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Abstract

Deep learning embeddings have been suc-
cessfully used for many natural language
processing problems. Embeddings are
mostly computed for word forms although
lots of recent papers have extended this to
other linguistic units like morphemes and
word sequences. In this paper, we define
the concept of generalized phrase that in-
cludes conventional linguistic phrases as
well as skip-bigrams. We compute em-
beddings for generalized phrases and show
in experimental evaluations on corefer-
ence resolution and paraphrase identifica-
tion that such embeddings perform better
than word form embeddings.

1 Motivation

One advantage of recent work in deep learning on
natural language processing (NLP) is that linguis-
tic units are represented by rich and informative
embeddings. These embeddings support better
performance on a variety of NLP tasks (Collobert
et al., 2011) than symbolic linguistic representa-
tions that do not directly represent information
about similarity and other linguistic properties.
Embeddings are mostly derived for word forms al-
though a number of recent papers have extended
this to other linguistic units like morphemes (Lu-
ong et al., 2013), phrases and word sequences
(Socher et al., 2010; Mikolov et al., 2013).1 Thus,
an important question is: what are the basic lin-
guistic units that should be represented by embed-
dings in a deep learning NLP system? Building
on the prior work in (Socher et al., 2010; Mikolov
et al., 2013), we generalize the notion of phrase to
include skip-bigrams (SkipBs) and lexicon entries,

1Socher et al. use the term “word sequence”. Mikolov et
al. use the term “phrase” for word sequences that are mostly
frequent continuous collocations.

where lexicon entries can be both “continuous”
and “noncontinuous” linguistic phrases. Exam-
ples of skip-bigrams at distance 2 in the sentence
“this tea helped me to relax” are: “this*helped”,
“tea*me”, “helped*to” . . . Examples of linguistic
phrases listed in a typical lexicon are continuous
phrases like “cold cuts” and “White House” that
only occur without intervening words and discon-
tinous phrases like “take over” and “turn off” that
can occur with intervening words. We consider
it promising to compute embeddings for these
phrases because many phrases, including the four
examples we just gave, are noncompositional or
weakly compositional, i.e., it is difficult to com-
pute the meaning of the phrase from the meaning
of its parts. We write gaps as “*” for SkipBs and
“ ” for phrases.

We can approach the question of what basic
linguistic units should have representations from
a practical as well as from a cognitive point of
view. In practical terms, we want representations
to be optimized for good generalization. There
are many situations where a particular task involv-
ing a word cannot be solved based on the word
