the full complexity of the annota-
tion model is exposed to the annotator, or the an-
notation editor uses a simplified model. The first
approach can easily lead to an unintuitive UI and
make the annotation an inconvenient task. The
second approach (e.g. as advocated by brat) re-
quires the implementation of specific import and
export filters to transform between the editor data
model and the generic annotation data models.

We propose a third approach integrating a con-
figurable mapping between a generic annotation
model (UIMA CAS) and a simplified editing
model (brat) directly into the annotation tool.
Thus, we avoid exposing the full complexity of
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the generic model to the user and also avoid the
necessity for implementing import/export filters.
Similar approaches have already been used to map
annotation models to visualization modules (cf.
(Zeldes et al., 2009)), but have, to our knowledge,
not been used in an annotation editor. Our ap-
proach is different from schema-based annotation
editors (e.g. GATE), which employ a schema as
a template of properties and controlled vocabular-
ies that can be used to annotate documents, but
which do not allow to map structures inherent in
annotations, like relations or chains, to respective
concepts in the UI.

3 Automatic Annotation Suggestions

It is the purpose of the automatic annotation sug-
gestion component to increase the annotation ef-
ficiency, while maintaining the quality of annota-
tions. The key design principle of our approach is
a split-pane (Figure 1) that displays automatic an-
notation suggestions in the suggestion pane (lower
part) and only verified or manual ones in the anno-
tation pane (upper part). In this way, we force the
annotators to review each automatic suggestion as
to avoid overlooking wrong suggestions.

Figure 1: Split-pane UI. Upper: the annotation
pane, which should be completed by the annotator.
Lower: the suggestion pane, displaying predic-
tions or automatic suggestions, and coding their
status in color. This examples shows automatic
suggestions for parts-of-speech. Unattended anno-
tations are rendered in blue, accepted annotations
in grey and rejected annotations in red. Here, the
last five POS annotations have been attended, four
have been accepted by clicking on the suggestion,
and one was rejected by annotating it in the anno-
tation pane.

3.1 Suggestion modes

We distinguish three modes of automatic annota-
tion suggestion:

Correction mode In this mode, we import doc-
uments annotated by arbitrary external tools and
present them to the user in the suggestion pane
of the annotation page. This mode is specifi-
cally appropriate for annotation tasks where a pre-
annotated document contains several possibilities
for annotations in parallel, and the user’s task is
to select the correct annotation. This allows to
leverage specialized external automatic annotation
components, thus the tool is not limited to the in-
tegrated automation mechanism.

Repetition mode In this mode, further occur-
rences of a word annotated by the user are high-
lighted in the suggestion pane. To accept sugges-
tions, the user can simply click on them in the sug-
gestion pane. This basic – yet effective – sugges-
tion is realized using simple string matching.

Learning mode For this mode, we have inte-
grated MIRA (Crammer and Singer, 2003), an ex-
tension of the perceptron algorithm for online ma-
chine learning which allows for the automatic sug-
gestions of span annotations. MIRA was selected
because of its relatively lenient licensing, its good
performance even on small amounts of data, and
its capability of allowing incremental classifier up-
dates. Results of automatic tagging are displayed
in the suggestion pane. Our architecture is flexible
to integrate further machine learning tools.

3.2 Suggestion Process

The workflow to set up an automatically supported
annotation project consists of the following steps.

Importing annotation documents We can im-
port documents with existing annotations (manual
or automatic). The annotation pane of the automa-
tion page allows users to annotate documents and
the suggestion pane is used for the automatic sug-
gestion as shown in Figure 1. The suggestion pane
facilitates accepting correct pre-annotations with
minimal effort.

Configuring features For the machine learning
tool, it is required to define classification features
to train a classifier. We have designed a UI where
a range of standard classification features for se-
quence tagging can be configured. The features
include morphological features (prefixes, suffixes,
and capitalization), n-grams, and other layers as a
feature (for example POS annotation as a feature
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Figure 2: Configuring an annotation suggestion: 1) layers for automation, 2) different features, 3) training
documents, 4) start training classifier.

for named entity recognition). While these stan-
dard features do not lead to state-of-the-art per-
formance on arbitrary tasks, we have found them
to perform very well for POS tagging, named en-
tity recognition, and chunking. Figure 2 shows the
feature configuration in the project settings.

Importing training documents We offer two
ways of providing training documents: importing
an annotated document in one of the supported file
formats, such as CoNLL, TCF, or UIMA XMI; or
using existing annotation documents in the same
project that already have been annotated.

Starting the annotation suggestion Once fea-
tures for a training layer are configured and train-
ing documents are available, automatic annotation
is possible. The process can be started manually
by the administrator from the automation settings
page, and it will be automatically re-initiated when
additional documents for training become avail-
able in the project. While the automatic annotation
is running in the background, users still can work
on the annotation front end without being affected.
Training and creating a classifier will be repeated
only when the feature configuration is changed or
when a new training document is available.

Display results on the monitoring page Af-
ter the training and automatic annotation are com-
pleted, detailed information about the training data
such as the number of documents (sentence, to-
kens), features used for each layer, F-score on
held-out data, and classification errors are dis-
played on the monitoring page, allowing an esti-
mation whether the automatic suggestion is use-
ful. The UI also shows the status of the training
process (not started, running, or finished).

3.3 Case Studies

We describe two case studies that demonstrate lan-
guage independence and flexibility with respect to
sequence label types of our automatic annotation
suggestions. In the first case study, we address the
task of POS tagging for Amharic as an example of
an under-resourced language. Second, we explore
German named entity recognition.

3.3.1 Amharic POS tagging
Amharic is an under-resourced language in the
Semitic family, mainly spoken in Ethiopia. POS
tagging research for Amharic is mostly conducted
as an academic exercise. The latest result re-
ported by Gebre (2009) was about 90% accuracy
using the Walta Information Center (WIC) corpus
of about 210,000 tokens (1065 news documents).
We intentionally do not use the corpus as training
data because of the reported inconsistencies in the
tagging process (Gebre, 2009). Instead, we man-
ually annotate Amharic documents for POS tag-
ging both to test the performance of the automa-
tion module and to produce POS-tagged corpora
for Amharic. Based upon the work by Petrov et al.
(2012) and Ethiopian Languages Research Cen-
ter (ELRC) tagset, we have designed 11 POS tags
equivalent to the Universal POS tags. The tag DET
is not included as Amharic denotes definiteness as
noun suffixes.

We collected some Amharic documents from an
online news portal.2 Preprocessing of Amharic
documents includes the normalization of charac-
ters and tokenization (sentence and word bound-

2http://www.ethiopianreporter.com/
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Figure 3: Example Amharic document. The red
tags in the suggestion pane have not been con-
firmed by the annotator.

ary detection). Initially, we manually annotated 21
sentences. Using these, an iterative automatic an-
notation suggestion process was started until 300
sentences were fully annotated. We obtained an
F-score of 0.89 with the final model. Hence the
automatic annotation suggestion helps in decreas-
ing the total annotation time, since the user has
to manually annotate only one out of ten words,
while being able to accept most automatic sugges-
tions. Figure 3 shows such an Amharic document
in WebAnno.

3.3.2 German Named Entity Recognition
A pilot Named Entity Recognition (NER) project
for German was conducted by Benikova et al.
(2014). We have used the dataset – about 31,000
sentences, over 41,000 NE annotations – for train-
ing NER. Using this dataset, an F-score of about
0.8 by means of automatic suggestions was ob-
tained, which leads to an increase in annotation
speed of about 21% with automatic suggestion.

4 Customs Annotation Layers

The tasks in which an annotation editor can be em-
ployed depends on the expressiveness of the un-
derlying annotation model. However, fully expos-
ing the expressive power in the UI can make the
editor inconvenient to use.

We propose an approach that allows the user
to configure a mapping of an annotation model to
concepts well-supported in a web-based UI. In this
way, we can avoid to expose all details of the an-
notation model in the UI, and remove the need to
implement custom import/export filters.

WebAnno 1.0 employs a variant of the annota-
tion UI provided by brat, which offers the concepts
of spans and arcs. Based on these, WebAnno 1.2
implements five annotation layers: named entity,
part-of-speech, lemmata, co-reference, and depen-
dencies. In the new WebAnno version, we gener-
alized the support for these five layers into three

Figure 4: UI for custom annotation layers.

structural categories: span, relation (arc), and
chain. Each of these categories is handled by a
generic adapter which can be configured to sim-
ulate any of the original five layers. Based on
this generalization, the user can now define cus-
tom layers (Figure 4).

Additionally, we introduced a new concept of
constraints. For example, NER spans should not
cross sentence boundaries and attach to whole to-
kens (not substrings of tokens). Such constraints
not only help preventing the user from making in-
valid annotations, but can also offer extra conve-
nience. We currently support four hard-coded con-
straints:

Lock to token offsets Defines if annotation
boundaries must coincide with token boundaries,
e.g. named entities, lemmata, part-of-speech, etc.
For the user’s convenience, the annotation is auto-
matically expanded to include the full token, even
if only a part of a token is selected during annota-
tion (span/chain layers only).

Allow multiple tokens Some kinds of annota-
tions may only cover a single token, e.g. part-of-
speech, while others may cover multiple tokens,
e.g. named entities (span/chain layers only).

Allow stacking Controls if multiple annotations
of the same kind can be at the same location, e.g.
if multiple lemma annotations are allowed per to-
ken. For the user’s convenience, an existing an-
notation is replaced if a new annotation is created
when stacking is not allowed.

Allow crossing sentence boundaries Certain
annotations, e.g. named entities or dependency de-
lations, may not cross sentence boundaries, while
others need to, e.g. coreference chains.

Finally, we added the ability to define multiple
properties for annotations to WebAnno. For exam-
ple, this can be use to define a custom span-based
morphology layer with multiple annotation prop-
erties such as gender, number, case, etc.
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5 Conclusion and Outlook

We discussed two extensions of WebAnno: the
tight and generic integration of automatic annota-
tion suggestions for reducing the annotation time,
and the web-based addition and configuration of
custom annotation layers.

While we also support the common practice
of using of external tools to automatically pre-
annotate documents, we go one step further by
tightly integrating a generic sequence classifier
into the tool that can make use of completed an-
notation documents from the same project. In two
case studies, we have shown quick convergence
for Amharic POS tagging and a substantial reduc-
tion in annotation time for German NER. The key
concept here is the split-pane UI that allows to dis-
play automatic suggestions, while forcing the an-
notator to review all of them.

Allowing the definition of custom annotation
layers in a web-based UI is greatly increasing
the number of annotation projects that potentially
could use our tool. While it is mainly an engineer-
ing challenge to allow this amount of flexibility
and to hide its complexity from the user, it is a ma-
jor contribution in the transition from specialized
tools towards general-purpose tools.

The combination of both – custom layers and
automatic suggestions – gives rise to the rapid
setup of efficient annotation projects. Adding to
existing capabilities in WebAnno, such as cura-
tion, agreement computation, monitoring and fine-
grained annotation project definition, our contri-
butions significantly extend the scope of annota-
tion tasks in which the tool can be employed.

In future work, we plan to support annota-
tion suggestions for non-span structures (arcs and
chains), and to include further machine learning
algorithms.
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T. Götz and O. Suhre. 2004. Design and implementation
of the UIMA Common Analysis System. IBM Systems
Journal, 43(3):476 –489.

Nancy Ide and Keith Suderman. 2007. GrAF: A graph-based
format for linguistic annotations. In Proc. Linguistic An-
notation Workshop, pages 1–8, Prague, Czech Republic.

Todd Lingren, L. Deleger, K. Molnar, H. Zhai, J. Meinzen-
Derr, M. Kaiser, L. Stoutenborough, Q. Li, and I. Solti.
2013. Evaluating the impact of pre-annotation on anno-
tation speed and potential bias: natural language process-
ing gold standard development for clinical named entity
recognition in clinical trial announcements. In Journal of
the American Medical Informatics Association, pages 951
– 991.

Thomas Morton and Jeremy LaCivita. 2003. WordFreak: an
open tool for linguistic annotation. In Proc. NAACL 2003,
demonstrations, pages 17–18, Edmonton, Canada.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012. A
universal part-of-speech tagset. In Proc LREC 2012, Is-
tanbul, Turkey.
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Abstract 

This demonstration presents an intelligent infor-

mation platform MODEST. MODEST will pro-

vide enterprises with the services of retrieving 

news from websites, extracting commercial in-

formation, exploring customers’ opinions, and 

analyzing collaborative/competitive social net-

works. In this way, enterprises can improve the 

competitive abilities and facilitate potential col-

laboration activities. At the meanwhile, MOD-

EST can also help governments to acquire in-

formation about one single company or the entire 

board timely, and make prompt strategies for 

better support. Currently, MODEST is applied to 

the pillar industries of Hong Kong, including 

innovative finance, modem logistics, information 

technology, etc. 

1 Introduction 

With the rapid development of Web 2.0, the 

amount of information is exploding. There are 

millions of events towards companies and bil-

lions of opinions on products generated every 

day (Liu, 2012). Such enormous information 

cannot only facilitate companies to improve their 

competitive abilities, but also help government to 

make prompt decisions for better support or 

timely monitor, e.g. effective risk management. 

For this reason, there is a growing demand of 

Web information mining and intelligent decision 

support services for the industries. Such services 

are collectively referred as modern service, 

which includes the following requirements: 

(1) To efficiently retrieve relevant information 

from the websites; 

(2) To accurately determine the latest business 

news and trends of the company; 

(3) To identify and analyze customers’ opinions 

towards the company; 

(4) To explore the collaborative and competitive 

relationship with other companies; 

(5) To leverage the knowledge mined from the 

business news and company social network 

for decision support. 

In this demonstration, we will present a Web 

information mining and decision support plat-

form, MODEST
1
. The objective of MODEST is 

to provide modern services for both enterprises 

and government, including collecting Web in-

formation, making deep analysis, and providing 

supporting decision. The innovation of MOD-

EST is focusing on deep analysis which incor-

porates the following functions: 

 Topic detection and tracking function is to 

cluster the hot events and capture the rela-

tionship between the relevant events based on 

the collected data from websites (event also 

referred as topic in this paper). In order to re-

alize this function, Web mining techniques 

are adopted, e.g. topic clustering, heuristics 

algorithms, etc. 

 The second function is to identify and analyze 

customers’ opinions about the company. 

Opinion mining technology (Zhou et al., 2010) 

is adopted to determine the polarity of those 

news, which can help the company timely and 

appropriately adjust the policy to strengthen 

the dominant position or avoid risks. 

                                                           
1 This work is supported by the Innovation and Technology 

Fund of Hong Kong SAR. 
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 The third function is to explore and analyze 

social network based on the company centric. 

We utilize social network analysis (SNA) 

technology (Xia et al., 2010) to discover the 

relationships, and we further analyze the con-

tent in fine-grained granularity to identify its 

potential partners or competitors.  

With the help of MODEST, the companies can 

acquire modern service-related information, and 

timely adjust corporate policies and marketing 

plan ahead. Hence, the ability of information ac-

quisition and the competitiveness of the enter-

prises can be improved accordingly. 

In this paper, we will use a practical example 

to illustrate our platform and evaluate the per-

formance of main functions.  

The rest of this paper is organized as follows. 

Section 2 will introduce the system description 

as well as the main functions implementation. 

The practical case study will be illustrated in 

Section 3. The performance of MODEST will be 

evaluated in Section 4.Finally, this paper will be 

concluded in Section 5. 

2 System Description 

In this section, we first outline the system archi-

tecture of MODEST, and then describe the im-

plementation of the main functionality in detail.  

2.1 Architecture and Workflow 

The MODEST system consists of three modules: 

data acquisition, data analysis, and result display. 

The system architecture is shown in Figure 1. 

 

Figure 1: System architecture. (The module in 

blue is data acquisition, the module in orange is 

data analysis, and the module in light green is 

result display) 

(1) The core technique in the data acquisition 

module is the crawler, which is developed to 

collect raw data from websites, e.g. news portals, 

blogosphere. Then the system parse the raw web 

pages and extract information to store in the local 

database for further processing. 

(2) The data analysis module can be divided into 

two parts:  

 NLP pre-processor: utilizes NLP (natural 

language processing) techniques and some 

toolkits to perform the pre-processing on the 

raw data in (1), including word segmenta-

tion, part-of-speech (POS) tagging
1
, stop-

word removal, and named entity recognition 

(NER)
2
. We then create knowledgebase for 

individual industry, such as domain-specific 

sentiment word lexicon, name entity collec-

tion, and so on. 

 Miner：makes use of data mining techniques 

to realize four functions, topic detection and 

tracking (TDT), multi-document summari-

zation
3

 (MDS), social network analysis 

(SNA), and opinion mining (OM). The re-

sults of data analysis are also stored in the 

database.  

(3) The result display module read out the analy-

sis results from the database and display them to 

users in the form of plain text, charts, figures, as 

well as video. 

2.2 Function Implementation 

Since the innovation of MODEST is focusing on 

the module of data analysis, we will describe its 

main functions in detail, including topic detec-

tion and tracking, opinion mining, and social 

networks analysis. 

2.2.1 Topic Detection and Tracking 

The TDT function targets on detecting and 

tracking the hot topics for each individual com-

pany. Given a period of data collected from web-

sites, there are various discussions about the 

company. In order to extract these topics, clus-

tering methods (Viermetz et al., 2007 and Yoon 

et al., 2009) are implemented to explore the top-

ics. Note that during the period of data collection, 

different topics with respect to the same compa-

ny may have relations. We, therefore, utilize hi-

erarchical clustering methods
4
to capture the po-

tential relations.  

Due to the large amount of data, it is impossi-

ble to view all the topics at a snapshot. MODEST 

utilizes topic tracking technique (Wang et al., 

2008) to identify related stories with a stream of 

                                                           
1 www.ictclas.org 
2http://ir.hit.edu.cn/demo/ltp 
3http://libots.sourceforge.net/ 
4http://dragon.ischool.drexel.edu/ 
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media. It is convenient for the users to see the 

latest information about the company.  

In summary, TDT function provides the ser-

vices of detecting and tracking the latest and 

emergent topics, analyzing the relationships of 

topics on the dynamics of the company. It meets 

the aforementioned demand, “to accurately grasp 

the latest business news and trends of the com-

pany”. 

2.2.2 Opinion Mining 

The objective of OM function is to discover 

opinions towards a company and classify the 

opinions into positive, negative, or neutral. 

The opinion mining function is redesigned 

based on our own opinion mining engine (Zhou 

et al., 2010). It separates opinion identification 

and polarity classification into two stages.  

Given a set of documents that are relevant to 

the company, we first split the documents into 

sentences, and then identify whether the sentence 

is opinionated or not. We extract the features 

shown in Table 1 for opinion identification. 

(Zhou et al., 2010) 

Table 1: Features adopted in the opinionated 

sentence classifier 

Punctuation level features 
The presence of direct quote punctuation "“" and "”"  

The presence of other punctuations: "?" and "!" 

Word-Level and entity-level features 
The presence of known opinion operators 
The percentage of known opinion word in sentence 

Presence of a named entity 

Presence of pronoun 

Presence of known opinion indicators 

Presence of known degree adverbs 

Presence of known conjunctions 

Bi-gram features 

Named entities + opinion operators 

Pronouns + opinion operators 

Nouns or named entities + opinion words 

Pronouns + opinion words 

Opinion words (adjective) + opinion words(noun) 

Degree adverbs + opinion words 

Degree adverbs + opinion operators 

These features are then combined using a ra-

dial basis function (RBF) kernel and a support 

vector machine (SVM) classifier (Drucker et al., 

1997) is trained based on the NTCIR 8training 

data for opinion identification (Kando, 2010). 

For those opinionated sentences, we then clas-

sify them into positive, negative, or neutral. In 

addition to the features shown in Table 1, we 

incorporate features of s-VSM (Sentiment Vector 

Space Model) (Xia et al., 2008) to enhance the 

performance. The principles of the s-VSM are 

listed as follows: (1) Only sentiment-related 

words are used to produce sentiment features for 

the s-VSM. (2) The sentiment words are appro-

priately disambiguated with the neighboring ne-

gations and modifiers. (3) Negations and modifi-

ers are included in the s-VSM to reflect the func-

tions of inversing, strengthening and weakening. 

Sentiment unit is the appropriate element com-

plying with the above principles. (Zhou et al., 

2010) 

In addition to polarity classification, opinion 

holder and target are also recognized in OM 

function for further identifying the relationship 

that two companies have, e.g. collaborative or 

competitive. Both of the dependency parser and 

the semantic role labeling
1
 (SRL) tool are in-

corporated to identify the semantic roles of each 

chunk based on verbs in the sentence. 

The OM function provides the company with 

services of analyzing the social sentimental 

feedback on the dynamics of the company. It 

meets the aforementioned demand, “to identify 

and analyze customers’ opinions towards the 

company”. 

2.2.3 Social Network Analysis  

SNA function aims at producing the commercial 

network of companies that are hidden within the 

articles.  

To achieve this goal, we maintain two lexicons, 

the commercial named entity lexicon and com-

mercial relation lexicon. Commercial named en-

tity are firstly located within the text and then 

recorded in the commercial entity lexicon in the 

pre-processor NER. Commercial relation lexicon 

record the articles/documents that involve the 

commercial relations. Note that the commercial 

relation lexicon (Table 2) is manually compiled. 

In this work, we consider only two general 

commercial relations, namely cooperation and 

competition.  

 

Table 2: Statistics on relation lexicon. 
Type Amount Examples 

Competition 20 挑战(challenge), 竞争

(compete), 对 手
(opponent) 

Collaboration 18 协作(collaborate),协同

(coordinate), 合 作
(cooperate) 

SNA function produces the social network of a 

centric company, which can provide the compa-

                                                           
1http://ir.hit.edu.cn/demo/ltp 
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ny with the impact analysis and decision-making 

chain tracking. It meets the aforementioned de-

mand, “to explore the collaborative and competi-

tive relationship between companies”. 

3 Practical Example 

In this section, we use a case study to illustrate 

our system and further evaluate the performance 

of the main functions with respect to those com-

panies. Due to the limited space, we just illus-

trate the main functions of topic detection, opin-

ion mining and social network analysis. 

3.1 Topic Detection and Opinion Mining 

Figure 2(a) showed the results of topic detection 

and opinion mining functions for a Hong Kong 

local financial company Sun Hung Kai Proper-

ties (新鴻基地產). On top of the figure are the 

results of topic detection and tracking function. 

Multi-document summary of the latest news is 

provided for the company and more news with 

the similar topics can be found by pressing the 

button “更多” (more). Since there are a lot of 

duplicates of a piece of news on the websites, the 

summary is a direct way to acquire the recent 

news, which can improve the effectiveness of the 

company.  

The results of opinion mining function are 

shown at the bottom of Figure 2(a), where the 

green line indicates negative while the red line 

indicates positive. In order to give a dynamic 

insight of public opinions, we provide the 

amount changes of positive and negative articles 

with time variant. This is very helpful for the 

company to capture the feedback of their mar-

keting policies. As shown in Figure 2(a), there 

were 14 negative articles (負面信息) on Oct. 29, 

2012, which achieved negative peak within the 6 

months. The users would probably read those 14 

articles and adjust the company strategy accord-

ingly.  

3.2 Social Network Analysis 

Figure 2(b) shows the social network based on 

the centric company in yellow, Sun Hung Kai 

Properties (新鴻基地產). We only list the half 

of the connected companies with collaborative 

relationship from Sun Hung Kai Properties, and 

remove the competitive ones due to limited space. 

The thickness of the line indicates the strength of 

the collaboration between the two companies. 

The social network can explore the potential 

partners/competitors of a company. Furthermore, 

users are allowed to adjust the depth and set the 

nodes count of the network. The above analysis 

can provide a richer insight in to a company.  

In the following section, we will make exper-

iments to investigate the performance of the 

above functions.

 

(a) Topic detection and opinion mining of Sun Hung Kai Properties (新鴻基地產). (For convenience, 

we translate the texts on the button in English) 

Opinion Mining 

Topic Detection 
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(b)Social network of Sun Hung Kai Properties (新鴻基地產). (The rectangle in yellow is the centric) 
 

Figure 2: Screenshot of the MODEST system. 

4 Experiment and Result 

In our evaluation, the experiments were made 

based on 17692 articles collected from 52 Hong 

Kong websites during 6 months (1/7/2012~ 

31/12/2012). We investigate the performance of 

MODEST based on the standard metrics pro-

posed by NIST
1
, including precision, recall, and 

F-score. 

Precision (P) is the fraction of detected articles 

(U) that are relevantto the topic (N). 

  
 

 
      

Recall (R) is the fraction of the articles (T) that 

are relevant to the topic that are successfully de-

tected (N). 

  
 

 
      

Usually, there is an inverse relationship be-

tween precision and recall, where it is possible to 

increase one at the cost of reducing the other. 

Therefore, precision and recall scores are not 

discussed in isolation. Instead, F-Score (F) is 

proposed to combine precision and recall, which 

is the harmonic meanof precision and recall. 

  
 

 

 
 
 

 

      
     

   
      

4.1 Topic Detection and Tracking 

We first assess the performance of the topic de-

tection function. The data is divided into 6 parts 

                                                           
1http://trec.nist.gov/ 

according to the time. For different companies, 

the amount of articles vary a lot. Therefore, we 

calculate the metrics for each individual dataset, 

and then compute the weighted mean value. The 

experimental results are shown in Table 3.  

Table 3: Experimental results on topic detection. 

Dataset Recall Precision F-Score 

1/7/12-31/7/12 85.71% 89.52% 85.38% 

1/8/12-31/8/12 93.10% 93.68% 92.49% 

1/9/12-30/9/12 76.50% 83.13% 76.56% 

1/10/12-31/10/12 83.32% 88.53% 85.84% 

1/11/12-30/11/12 86.11% 89.94% 87.98% 

1/12/12-31/12/12 84.26% 87.65% 85.92% 

Average 85.13% 88.78% 85.69% 

From the experimental results, we can find 

that the average F-Score is about 85.69%.The 

dataset in the second row achieves the best per-

formance while the dataset in the third only get 

76.56% in F-Score. It is because that the amount 

of articles is smaller than the others and the re-

call value is very low. As far as we know, the 

best run of topic detection in (Allan et al., 2007) 

achieved 84%. The performance of topic detec-

tion in MODEST is comparable. 

4.2 Opinion Mining 

We then evaluate the performance of opinion 

mining function. We manually annotated 1568 

articles, which is further divided into 8 datasets 

randomly. Precision, recall, and F-score are also 

used as the metrics for the evaluation. The ex-

perimental results are shown in Table 4. 
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  From Table 4, we can find that the average 

F-Score can reach 74.09%. Note that the opinion 

mining engine of MODEST is the implementa-

tion of (Zhou et al., 2010), which achieved the 

best run in NTCIR. However, the engine is 

trained on NTCIR corpus, which consists of arti-

cles of general domain, while the test set focuses 

on the financial domain. We further train our 

engine on the data from the financial domain and 

the average F-Score improves to over 80%. 

5 Conclusions 

This demonstration presents an intelligent infor-

mation platform designed to mine Web infor-

mation and provide decisions for modern service, 

MODEST. MODEST can provide the services of 

retrieving news from websites, extracting com-

mercial information, exploring customers’ opin-

ions about a given company, and analyzing its 

collaborative/competitive social networks. Both 

enterprises and government are the target cus-

tomers. For enterprise, MODEST can improve 

the competitive abilities and facilitate potential 

collaboration. For government, MODEST can 

collect information about the entire industry, and 

make prompt strategies for better support. 

In this paper, we first introduce the system ar-

chitecture design and the main functions imple-

mentation, including topic detection and tracking, 

opinion mining, and social network analysis. 

Then a case study is given to illustrate the func-

tions of MODEST. In order to evaluate the per-

formance of MODEST, we also conduct the ex-

periments based on the data from 52 Hong Kong 

websites, and the results show the effectiveness 

of the above functions. 

In the future, MODEST will be improved in 

two directions: 

 Extend to other languages, e.g. English, 

Simplified Chinese, etc. 

 Enhance the compatibility to implement 

on mobile device.  

The demo of MODEST and the related 

toolkits can be found on the homepage: 

http://sepc111.se.cuhk.edu.hk:8080/adcom_hk/ 
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Abstract 

More and more product information, in-
cluding advertisements and user reviews, 
are presented to Internet users nowadays. 
Some of the information is false, mislead-
ing or overstated, which can cause seri-
ousness and needs to be identified. Au-
thorities, advertisers, website owners and 
consumers all have the needs to detect 
such statements. In this paper, we propose 
a False Advertisements Recognition sys-
tem called FAdR by using one-class and 
binary classification models. Illegal adver-
tising lists made public by a government 
and product descriptions from a shopping 
website are obtained for training and test-
ing. The results show that the binary SVM 
models can achieve the highest perfor-
mance when unigrams with the weighting 
of log relative frequency ratios are used as 
features. Comparatively, the benefit of the 
one-class classification models is the ad-
justable rejection rate parameter, which 
can be changed to suit different applica-
tions. Verb phrases more likely to intro-
duce overstated information are obtained 
by mining the datasets. These phrases help 
find problematic wordings in the advertis-
ing texts. 

1 Introduction 

As online commerce and advertising keep grow-
ing, more and more consumers depend on infor-
mation on the Internet to make purchasing deci-
sions. This kind of information includes online 
advertisements posted by businesses, and discus-
sions or reviews generated by users. However, 
false statements can also be presented to con-
sumers. For example, some companies hire peo-
ple to post fake product reviews in an attempt to 

promote their own products or reduce competi-
tors’ reputations (Ott et al., 2011). It is referred 
to as deceptive opinion spamming and explored 
in recent researches (Ott et al., 2011; Mukherjee 
et al., 2012; Mukherjee et al., 2013; Fei et al., 
2013). 

False statements and exaggerated content can 
also be seen in online advertisements. These 
statements can also be regarded as opinion 
spams, while the authors, that is, the advertisers, 
can be more easily identified. Yeh (2014) report-
ed the top two types of illegal advertisements on 
the web, TV and broadcast are food (62.61%) 
and cosmetic (24.26%). Of the dissemination 
media, the web is the major source of false ad-
vertisements. Most inappropriate food-related 
advertisements contain overstated health claims. 
The medical effects and cure claims may also 
appear in cosmetic advertising. As a result, ad-
vertising regulations are enforced in many coun-
tries to protect consumers from fraudulent and 
misleading information. False, overstated or mis-
leading information and mentions of curative 
effects can be prohibited by the authorities (FTC, 
2000; DOH, 2009; CFIA, 2010). 

To regulate online advertising, the authorities 
need to review a large number of advertisements 
and determine their legality, which is cost- and 
time-consuming. Advertisers also need to know 
the legality of their advertisements to avoid vio-
lating advertising laws. This becomes especially 
important when every Internet user can be an 
advertiser if s/he posts messages related to any 
product announcement, promotion, or sales. 
Website owners that accept advertisements have 
to present appropriate advertisement contents to 
users and avoid legal issues. Even Internet users 
should also identify false advertisements in order 
not to be misled. Thus, the recognition of false, 
misleading or overstated information is an 
emerging task.  

This paper presents a False Advertisements 
Recognition system called FAdR, and take two 
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major sources of illegal advertisements on the 
web, i.e., food and cosmetic advertising, as ex-
amples. Section 2 surveys the related work. Sec-
tion 3 introduces the datasets used in the experi-
ments. Section 4 presents classification models 
and shows their performance. Section 5 mines 
the overstated phrases. Section 6 demonstrates 
the uses of FAdR system with screenshot. Both 
sentence and document levels are considered. 

2 Related Work 

Gokhman et al. (2012) collected data from the 
Internet and explored methods to construct a 
gold standard corpus for “deception” studies. Ott 
et al. (2011) studied methods to detect “disrup-
tive opinion spams.” Unlike conventional adver-
tising spams, these fake opinions look authentic 
and are used to mislead users. Mukherjee et al. 
(2013) used reviewer’s behavioral footprints to 
detect spammer. As they pointed out, one of the 
largest problems to solve this issue is that there is 
no appropriate datasets for fake and non-fake 
reviews. 

Previous online advertising research mostly 
focuses on bidding, matching or recommendation 
of advertisements on websites. Ghosh et al. 
(2009) studied bidding strategies for advertise-
ment allocations. Huang et al. (2008) proposed 
an advertisement recommendation method by 
classifying instant messages into the Yahoo cate-
gories. Scaiano and Inkpen (2011) used Wikipe-
dia for negative keyphrase generation to hide 
advertisements that users are not interested in. 
This paper, in contrast, focuses on identifying 
false statements in online advertisements with 
classification models. 

3 Datasets 

We use the illegal advertising lists and state-
ments made public by the Taipei City Govern-
ment1 as the illegal advertising datasets. The con-
tents of the government data are split into sen-
tences by colon, period, question mark and ex-
clamation mark. Two types of datasets are built 
for illegal food and cosmetic advertising, named 
FOOD_ILLEGAL and COS_ILLEGAL, respec-
tively. Some illegal sentences in the illegal food 
advertising dataset are shown below: 

(1)  減少代謝廢物的堆積〈 
Reduces waste produced by metabolism 
process. 

(2)  減少失眠及疼痛〈 
                                                
1 http://www.health.gov.tw/Default.aspx?tabid=295 

Stops insomnia and pain. 
(3)  治療高血壓〈 

Cures hypertension. 
In the government website, the authority does 

not regularly announce legal advertising data. 
We adopt one-class classifiers with only illegal 
data for this scenario, as shown in Section 4.1. 
To experiment on binary classifiers, we collect 
product descriptions from a shopping website2 
and verify their legality manually to construct the 
legal advertising datasets. The legal food and 
cosmetic adverting datasets are named 
FOOD_LEGAL and COS_LEGAL, respectively. 
The numbers of the sentences in 
FOOD_LEGAL, FOOD_ILLEGAL, 
COS_LEGAL, and COS_ILLEGAL are 5,059, 
7,033, 10,520, and 11,381, respectively. 

4 Classification Models 

One-class Naïve Bayes and Bagging classifiers, 
and binary classifiers based on Naïve Bayes and 
SVM models are implemented.  

4.1 One-Class Classifiers  

We adopt the OneClassClassifier module 
(Hempstalk et al., 2008) in the WEKA machine 
learning tool to train one-class classifiers with 
illegal statements only. The OneClassClassifier 
module provides a rejection rate parameter for 
adjusting the threshold between target and non-
target instances.  The target class, which corre-
sponds to the illegal class in this study, is the 
single class used to train the classifier.  Higher 
rejection rate means that more legal statements 
will be preferred, but illegal statements may be 
still incorrectly classified into legal ones. Naïve 
Bayes and Bagging classifiers are chosen be-
cause they achieve best performance among the 
algorithms we have explored in this experiment. 

Each instance in the dataset, i.e., a sentence, is 
represented by a word vector (w1, w2, …, w1000), 
where wi is a binary value indicating whether a 
word occurs in the sentence or not. The vocabu-
lary is selected from the illegal advertising da-
tasets. To properly filter out common words, we 
count top 1,000 frequent words in the Sinica 
Balanced Corpus of Modern Chinese3 and re-
move them from the vocabulary. The remaining 
top 1,000 words are used for vector representation. 

Total 532 illegal statements provided by the 
Department of Health form the training set. An 

                                                
2 http://www.7net.com.tw 
3 http://app.sinica.edu.tw/kiwi/mkiwi/ 
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illegal and a legal advertising dataset make up 
the test set. The former consists of 317 illegal 
sentences from Taipei City Government’s lists, 
and the latter contains 203 legal statement exam-
ples from the Department of Health. 

Table 1 shows the accuracies of Naïve Bayes 
and Bagging classifiers in the food dataset. The 
rejection rates from 0.7 to 0.8 are preferable for 
most applications, because they result in higher 
accuracy for legal statement classification while 
not significantly reducing the performance of 
illegal statement detection.  Using the 0.7 rejec-
tion rate produces high performance for the ille-
gal class while 0.8 rejection rate does better for 
the legal class.  The actual choice of rejection 
rate depends on the demands of users.  For an 
advertiser, it is important to avoid all possible 
problematic statements.  Thus, a lower rejection 
rate will be more suitable.  If the system is used 
by the authorities, a rejection rate higher than 0.7 
may be preferable because they don’t misjudge 
too many legal advertisements. 
 

Rejection rate 0.4 0.5 0.6 0.7 0.8 0.9 

Naïve 
Bayes 

Illegal 85.33% 82.39% 79.01% 74.49% 68.17% 59.14% 

Legal 31.07% 39.81% 53.40% 63.11% 72.82% 86.41% 

Bagging 
Illegal 92.78% 88.49% 84.65% 74.94% 69.07% 0.23% 

Legal 3.88% 17.48% 27.18% 65.72% 82.52% 99.77% 

Table 1: Accuracies of Classifiers in Different Rejec-
tion Rates. 

4.2 Binary Classifiers  

We use FOOD_LEGAL and FOOD_ILLEGAL 
datasets, and COS_LEGAL and COS_ILLEGAL 
datasets to build binary classifiers for food and 
cosmetic advertising classification, respectively. 
Naïve Bayes classifiers and SVM classifiers im-
plemented with libSVM (Chang & Lin, 2011) are 
adopted. Ten-fold cross validation is used for the 
training and testing tasks. Total 1,000 highly fre-
quent words are selected in the same way as in 
Section 4.1 to form a word-based unigram fea-
ture set.  

Two weighting schemes are considered. In the 
binary weighting, each sentence is represented 
by a word vector (w1, w2, …, w1000), where wi is a 
binary value indicating whether a word occurs in 
the sentence or not.  In the weighting of log rela-
tive frequency ratio, we follow the idea of collo-
cation mining (Damerau, 1993). Relative fre-
quency ratio between two datasets has been 
shown to be useful to discover collocations that 
are characteristic of a dataset when compared to 
the other dataset. It has been successfully applied 
to mine sentiment words from microblog and to 

model reader/writer emotion transition (Tang and 
Chen, 2011, 2012). 

The log relative frequency ratio (logRF) is 
defined formally as follows. Given two datasets 
A and B, the log relative frequency ratio for each 
wi∈A∪B is computed with the following formula. 

logRFAB (w
i ) = log

fA (w
i )

| A |
fB (w

i )
| B |

 

logRFAB(wi) is a log ratio of relative frequen-
cies of word wi in A and B, fA(wi) and fB(wi) are 
frequencies of wi in A and in B, respectively, and 
|A| and |B| are total words in A and in B, respec-
tively. logRF values are used to estimate the dis-
tribution of the words in datasets A and B. If wi 
has higher relative frequency in A than in B, then 
logRFAB(wi)>0, and vice versa. In our experi-
ments, logRF is used to present each unigram’s 
distribution in the legal and illegal datasets, re-
placing the binary value for a unigram feature. 

Tables 2 and 3 show the results of the classifi-
cation models with different combinations of 
feature sets. When logRF is combined with Uni-
gram, the accuracy is significantly improved in 
both the food and cosmetic datasets. We can also 
see that the performance of all FOOD models are 
higher than equivalent COS models. Possible 
reasons may be that the effects of cosmetics are 
related to body appearance, and inappropriate 
cure claims are also related to body improvement 
and appearance changes. There can be some 
overlaps between the words used in legal and 
illegal cosmetic advertising.  
 
Classification Mod-

els → Naïve Bayes SVM 

Illegal vs. Legal → 
Features ↓ Illegal Legal Illegal Legal 

Unigram 92.59% 85.06% 89.46% 88.00% 
Unigram + logRF 94.32% 86.37% 94.70% 91.68% 

Table 2: Classification Accuracies for FOOD Datasets. 
 
Classification Mod-

els → Naïve Bayes SVM 

Illegal vs. Legal → 
Features ↓ Illegal Legal Illegal Legal 

Unigram 86.48% 77.63% 82.47% 82.36% 
Unigram + logRF 88.20% 83.06% 88.46% 83.41% 

Table 3: Classification Accuracies for COS Datasets. 

5 Overstated Phrase Mining 

Since the authority focuses on health claims in 
advertising, almost all illegal statements an-
nounced by the government include an action 
related to health improvement and a name that 
refers to diseases or body conditions. Thus, we 
can observe that most of the illegal statements 
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recognized and forbidden by the authority con-
tain a health-related verb phrase consisting of a 
transitive verb and an object. These illegal adver-
tising verb phrases can be mined from the da-
tasets for the government’s and advertisers’ ref-
erence. We can also use these verb phrases to 
help the users of our system understand possible 
reasons why the sentences in advertisements are 
labeled as illegal. 

We propose a mining method based on log 
relative frequency ratio, which is described in 
Section 4.2. We compute logRFAB(wi) to obtain 
the words that are most likely to be used in ille-
gal advertising. We identify transitive verbs and 
nouns in the word list based on POS tagging re-
sults generated by the CKIP parser4, and then use 
them to examine if a verb phrase is presented in a 
sentence. Total 979 verb phrases are mined from 
the FOOD datasets, and 2,302 from the COS da-
taset. Table 4 shows some examples. 

 

Dataset Illegal advertising verb phrases 
Transitive verb Object noun 

FOOD 

增強 
(improve) 

體質 
(physical condition) 

抑制 
(inactivate) 

細菌 
(bacteria) 

分解 
(decompose) 

膽固醇 
(cholesterol) 

COS 

淨化 
(purify) 

體質 
(body) 

舒緩 
(ease) 

疼痛 
(pain) 

治療 
(cure) 

面皰 
(acne vulgaris) 

Table 4: Example illegal verb phrases 
mined from the FOOD and COS datasets. 

6 System Architecture 

The FAdR system is composed of pre-
processing (Pre-Processor), recognition (Recog-
nizer), and explanation (Explainer) modules. 
Figure 1 shows the overall system architecture. 

6.1 Pre-processing Module 

Our classification models are sentence-based, so 
the main purpose of the Pre-processor in the sys-
tem is detecting sentence boundaries. Four types 
of punctuations, including period, colon, excla-
mation, and question mark, are used to segment a 
document into sentences. Line breaks are also 
regarded as a sentence boundary marker because 

                                                
4 http://ckipsvr.iis.sinica.edu.tw 

many advertisements in Chinese put sentences in 
separate lines and do not include any punctua-
tion. Sentences with less than three characters or 
more than 80 characters are ignored. 

Word segmentation is performed by using the 
CKIP segmenter, which is an online service and 
can be accessed through the TCP socket. Seg-
mented data will be represented by the corre-
sponding feature sets based on classification 
model and converted to a format that the Recog-
nizer can read as input.  

 

Recognizer Classification 
Models

Advertising Document

Sentence 
Segmenter

Word
Segmenter

Format 
Converter Feature Sets

Explainer

Advertising document
with sentence-based

legality labels and
explanations.

Pre-Processor

 
 

Figure 1. System architecture of FAdR 

6.2 Recognition Module 

All processed sentences are sent from the Pre-
Processor to the Recognizer for legality identifi-
cation.  

Since our training tasks are done in WEKA, 
we can use the model files generated by WEKA 
for implementing the Recognizer. The Recogniz-
er loads the pre-trained SVM models for food 
and cosmetic advertising classification, and then 
uses them for labeling the incoming sentences. 

For the One-Class models, the model files are 
pre-generated by training with different rejection 
rates from 0.4 to 0.9. When the user adjusts the 
threshold, the Recognizer chooses the corre-
sponding model to perform illegal sentences 
identification. 
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6.3 Explanation Module 

To give users more information on the possible 
reasons why the advertising contents are consid-
ered illegal, the Explainer uses the illegal verb 
phrase list, which is discussed in Section 5, to 
extract the problematic words from the input sen-
tences. If the verb and the object noun in a verb 
phrase from the list both occur in an illegal sen-
tence, then the verb phrase will be shown besides 
the recognition results in the user interface. 

6.4 User Interface 

Users can copy and paste the advertising con-
tents to be recognized to the text field, or upload 
a document to the system. It usually takes less 
than 10 seconds on our server to process a doc-
ument with 200 characters, so the system is suit-
able to quickly process a large amount of data. 

If the users choose to use the one-class mod-
els, they can adjust the threshold value to fit dif-
ferent needs and receive useful results. Lowering 
the value can find as many problematic sentences 
as possible, but more legal sentences can also be 
misjudged.  Increasing the value can avoid 
wrongly labeling legal sentences as illegal, but 
more illegal sentences can be missed.  

Figure 2 shows a system screenshot. The 
recognition results of a food advertisement with 
11 sentences are demonstrated. Sentences la-
belled as illegal are highlighted in red. Verb 
phrases possibly causing illegality are listed in 
grey colour for illegal sentences. The number of 
all sentences, the number of illegal sentences, 
and the final score are shown at the bottom. The 
correct score of an advertisement is defined as 
the number of correct sentences divided by total 
sentences in this advertisement. The sample ad-
vertisement used in Figure 2 and its English 
translation are shown as follows. 

 
<A food advertisement> 

日本茶第一品牌︽全����������������������������������台首支融合三大天然色
素的茶飲︽可提升免疫力︽消除壓力︽增強
體內抵抗力︽增加體內抗體的形成〈溫和不
刺激︽適合天天飲用〈可降低自由基對細胞
的過氧化傷害︽強化人體免疫功能︽健康好
喝零負擔﹁  
  
(The leading brand for Japanese tea. The first tea 
product combining three kinds of natural colour-
ings in Taiwan. Can improve immunity. Can re-
lieve stress. Can strengthen resistance to disease.  
Can increase antibodies in your body. It is mild 
and not irritative. Good for daily use. Can pre-
vent body cells from being harmed by free radi-

cals. Can strengthen immunity. It is healthy and 
tasty, and brings no body burden.) 
 

 
 

Figure 2: Screenshot for Illegal Sentence Recognition 

7 Conclusion 

Detecting false information on the Internet has 
become an important issue for users and organi-
zations. In this paper, we present two types of 
classification methods to identify overstated sen-
tences in online advertisements and build a false 
online advertisements recognition system FAdR. 
The recognition on both document and sentence 
levels is addressed in the demonstration. 

In the binary models, using combinations of 
unigrams and the log relative frequency ratio as 
features can achieve highest performance. On the 
other hand, the one-class models can be used to 
build a system that is adjustable by users for dif-
ferent application domains. 

The authorities or website owners can use a 
rejection rate of 0.7 or 0.8 to highlight most seri-
ous illegal advertisements. An advertisement 

107



with a score lower than 0.5 means it may critical-
ly violate the regulations, and need to be regard-
ed as illegal advertising. Since not all advertise-
ment posters are professional advertisers, they 
may need detailed information on the legality of 
every sentence. The illegal verb phrases found in 
a sentence provide clues to the advertiser. The 
system is also useful for consumers, as they can 
check if the advertisement contents can be trust-
ed before making a purchase decision. 

As future work, we will extend the methodol-
ogy presented in this study to handle other types 
of advertisements and the materials in other lan-
guages.  We will also investigate what linguistic 
patterns can be used to mine the overstated 
phrases in different languages. 
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Abstract

This paper describes lex4all, an open-
source PC application for the generation
and evaluation of pronunciation lexicons
in any language. With just a few minutes
of recorded audio and no expert knowl-
edge of linguistics or speech technology,
individuals or organizations seeking to
create speech-driven applications in low-
resource languages can build lexicons en-
abling the recognition of small vocabular-
ies (up to 100 terms, roughly) in the target
language using an existing recognition en-
gine designed for a high-resource source
language (e.g. English). To build such lex-
icons, we employ an existing method for
cross-language phoneme-mapping. The
application also offers a built-in audio
recorder that facilitates data collection, a
significantly faster implementation of the
phoneme-mapping technique, and an eval-
uation module that expedites research on
small-vocabulary speech recognition for
low-resource languages.

1 Introduction

In recent years it has been demonstrated that
speech recognition interfaces can be extremely
beneficial for applications in the developing world
(Sherwani and Rosenfeld, 2008; Sherwani, 2009;
Bali et al., 2013). Typically, such applications
target low-resource languages (LRLs) for which
large collections of speech data are unavailable,
preventing the training or adaptation of recogni-
tion engines for these languages. However, an ex-
isting recognizer for a completely unrelated high-
resource language (HRL), such as English, can
be used to perform small-vocabulary recognition
tasks in the LRL, given a pronunciation lexicon
mapping each term in the target vocabulary to a

sequence of phonemes in the HRL, i.e. phonemes
which the recognizer can model.

This is the motivation behind lex4all,1 an open-
source application that allows users to automati-
cally create a mapped pronunciation lexicon for
terms in any language, using a small number of
speech recordings and an out-of-the-box recog-
nition engine for a HRL. The resulting lexicon
can then be used with the HRL recognizer to add
small-vocabulary speech recognition functionality
to applications in the LRL, without the need for
the large amounts of data and expertise in speech
technologies required to train a new recognizer.
This paper describes the lex4all application and
its utility for the rapid creation and evaluation of
pronunciation lexicons enabling small-vocabulary
speech recognition in any language.

2 Background and related work

Several commercial speech recognition systems
offer high-level Application Programming Inter-
faces (APIs) that make it extremely simple to add
voice interfaces to an application, requiring very
little general technical expertise and virtually no
knowledge of the inner workings of the recogni-
tion engine. If the target language is supported by
the system – the Microsoft Speech Platform,2 for
example, supports over 20 languages – this makes
it very easy to create speech-driven applications.

If, however, the target language is one of the
many thousands of LRLs for which high-quality
recognition engines have not yet been devel-
oped, alternative strategies for developing speech-
recognition interfaces must be employed. Though
tools for quickly training recognizers for new lan-
guages exist (e.g. CMUSphinx3), they typically
require many hours of training audio to produce
effective models, data which is by definition not

1http://lex4all.github.io/lex4all/
2http://msdn.microsoft.com/en-us/library/hh361572
3http://www.cmusphinx.org
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available for LRLs. In efforts to overcome this
data scarcity problem, recent years have seen
the development of techniques for rapidly adapt-
ing multilingual or language-independent acoustic
and language models to new languages from rela-
tively small amounts of data (Schultz and Waibel,
2001; Kim and Khudanpur, 2003), methods for
building resources such as pronunciation dictio-
naries from web-crawled data (Schlippe et al.,
2014), and even a web-based interface, the Rapid
Language Adaptation Toolkit4 (RLAT), which al-
lows non-expert users to exploit these techniques
to create speech recognition and synthesis tools
for new languages (Vu et al., 2010). While they
greatly reduce the amount of data needed to build
new recognizers, these approaches still require
non-trivial amounts of speech and text in the target
language, which may be an obstacle for very low-
or zero-resource languages. Furthermore, even
high-level tools such as RLAT still demand some
understanding of linguistics/language technology,
and thus may not be accessible to all users.

However, many useful applications (e.g. for ac-
cessing information or conducting basic transac-
tions by telephone) only require small-vocabulary
recognition, i.e. discrimination between a few
dozen terms (words or short phrases). For ex-
ample, VideoKheti (Bali et al., 2013), a text-
free smartphone application that delivers agricul-
tural information to low-literate farmers in In-
dia, recognizes 79 Hindi terms. For such small-
vocabulary applications, an engine designed to
recognize speech in a HRL can be used as-is to
perform recognition of the LRL terms, given a
grammar describing the allowable combinations
and sequences of terms to be recognized, and a
pronunciation lexicon mapping each target term to
at least one pronunciation (sequence of phonemes)
in the HRL (see Fig. 1 for an example).

This is the thinking behind Speech-based Auto-
mated Learning of Accent and Articulation Map-
ping, or “Salaam” (Sherwani, 2009; Qiao et al.,
2010; Chan and Rosenfeld, 2012), a method of
cross-language phoneme-mapping that discovers
accurate source-language pronunciations for terms
in the target language. The basic idea is to discover
the best pronunciation (phoneme sequence) for a
target term by using the source-language recog-
nition engine to perform phone decoding on one
or more utterances of the term. As commercial

4http://i19pc5.ira.uka.de/rlat-dev

<lexicon version="1.0" xmlns="http://www
.w3.org/2005/01/pronunciation-
lexicon" xml:lang="en-US" alphabet
="x-microsoft-ups">

<lexeme>
<grapheme>beeni</grapheme>
<phoneme>B E NG I</phoneme>
<phoneme>B EI N I I</phoneme>

</lexeme>

</lexicon>

Figure 1: Sample XML lexicon mapping the
Yoruba word beeni (“yes”) to two possible se-
quences of American English phonemes.

recognizers such as Microsoft’s are designed for
word-decoding, and their APIs do not usually al-
low users access to the phone-decoding mode, the
Salaam approach uses a specially designed “super-
wildcard” recognition grammar to mimic phone
decoding and guide pronunciation discovery (Qiao
et al., 2010; Chan and Rosenfeld, 2012). This al-
lows the recognizer to identify the phoneme se-
quence best matching a given term, without any
prior indication of how many phonemes that se-
quence should contain.

Given this grammar and one or more audio
recordings of the term, Qiao et al. (2010) use an it-
erative training algorithm to discover the best pro-
nunciation(s) for that term, one phoneme at a time.
Compared to pronunciations hand-written by a lin-
guist, pronunciations generated automatically by
this algorithm yield substantially higher recog-
nition accuracy: Qiao et al. (2010) report word
recognition accuracy rates in the range of 75-95%
for vocabularies of 50 terms. Chan and Rosen-
feld (2012) improve accuracy on larger vocabu-
laries (up to approximately 88% for 100 terms)
by applying an iterative discriminative training al-
gorithm, identifying and removing pronunciations
that cause confusion between word types.

The Salaam method is fully automatic, demand-
ing expertise neither in speech technology nor
in linguistics, and requires only a few recorded
utterances of each word. At least two projects
have successfully used the Salaam method to add
voice interfaces to real applications: an Urdu
telephone-based health information system (Sher-
wani, 2009), and the VideoKheti application men-
tioned above (Bali et al., 2013). What has not ex-
isted before now is an interface that makes this ap-
proach accessible to any user.

110



Given the established success of the Salaam
method, our contribution is to create a more time-
efficient implementation of the pronunciation-
discovery algorithm and integrate it into an easy-
to-use graphical application. In the following sec-
tions, we describe this application and our slightly
modified implementation of the Salaam method.

3 System overview

We have developed lex4all as a desktop applica-
tion for Microsoft Windows,5 since it relies on the
Microsoft Speech Platform (MSP) as explained in
Section 4.1. The application and its source code
are freely available via GitHub.6

The application’s core feature is its lexicon-
building tool, the architecture of which is illus-
trated in Figure 2. A simple graphical user in-
terface (GUI) allows users to type in the written
form of each term in the target vocabulary, and
select one or more audio recordings (.wav files)
of that term. Given this input, the program uses
the Salaam method to find the best pronuncia-
tion(s) for each term. This requires a pre-trained
recognition engine for a HRL as well as a series
of dynamically-created recognition grammars; the
engine and grammars are constructed and man-
aged using the MSP. We note here that our imple-
mentation of Salaam deviates slightly from that of
Qiao et al. (2010), improving the time-efficiency
and thus usability of the system (see Sec. 4).

Once pronunciations for all terms in the vocab-
ulary have been generated, the application outputs
a pronunciation lexicon for the given terms as an
XML file conforming to the Pronunciation Lexi-
con Specification.7 This lexicon can then be di-
rectly included in a speech recognition application
built using the MSP API or a similar toolkit.

4 Pronunciation mapping

4.1 Recognition engine
For the HRL recognizer we use the US English
recognition engine of the MSP. The engine is used
as-is, with no modifications to its underlying mod-
els. We choose the MSP for its robustness and
ease of use, as well as to maintain comparability
with the work of Qiao et al. (2010) and Chan and
Rosenfeld (2012). Following these authors, we
use an engine designed for server-side recognition

5Windows 7 or 8 (64-bit).
6http://github.com/lex4all/lex4all
7http://www.w3.org/TR/pronunciation-lexicon/

Figure 2: Overview of the core components of the
lex4all lexicon-building application.

of low-quality audio, since we aim to enable the
creation of useful applications for LRLs, includ-
ing those spoken in developing-world communi-
ties, and such applications should be able to cope
with telephone-quality audio or similar (Sherwani
and Rosenfeld, 2008).

4.2 Implementation of the Salaam method

Pronunciations (sequences of source-language
phonemes) for each term in the target vocabu-
lary are generated from the audio sample(s) of
that term using the iterative Salaam algorithm
(Sec. 2), which employs the source-language rec-
ognizer and a special recognition grammar. In
the first pass, the algorithm finds the best candi-
date(s) for the first phoneme of the sample(s), then
the first two phonemes in the second pass, and so
on until a stopping criterion is met. In our im-
plementation, we stop iterations if the top-scoring
sequence for a term has not changed for three con-
secutive iterations (Chan and Rosenfeld, 2012), or
if the best sequence from a given pass has a lower
confidence score than the best sequence from the
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previous pass (Qiao et al., 2010). In both cases, at
least three passes are required.

After the iterative training has completed, the n-
best pronunciation sequences (with n specified by
users – see Sec. 5.2) for each term are written to
the lexicon, each in a <phoneme> element corre-
sponding to the <grapheme> element containing
the term’s orthographic form (see Fig. 1).

4.3 Running time

A major challenge we faced in engineering a user-
friendly application based on the Salaam algo-
rithm was its long running time. The algorithm
depends on a “super-wildcard” grammar that al-
lows the recognizer to match each sample of a
given term to a “phrase” of 0-10 “words”, each
word comprising any possible sequence of 1, 2, or
3 source-language phonemes (Qiao et al., 2010).
Given the 40 phonemes of US English, this gives
over 65,000 possibilities for each word, resulting
in a huge training grammar and thus a long pro-
cessing time. For a 25-term vocabulary with 5
training samples per term, the process takes ap-
proximately 1-2 hours on a standard modern lap-
top. For development and research, this long train-
ing time is a serious disadvantage.

To speed up training, we limit the length of each
“word” in the grammar to only one phoneme, in-
stead of up to 3, giving e.g. 40 possibilities in-
stead of tens of thousands. The algorithm can still
discover pronunciation sequences of an arbitrary
length, since, in each iteration, the phonemes dis-
covered so far are prepended to the super-wildcard
grammar, such that the phoneme sequence of the
first “word” in the phrase grows longer with each
pass (Qiao et al., 2010). However, the new imple-
mentation is an order of magnitude faster: con-
structing the same 25-term lexicon on the same
hardware takes approximately 2-5 minutes, i.e.
less than 10% of the previous training time.

To ensure that the new implementation’s vastly
improved running time does not come at the cost
of reduced recognition accuracy, we evaluate and
compare word recognition accuracy rates using
lexicons built with the old and new implementa-
tions. The data we use for this evaluation is a
subset of the Yoruba data collected by Qiao et al.
(2010), comprising 25 Yoruba terms (words) ut-
tered by 2 speakers (1 male, 1 female), with 5
samples of each term per speaker. To determine
same-speaker accuracy for each of the two speak-

Old New p

Female average 72.8 73.6 0.75
Male average 90.4 90.4 1.00

Sa
m

e-
sp

ea
ke

r

Overall average 81.6 82 0.81

Trained on male 70.4 66.4 –
Trained on female 76.8 77.6 –

C
ro

ss
-

sp
ea

ke
r

Average 73.6 72 0.63

Table 1: Word recognition accuracy for Yoruba us-
ing old (slower) and new (faster) implementations,
with p-values from t-tests for significance of dif-
ference in means. Bold indicates highest accuracy.

ers, we perform a leave-one-out evaluation on the
five samples recorded per term per speaker. Cross-
speaker accuracy is evaluated by training the sys-
tem on all five samples of each term recorded by
one speaker, and testing on all five samples from
the other speaker. We perform paired two-tailed t-
tests on the results to assess the significance of the
differences in mean accuracy.

The results of our evaluation, given in Table 1,
indicate no statistically significant difference in
accuracy between the two implementations (all p-
values are above 0.5 and thus clearly insignifi-
cant). As our new, modified implementation of the
Salaam algorithm is much faster than the original,
yet equally accurate, lex4all uses the new imple-
mentation by default, although for research pur-
poses we leave users the option of using the origi-
nal (slower) implementation (see Section 5.2).

4.4 Discriminative training

Chan and Rosenfeld (2012) achieve increased ac-
curacy (gains of up to 5 percentage points) by
applying an iterative discriminative training al-
gorithm. This algorithm takes as input the set
of mapped pronunciations generated using the
Salaam algorithm; in each iteration, it simulates
recognition of the training audio samples using
these pronunciations, and outputs a ranked list of
the pronunciations in the lexicon that best match
each sample. Pronunciations that cause “confu-
sion” between words in the vocabulary, i.e. pro-
nunciations that the recognizer matches to sam-
ples of the wrong word type, are thus identified
and removed from the lexicon, and the process is
repeated in the next iteration.

We implement this accuracy-boosting algorithm
in lex4all, and apply it by default. To enable fine-
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tuning and experimentation, we leave users the
option to change the number of passes (4 by de-
fault) or to disable discriminative training entirely,
as mentioned in Section 5.2.

5 User interface

As mentioned above, we aim to make the creation
and evaluation of lexicons simple, fast, and above
all accessible to users with no expertise in speech
or language technologies. Therefore, the applica-
tion makes use of a simple GUI that allows users
to quickly and easily specify input and output file
paths, and to control the parameters of the lexicon-
building algorithms.

Figure 3 shows the main interface of the lex4all
lexicon builder. This window displays the terms
that have been specified and the number of audio
samples that have been selected for each word.
Another form, accessed via the “Add word” or
“Edit” buttons, allows users to add to or edit the
vocabulary by simply typing in the desired ortho-
graphic form of the word and selecting the audio
sample(s) to be used for pronunciation discovery
(see Sec. 5.1 for more details on audio input).

Once the target vocabulary and training audio
have been specified, and the additional options
have been set if desired, users click the “Build
Lexicon” button and specify the desired name and
target directory of the lexicon file to be saved, and
pronunciation discovery begins. When all pronun-
ciations have been generated, a success message
displaying the elapsed training time is displayed,
and users may either proceed to the evaluation
module to assess the newly created lexicon (see
Sec. 6), or return to the main interface to build an-
other lexicon.

5.1 Audio input and recording

The GUI allows users to easily browse their file
system for pre-recorded audio samples (.wav
files) to be used for lexicon training. To simplify
data collection and enable the development of lexi-
cons even for zero-resource languages, lex4all also
offers a simple built-in audio recorder to record
new speech samples.

The recorder, built using the open-source library
NAudio,8 takes the default audio input device as
its source and records one channel with a sampling
rate of 8 kHz, as the recognition engine we employ
is designed for low-quality audio (see Section 4.1).

8http://naudio.codeplex.com/

Figure 3: Screenshot of the lexicon builder.

5.2 Additional options

As seen in Figure 3, lex4all includes optional con-
trols for quick and easy fine-tuning of the lexicon-
building process (the default settings are pictured).

First of all, users can specify the maxi-
mum number of pronunciations (<phoneme> el-
ements) per word that the lexicon may contain;
allowing more pronunciations per word may im-
prove recognition accuracy (Qiao et al., 2010;
Chan and Rosenfeld, 2012). Secondly, users may
train the lexicon using our modified, faster imple-
mentation of the Salaam algorithm or the origi-
nal implementation. Finally, users may choose
whether or not discriminative training is applied,
and if so, how many passes are run (see Sec. 4.4).

6 Evaluation module for research

In addition to its primary utility as a lexicon-
building tool, lex4all is also a valuable research
aide thanks to an evaluation module that allows
users to quickly and easily evaluate the lexicons
they have created. The evaluation tool allows users
to browse their file system for an XML lexicon file
that they wish to evaluate; this may be a lexicon
created using lex4all, or any other lexicon in the
same format. As in the main interface, users then
select one or more audio samples (.wav files)
for each term they wish to evaluate. The system
then attempts to recognize each sample using the
given lexicon, and reports the counts and percent-
ages of correct, incorrect, and failed recognitions.
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Users may optionally save this report, along with
a confusion matrix of word types, as a comma-
separated values (.csv) file.

The evaluation module thus allows users to
quickly and easily assess different configurations
of the lexicon-building tool, by simply changing
the settings using the GUI and evaluating the re-
sulting lexicons. Furthermore, as the applica-
tion’s source code is freely available and modifi-
able, researchers may even replace entire modules
of the system (e.g. use a different pronunciation-
discovery algorithm), and use the evaluation mod-
ule to quickly assess the results. Therefore, lex4all
facilitates not only application development but
also further research into small-vocabulary speech
recognition using mapped pronunciation lexicons.

7 Conclusion and future work

We have presented lex4all, an open-source appli-
cation that enables the rapid automatic creation
of pronunciation lexicons in any (low-resource)
language, using an out-of-the-box commercial
recognizer for a high-resource language and the
Salaam method for cross-language pronunciation
mapping (Qiao et al., 2010; Chan and Rosen-
feld, 2012). The application thus makes small-
vocabulary speech recognition interfaces feasible
in any language, since only minutes of training au-
dio are required; given the built-in audio recorder,
lexicons can be constructed even for zero-resource
languages. Furthermore, lex4all’s flexible and
open design and easy-to-use evaluation module
make it a valuable tool for research in language-
independent small-vocabulary recognition.

In future work, we plan to expand the selection
of source-language recognizers; at the moment,
lex4all only uses US English as the source lan-
guage, but any of the 20+ other HRLs supported
by the MSP could be added. This would enable in-
vestigation of the target-language recognition ac-
curacy obtained using different source languages,
though our initial exploration of this issue sug-
gests that phonetic similarity between the source
and target languages might not significantly affect
accuracy (Vakil and Palmer, 2014). Another future
goal is to improve and extend the functionality of
the audio-recording tool to make it more flexible
and user-friendly. Finally, as a complement to the
application, it would be beneficial to create a cen-
tral online data repository where users can upload
the lexicons they have built and the speech sam-

ples they have recorded. Over time, this could be-
come a valuable collection of LRL data, enabling
developers and researchers to share and re-use data
among languages or language families.
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Abstract

We present a new version of the Google
Books Ngram Viewer, which plots the fre-
quency of words and phrases over the last
five centuries; its data encompasses 6%
of the world’s published books. The new
Viewer adds three features for more pow-
erful search: wildcards, morphological in-
flections, and capitalization. These addi-
tions allow the discovery of patterns that
were previously difficult to find and fur-
ther facilitate the study of linguistic trends
in printed text.

1 Introduction

The Google Books Ngram project facilitates the
analysis of cultural, social and linguistic trends
through five centuries of written text in eight
languages. The Ngram Corpus (Michel et al.,
2011; Lin et al., 2012) consists of words and
phrases (i.e., ngrams) and their usage frequency
over time.1 The interactive Ngram Viewer2 allows
users to retrieve and plot the frequency of mul-
tiple ngrams on a simple webpage. The Viewer
is widely popular and can be used to efficiently
explore and visualize patterns in the underlying
ngram data. For example, the ngram data has
been used to detect emotion trends in 20th cen-
tury books (Acerbi et al., 2013), to analyze text
focusing on market capitalism throughout the past
century (Schulz and Robinson, 2013), detect so-
cial and cultural impact of historical personalities
(Skiena and Ward, 2013), or to analyze the corre-
lation of economic crises with a literary ‘misery

∗ The majority of this work was carried out during an
internship at Google.

1The Ngram Corpus is freely available for download at
http://books.google.com/ngrams/datasets.

2See http://books.google.com/ngrams.
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Figure 1: Mention frequencies for three different American
presidents queried one-by-one.

index’ reflected in printed text during crises peri-
ods (Bentley et al., 2014).

A limitation of the Viewer, however, is that all
the reasoning has to be done by the user, and
only individual, user-specified ngrams can be re-
trieved and plotted. For example, to compare
the popularity of different presidents, one needs
to come up with a list of presidents and then
search for them one-by-one. The result of the
query ‘President Kennedy, President
Nixon, President Reagan’ is shown in
Figure 1. To determine the most popular president,
one would need to search for all presidents, which
is cumbersome and should ideally be automated.

In this paper, we therefore present an updated
version of the Viewer that enhances its search
functionality. We introduce three new features
that automatically expand a given query and re-
trieve a collection of ngrams, to facilitate the dis-
covery of patterns in the underlying data. First,
users can replace one query term with a place-
holder symbol ‘*’ (wildcard, henceforth), which
will return the ten most frequent expansions of
the wildcard in the corpus for the specified year
range. Second, by adding a specific marker to
any word in a query (‘ INF’), ngrams with all
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morphological inflections of that word will be re-
trieved. Finally, the new Viewer supports capi-
talization searches, which return all capitalization
variants of the query ngram. Figure 2 provides ex-
amples for these three new types of queries.

While it is fairly obvious how the above search
features can be implemented via brute-force com-
putation, supporting an interactive application
with low latency necessitates some precomputa-
tion. In particular, the wildcard search feature
poses some challenges because the most frequent
expansions depend on the selected year range
(consider the frequency with which presidents are
mentioned during different decades, for example).
To this end, we provide details of our system ar-
chitecture in §2 and discuss how the new search
features are implemented in §3. In addition, we
present an overhaul of the Ngram Viewer’s user
interface with interactive features that allow for
easier management of the increase in data points
returned.

Detailed analysis and interpretation of trends
uncovered with the new search interface is beyond
the scope of this paper. We highlight some in-
teresting use cases in §4; many of the presented
queries were difficult (or impossible) to execute in
the previous versions of the system. We emphasize
that this demonstration updates only the Viewer,
providing tools for easier analysis of the underly-
ing corpora. The ngram corpora themselves are
not updated.

2 System Overview

We first briefly review the two editions of the
Ngram Corpus (Michel et al., 2011; Lin et al.,
2012) and then describe the extensions to the ar-
chitecture of the Viewer that are needed to support
the new search features.

2.1 The Ngram Corpus

The Google Books Ngram Corpus provides ngram
counts for eight different languages over more
than 500 years; additionally, the English corpus
is split further into British vs. American English
and Fiction to aid domain-specific analysis. This
corpus is a subset of all books digitized at Google
and represents more than 6% of all publicized texts
(Lin et al., 2012). Two editions of the corpus are
available: the first edition dates from 2009 and is
described in Michel et al. (2011); the second edi-
tion is from 2012 and is described in Lin et al.
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Figure 2: In the new enhanced search features of the Ngram
Viewer, a single query is automatically expanded to retrieve
multiple related ngrams. From top to bottom, we show ex-
amples of the wildcard operator (‘*’), the ‘ INF’ marker that
results in morphological inflections, and the case insensitive
search functionality. Due to space considerations we show
only a subset of the results returned by the Ngram Viewer.

(2012). The new search features presented here
are available for both editions.

Michel et al. (2011) extract ngrams for each
page in isolation. More specifically, they use
whitespace tokenization and extract all ngrams up
to length five. These ngrams include ones that po-
tentially span sentence boundaries, but do not in-
clude ngrams that span across page breaks (even
when they are part of the same sentence). Lin
et al. (2012) on the other hand perform tokeniza-
tion, text normalization and segmentation into sen-
tences. They then add synthetic START and
END tokens to the beginning and end of the sen-
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tences to enable the distinction of sentence me-
dial ngrams from those near sentence boundaries.
They also ensure that sentences that span across
page boundaries are included. Due to these dif-
ferences, as well as the availability of additional
book data, improvements to the optical character
recognition algorithms and metadata extraction for
dating the books, the ngrams counts from the two
editions are not the same.

The edition from Lin et al. (2012) additionally
includes syntactic ngrams. The corpus is tagged
using the universal part-of-speech (POS) tag set
of Petrov et al. (2012): NOUN (nouns), VERB
(verbs), ADJ (adjectives), ADV (adverbs), PRON
(pronouns), DET (determiners and articles), ADP
(prepositions and postpositions), CONJ (conjunc-
tions). Words can be disambiguated by their POS
tag by simply appending the tag to the word with
an underscore (e.g. book NOUN) and can also be
replaced by POS tags in the ngrams, see Lin et
al. (2012) for details. The corpus is parsed with
a dependency parser and head-modifier syntactic
relations between words in the same sentence are
extracted. Dependency relations are represented
as ‘=>’ in the corpus. Our new enhanced search
features for automatic expansions can also be ap-
plied to these syntactic ngrams. In fact, some of
the most interesting queries use expansions to au-
tomatically uncover related ngrams, while using
syntax to focus on particular patterns.

The Viewer supports the composition of ngram
frequencies via arithmetic operators. Addition (+),
subtraction (-) and division (/) of ngrams are car-
ried out on a per year basis, while multiplication
(*) is performed by a scalar that is applied to all
counts in the time series. Where ambiguous, the
wildcard operator takes precedence over the mul-
tiplication operator. Parentheses can be used to
disambiguate and to force the interpretation of a
mathematical operation.

2.2 Architecture

The Ngram Viewer provides a lightweight inter-
face to the underlying ngram corpora. In its basic
form, user requests are directed through the server
to a simple lookup table containing the raw ngrams
and their frequencies. This data flow is displayed
in the top part of Figure 3 and is maintained for
queries that do not involve the new expansion fea-
tures introduced in this work.

The expansion queries could in principle be

Raw Ngrams

‘King James’ :
{(1900, 234), 

(1901, 122), …}

‘Kinged James’: 
{(1900, 20), 

(1901, 15), …}
…

Inflections
‘King_INF’: 

{King, Kinged, 
Kings,
 … }

Wildcards
‘King *’:

{King James,
 King George,

 … }

Capitalizations
‘king james’: 
{king James, 
King James,

… }

Ngram 
Viewer
Server

User

new in this version

Ngram Viewer System Architecture

Figure 3: Overview of the Ngram Viewer architecture.

implemented by scanning the raw ngrams on
the fly and returning the matching subset: to
answer the query ‘President *’, one would
need to obtain all bigrams starting with the word
President (there are 23,693) and extract the
most frequent ten. Given the large number of
ngrams (especially for larger n), such an approach
turns out to be too slow for an interactive appli-
cation. We therefore pre-compute intermediate re-
sults that can be used to more efficiently retrieve
the results for expansion queries. The intermedi-
ate results are stored in additional lookup tables
(shown at the bottom in Figure 3). When the user
executes an expansion search, the query is first
routed to the appropriate lookup table which stores
all possible expansions (including expansions that
might not appear in the corpus). These expanded
ngrams are then retrieved from the raw ngram ta-
ble, sorted by frequency and returned to he user.
We describe the intermediate results tables and
how they are generated in the next section.

Note that we only support one expansion oper-
ation per query ngram. This is needed in order to
avoid the combinatorial explosion that would re-
sult from mixing multiple expansion operators in
the same query.

3 New Features

The three new search features are implemented via
the same two-step approach. As shown in Fig-
ure 3, we add three new lookup tables that store
intermediate results needed for efficiently support-
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President Eisenhower_NOUN

Figure 4: Different wildcard queries for bigrams starting with President. Specification of a POS tag along with the wildcard
operator results in more specific results, and the results vary depending on the selected yaer range.

ing the new search types. In all cases the lookup
tables provide a set of possible expansions that are
then retrieved in the original raw ngram table. Be-
low we describe how these intermediate results are
generated and how they are used to retrieve the fi-
nal results.

3.1 Wildcards

Wildcards provide a convenient way to automat-
ically retrieve and explore related ngrams. Be-
cause of the large number of possibilities that can
fill a wildcard slot, returning anything but the top
few expansions is likely to be overwhelming. We
therefore return only the ten most frequent expan-
sions. Determining the most frequent expansions
is unfortunately computationally very expensive
because of the large number of ngrams; the query
‘the *’ for example has 2,353,960 expansions.

To avoid expensive on-the-fly computations,
we precompute the most frequent expansions for
all possible queries. The problem that arises
is that the ten most frequent expansions depend
on the selected year range. Consider the query
‘President *’; we would like to be able get
the correct result for any year range. Since our
data spans more than 500 years, precomputing the
results for all year ranges is not a possibility. In-
stead, we compute the possible wildcard expan-
sions for each year. The top expansions for the
entire range are then taken from the union of top
expansions for each year. This set is at most of
size 10n (where n is the year range) and in practice
typically a lot smaller. Theoretically it is possible
for this approximation to miss an expansion that is
never among the top ten for a particular year, but
is cumulatively in the top ten for the entire range.
This would happen if there were many spikes in
the data, which is not the case.

To make the wildcard expansions more rele-
vant, we filter expansions that consist entirely of
punctuation symbols. To further narrow down

the expansions and focus on particular patterns,
we allow wildcards to be qualified via POS
tags. Figure 4 shows some example wildcard
queries involving bigrams that start with the word
‘President.’ See also Table 1 for some addi-
tional examples. Note that it is possible to replace
POS tags with wildcards (e.g., cook *) which
will find all POS tags that the query word can take.

3.2 Morphological Inflections

When comparing ngram frequencies (especially
across languages, but also for the same language),
it can be useful to examine and potentially aggre-
gate the frequencies of all inflected forms. This
can be accomplished by manually deriving all in-
flected forms and then using arithmetic operations
to aggregate their counts. Our new inflected form
search accomplishes this automatically. By ap-
pending the keyword INF to a word, a set of
ngrams with all inflected forms of the word will
be retrieved. To generate the inflected forms we
make use of Wiktionary3 and supplement it with
automatically generated inflection tables based on
the approach of Durrett and DeNero (2013).

Because there are at most a few dozen inflected
forms for any given word, we can afford to sub-
stitute and retrieve all inflections of the marked
word, even the ones that are not grammatical in a
given ngram context. This has the advantage that
we only need to store inflected forms for individ-
ual words rather than entire ngrams. If a generated
ngram has no support in the corpus, we simply
omit it from the final set of results. We do not per-
form any additional filtering; as a result, an inflec-
tion search can produce many results, especially
for morphologically rich languages like Russian.
We have therefore updated the user interface to
better deal with many data lines (§4).

3See http://www.wiktionary.org/. Because
Wiktionary is an evolving resource, results for a particular
query may change over time.
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Query Possible Replacements

* ’s Theorem
Lagrange ’s Theorem, Gauss ’s Theorem,
Euler ’s Theorem, Pascal ’s Theorem

War=>* NOUN
War=>World NOUN, War=>Civil NOUN,
War=>Second NOUN, War=>Cold NOUN

lubov~ INF lubil, lublu, lubit, lubit~, lubila, lubimyĭ, lubix~
book INF book, books, booked, booking

book INF NOUN book, books
cook * cook NOUN, cook VERB

the cook (case insensitive) THE COOK, the cook, The Cook, the Cook, The cook

Table 1: Examples expansions for wildcard, inflection, and capitalization queries.

3.3 Capitalization

By aggregating different capitalizations of the
same word, one can normalize between sentence-
initial and sentence-medial occurrences of a given
word. A simple way to accomplish this is by
searching for a lowercased, capitalized and all
caps spelling of the query. This however can miss
CamelCase spelling and other capitalization vari-
ants (consider FitzGerald for example). It is
of course not feasible to try all case variants of ev-
ery letter in the query. Instead, we perform an of-
fline precomputation step in which we collect all
ngrams that map to the same lowercased string.
Due to scanning errors and spelling mistakes there
can be many extremely rare capitalization variants
for a given query. We therefore filter out all vari-
ants that have a cumulative count of less than 1%
of the most frequent variant for a given year range.
Capitalization searches are enabled by selecting a
case-insensitive check box on the new interface.

4 Use Cases

The three features introduced in this paper repre-
sent a major extension of the capabilities of the
Ngram Viewer. While the second edition of the
Ngram Corpus (Lin et al., 2012) introduced syn-
tactic ngrams, the functionality of the Viewer had
remained largely unchanged since its first launch
five years ago. Together, the updated Corpus and
Viewer enable a much more detailed analysis of
the underlying data. Below we provide some uses
cases highlighting the ways in which sophisticated
queries can be crafted. While the results produce
some intriguing patterns, we leave their analysis to
the experts.

Since we have made no modifications to the un-
derlying raw ngrams, all of the plots in this pa-
per could have also been generated with the pre-
vious version of the Viewer. They would, how-
ever, have required the user to manually generate

and issue all query terms. For example, Figure 1
shows manually created queries searching for spe-
cific presidents; contrarily, Figure 4 shows single
wildcard queries that automatically retrieve the ten
most frequently mentioned presidents and uncover
additional trends that would have required extra
work on behalf of the user.

The wildcard feature used on its own can be a
powerful tool for the analysis of top expansions
for a certain context. Although already useful on
its own, it becomes really powerful when com-
bined with POS tags. The user can attach an un-
derscore and POS tag to either a wildcard-based
or inflection-based query to specify that the ex-
pansions returned should be of a specific part of
speech. Compare the utility of the generic wild-
card and a search with a noun part-of-speech spec-
ification in a query examining president names,
‘President *’ vs. ‘President * NOUN’
shown in Figure 4. The former gives a mixture
of prepositions, particles, and verbs along with
names of presidents, and because the latter spec-
ifies the noun tag, the top expansions turn out to
be names and more in line with the intention of
the search. Also, note in Figure 4 the difference in
expansions that searching over two different time
ranges provides. In Table 2, we compare the com-
bination of the wildcard feature with the existing
dependency link feature to highlight a comparison
of context across several languages.

It is worth noting that the newly introduced fea-
tures could result in many lines in the resulting
chart. Hence, we have updated the Viewer’s user
interface to better handle charts involving many
ngrams. The new interactive functionality allows
the user to highlight a line by hovering over it,
keep that focus by left clicking, and clear all fo-
cused lines by double clicking. A right click on
any of the expansions returned by an issued query
combines them into the year-wise sum total of all
the expansions. We added another feature to the
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Figure 5: Comparison of specification of POS tag in wildcard search.

English American British German French Russian Italian Chinese Spanish Hebrew(All) English English (Simplified)
drinks drinks drinks trinkt boit p~�t beve 喝 bebe dzy

water water water Bier (beer) vin (wine) on (he) vino (wine) 酒 (wine) agua (water) oii (wine)

wine wine wine Kaffee (coffee) sang (blood) qaĭ (tea) acqua (water) 茶 (tea) vino (wine) min (water)

milk coffee tea Wein (wine) eau (water) vodu (water) sangue (blood) 水 (water) sangre (blood) d (the)

coffee beer blood Wasser (water) cafe (coffee) On (He) birra (beer) 咖啡 (coffee) vaso (glass) qek (cup)

beer milk beer Tee (tea) verre (glass) vino (wine) caffé (coffee) 人 (person) cerveza (beer) dz (tea)

Table 2: Comparison of the top modifiers of the verb drinks, or its equivalent in translation, in all corpora, retrieved via
the query drinks VERB=>* NOUN and equivalents in the other languages. The modifiers can appear both in subject and in
object position because we have access only to unlabeled dependencies.

interface that creates static URLs maintaining all
the raw ngrams retrieved from any query. This pre-
vents statically linked charts from changing over
time, and allowing for backwards compatibility.

One of the primary benefits of the capitalization
feature is the combination of multiple searches
in one, which allows the user to compare case-
insensitive usages of two different phrases. An
alternative use is in Figure 2(c), where capitaliza-
tion search allows the immediate identification of
changing orthographic usage of a word or phrase;
in this case the figure shows the arrival of F. Scott
Fitzgerald in the early to mid 20th century, as well
as the rise in popularity of the CamelCase variety
of his surname at the turn of the 19th century.

Searches using inflections can be useful for the
same reasons as the capitalization feature, and also
be used to compare changes in spelling; it is par-
ticularly useful for the analysis of irregular verbs,
where the query can return both the regular and
irregular forms of a verb.

5 Conclusions

We have presented an update to the Ngram Viewer
that introduces new search features. Users can
now perform more powerful searches that auto-
matically uncover trends which were previously
difficult or impossible to extract. We look forward
to seeing what users of the Viewer will discover.
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Abstract

We present GFL-Web, a web-based in-
terface for syntactic dependency annota-
tion with the lightweight FUDG/GFL for-
malism. Syntactic attachments are spec-
ified in GFL notation and visualized as
a graph. A one-day pilot of this work-
flow with 26 annotators established that
even novices were, with a bit of training,
able to rapidly annotate the syntax of En-
glish Twitter messages. The open-source
tool is easily installed and configured; it
is available at: https://github.com/
Mordeaux/gfl_web

1 Introduction

High-quality syntactic annotation of natural lan-
guage is expensive to produce. Well-known large-
scale syntactic annotation projects, such as the
Penn Treebank (Marcus et al., 1993), the En-
glish Web Treebank (Bies et al., 2012), the Penn
Arabic Treebank (Maamouri et al., 2004), and
the Prague dependency treebanks (Hajič, 1998;
Čmejrek et al., 2005), have relied on expert lin-
guists to produce carefully-controlled annotated
data. Because this process is costly, such anno-
tation projects have been undertaken for only a
handful of important languages. Therefore, devel-
oping syntactic resources for less-studied, lower-
resource, or politically less important languages
and genres will require alternative methods. To
address this, simplified annotation schemes that
trade cost for detail have been proposed (Habash
and Roth, 2009).1

1These can be especially effective when some details of
the syntax can be predicted automatically with high accuracy
(Alkuhlani et al., 2013).

The Fragmentary Unlabeled Dependency
Grammar (FUDG) formalism (Schneider et al.,
2013) was proposed as a simplified framework for
annotating dependency syntax. Annotation effort
is reduced by relaxing a number of constraints
placed on traditional annotators: partial fragments
can be specified where the annotator is uncertain
of part of the structure or wishes to focus only
on certain phenomena (such as verbal argument
structure). FUDG also offers mechanisms for
excluding extraneous tokens from the annotation,
for marking multiword units, and for describing
coordinate structures. FUDG is written in an
ASCII-based notation for annotations called
Graph Fragment Language (GFL), and text-based
tools for verifying, converting, and rendering GFL
annotations are provided.

Although GFL offers a number of conveniences
to annotators, the text-based UI is limiting: the
existing tools require constant switching between
a text editor and executing commands, and there
are no tools for managing a large-scale annotation
effort. Additionally, user interface research has
found marked preferences for and better perfor-
mance with graphical tools relative to text-based
interfaces—particularly for less computer-savvy
users (Staggers and Kobus, 2000). In this paper,
we present the GFL-Web tool, a web-based inter-
face for FUDG/GFL annotation. The simple inter-
face provides instantaneous feedback on the well-
formedness of a GFL annotation, and by wrapping
Schneider et al.’s notation parsing and rendering
software, gives a user-friendly visualization of the
annotated sentence. The tool itself is lightweight,
multi-user, and easily deployed with few software
dependencies. Sentences are assigned to anno-
tators via an administrative interface, which also
records progress and provides for a text dump of
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(a) @Bryan_wright11 i lost all my contacts , smh .
(b) Texas Rangers are in the World Series ! Go
Rangers !!!!!!!!! http://fb.me/D2LsXBJx

Figure 1: FUDG annotation graphs for two tweets.

all annotations. The interface for annotators is de-
signed to be as simple as possible.

We provide an overview of the FUDG/GFL
framework (§2), detail how the tool is set up and
utilized (§3), and discuss a pilot exercise in which
26 users provided nearly 1,000 annotations of En-
glish Twitter messages (§4). Finally, we note some
of the technical aspects of the tool (§5) and related
syntactic annotation software (§6).

2 Background

GFL-Web is designed to simplify the creation
of dependency treebanks from noisy or under-
resourced data; to that end, it exploits the
lightweight FUDG/GFL framework of Schneider
et al. (2013). Here we outline how FUDG differs
from traditional Dependency Grammar (§2.1) and
detail major aspects of GFL (§2.2).

2.1 FUDG

Figure 1 displays two FUDG graphs of annota-
tions of Twitter messages (“tweets”, shown below
in tokenized form). Arrows point upwards from
dependents to their heads. These tweets illustrate
several characteristics of the formalism, including:
• The input may contain multiple independent

syntactic units, or “utterances”; the annotation
indicates these by attaching their heads to a spe-
cial root node called **.

• Some input tokens are omitted if deemed ex-
trinsic to the syntax; by convention, these in-
clude most punctuation, hashtags, usernames,
and URLs.

• Multiword units may be joined to form com-
posite lexical nodes (e.g., World_Series in fig-
ure 1b). These nodes are not annotated with any
internal syntactic structure.

• Tokens that are used in the FUDG parse must be
unambiguous. If a word appears multiple times
in the input, it is disambiguated with ~ and an
index (e.g., Rangers~2 in figure 1b).

(Some of the other mechanisms in FUDG, such as
coordinate structures and underspecification, are
not shown here; they are not important for pur-
poses of this paper.)

2.2 GFL
The Graph Fragment Language is a simple ASCII-
based language for FUDG annotations. Its norms
are designed to be familiar to users with basic pro-
gramming language proficiency, and they are intu-
itive and easy to learn even for those without. The
annotation in figure 1a may be expressed in GFL
as:2

i > lost** < ({all my} > contacts)

smh**

In GFL, angle brackets point from a dependent
(child) to its head (parent). Parentheses group
nodes together; the head of this group is then at-
tached to another node. The double asterisk (**)
marks a root node in an annotations containing
multiple utterances. Curly braces group nodes that
modify the same head.

GFL corresponding to Figure 1b is:
2The abbreviation smh stands for shaking my head.
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Sentence: Texas Rangers are in the World Series ! Go Rangers !!!!!!!!! http://fb.me/D2LsXBJx
Input format:
---
% ID data_set_name:417
% TEXT
Texas Rangers~1 are in the World Series ! Go Rangers~2 !!!!!!!!!
http://fb.me/D2LsXBJx
% ANNO
Texas Rangers~1 are in the World Series Go Rangers~2
http://fb.me/D2LsXBJx

Figure 2: Illustration of the GFL-Web input format for a tweet. The ANNO section will be shown to the user as the default
annotation; punctuation has been stripped out automatically to save time.

Figure 3: User home screen showing assigned batches for annotation, with links to the training set and blank annotation form.

[Texas Rangers~1] > are** < in

in < (the > [World Series])

Go** < Rangers~2

This uses square brackets for multiword expres-
sions. Similar to a programming language, there
are often many equivalent GFL annotation options
for a given sentence. The annotation can be split
across multiple lines so that annotators can ap-
proach smaller units first and then link them to-
gether.

3 Using GFL-Web

The GFL-Web tool uses the Python programming
language’s Flask microframework for server-side
scripting. This allows it to be deployed on a web
server, locally or via the Internet. This also en-
ables the interface to rely on scripts previously
created for analyzing GFL. Once installed, the re-
searcher need only configure a few settings and be-
gin entering data to be annotated.

3.1 Setup
There are a few simple configuration options. The
most useful of these options specify how many
sentences should be in each batch that is assigned

to an annotator, and how many sentences in each
batch should be doubly annotated, for the purpose
of assessing inter-annotator agreement. By de-
fault, the batch size is 10, and the first 2 sentences
of each batch overlap with the previous batch, so
4/10 of the sentences in the batch will be annotated
by someone else (assuming no two consecutive
batches are assigned to the same user). The pro-
gram requires tokenized input, with indices added
to distinguish between words that appear twice
(easily automated). The input format, figure 2, al-
lows for easy editing with a text editor if so de-
sired.

Once the input files have been placed in a des-
ignated directory, an admin interface can be used
to assign batches of data to specific users (annota-
tors).

3.2 Annotation
Annotators log in with their username and see a
home screen, figure 3. The home screen always
offers links to a training set to get them up to
speed, as well as a blank annotation form into
which they can enter and annotate any sentence.
Beneath these is a table of batches of sentences
which have been assigned to the user. Clicking
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Figure 4: A well-formed GFL annotation is indicated by a
green background and visualization of the analysis graph.

any of these will take the annotator to an annota-
tion page, which displays the text to be annotated,
an input field, and a comments box.

The annotation interface is simple and intuitive
and provides instant feedback, preventing the an-
notator from submitting ill-formed annotations.
Annotators press the Analyze button and receive
feedback before submitting annotations (figure 4).
Common GFL errors such as unbalanced paren-
theses are caught by the program and brought to
the attention of the annotator with an informative
error message (figure 5). The annotator can then
fix the error, and will be able to submit once all
errors are resolved.

The training set consists of 15 sentences se-
lected from Rossman and Mills (1922), shown in
the same annotation interface. Examples become
increasingly more complicated in order to famil-
iarize the user with different syntactic phenomena
and the entry-analyze-review workflow. A button
displays the FUDG graph from an expert annota-
tion so the novice can compare it to her own and
consult the guidelines (or ask for help) where the
two graphs deviate.

4 Pilot User Study

We conducted a pilot annotation project in which
26 annotators were trained on GFL-Web and asked
to annotate English Twitter messages from the
daily547 and oct27 Twitter datasets of Gimpel
et al. (2011). The overwhelming majority were all

trained on the same day, having no prior knowl-
edge of GFL. Most, but not all, were native speak-
ers of English. Those who had no prior knowl-
edge of dependency grammar in general received
a short tutorial on the fundamentals before being
introduced to the annotation workflow. All par-
ticipants who were new to FUDG/GFL worked
through the training set before moving on to the
Twitter data. Annotators were furnished with the
English annotation guidelines of Schneider et al.
(2013).3

4.1 Results
In the one-day event, 906 annotations were gen-
erated. Inter-annotator agreement was high—.9
according to the softComPrec measure (Schnei-
der et al., 2013)—and an expert’s examination of a
sample of the annotations found that 75% of con-
tained no major error.

Annotators used the analysis feature of the
interface—which displays either a visual represen-
tation of the tree or an error message—an aver-
age of 3.06 times per annotation. The interface re-
quires they analyze each annotation at least once.
Annotators have the ability to resubmit annota-
tions if they later realize they made an error, and
each annotation was submitted an average of 1.16
times. Disregarding instances that took over 1,000
seconds (under the assumption that these repre-
sent annotators taking breaks), the median time
between the first analysis and the first submission
of an annotation was 30 seconds. We take this
as evidence that annotators found the instant feed-
back features useful in refining their annotations.

4.2 Post-Pilot Improvements
Annotator feedback prompted some changes to the
interface. The annotation input box was changed
to incorporate bracket-matching. The graph visu-
alization for a correct annotation was added for
each example in the training set so new annota-
tors could compare their tree to an example. Pre-
sumably these changes would further reduce anno-
tators’ training time and improve their efficiency.
Progress bars were added to the user home screen
to show per-batch completion information.

4.3 Other Languages
In addition to English, guidelines for Swahili,
Zulu, and Mandarin are currently in development.

3https://github.com/brendano/gfl_syntax/
blob/master/guidelines/guidelines.md
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Figure 5: An example error notification. The red background indicates an error, and the cause of the error is displayed at the
bottom of the screen.

5 Technical Architecture

GFL-Web and its software dependencies for ana-
lyzing and visualizing GFL are largely written in
Python. The tool is built with Flask, a Python
framework for web applications. Data is stored
and transmitted to and from the browser in the
Javascript Object Notation (JSON) format, which
is supported by libraries in most programming lan-
guages. The browser interface uses AJAX tech-
niques to interact dynamically with the server.

GFL-Web is written for Python version 2.7.
It wraps scripts previously written for the analy-
sis and visualization of GFL (Schneider et al.,
2013). These in turn require Graphviz (Ellson
et al., 2002), which is freely available.

Flask provides a built-in server, but can also be
deployed in Apache, via WSGI or CGI, etc.

6 Other Tools

In treebanking, a good user interface is essen-
tial for annotator productivity and accuracy. Sev-
eral existing tools support dependency annota-
tion; GFL-Web is the first designed specifi-
cally for the FUDG/GFL framework. Some,
including WebAnno (Yimam et al., 2013) and
brat (Stenetorp et al., 2012), are browser-based,
while WordFreak (Morton and LaCivita, 2003),
Abar-Hitz (Ilarraza et al., 2004), and TrEd (Pa-
jas and Fabian, 2000–2011) are client-side appli-
cations. All offer tree visualizations; to the best
of our knowledge, ours is the only dependency
annotation interface that has text as the exclu-

sive mode of entry. Some, such as WebAnno
and brat, aim to be fairly general-purpose, sup-
porting a wide range of annotation schemes; by
contrast, GFL-Web supports a single annotation
scheme, which keeps the configuration (and code-
base) simple. In the future, GFL-Web might in-
corporate elements of monitoring progress, such
as display of evaluation measures computed with
existing FUDG/GFL scripts.

Certain elements of the FUDG/GFL framework
can be found in other annotation systems, such
as the PASSAGE syntactic representation (Vilnat
et al., 2010), which allows for grouping of words
into units, but still requires dependency relations
to be labeled.

Finally, we note that new approaches to corpus
annotation of semantic dependencies also come
with rich browser-based annotation interfaces (Ba-
narescu et al., 2013; Abend and Rappoport, 2013).

7 Conclusion

While the creation of high-quality, highly speci-
fied, syntactically annotated corpora is a goal that
is out of reach for most languages and genres,
GFL-Web facilitates a rapid annotation workflow
within a simple framework for dependency syn-
tax. More information on FUDG/GFL is avail-
able at http://www.ark.cs.cmu.edu/FUDG/,
and the source code for GFL-Web is available at
https://github.com/Mordeaux/gfl_web.
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2005. Prague Czech-English Dependency Treebank:
resource for structure-based MT. In Proc. of EAMT,
pages 73–78. Budapest, Hungary.

John Ellson, Emden Gansner, Lefteris Koutsofios,
Stephen C. North, and Gordon Woodhull. 2002.
Graphviz—open source graph drawing tools. In Pe-
tra Mutzel, Michael Jünger, and Sebastian Leipert,
editors, Graph Drawing, pages 483–484. Springer,
Berlin.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein,
Michael Heilman, Dani Yogatama, Jeffrey Flanigan,
and Noah A. Smith. 2011. Part-of-speech tagging
for Twitter: annotation, features, and experiments.
In Proc. of ACL-HLT, pages 42–47. Portland, Ore-
gon.

Nizar Habash and Ryan Roth. 2009. CATiB: The
Columbia Arabic Treebank. In Proc. of ACL-
IJCNLP, pages 221–224. Suntec, Singapore.
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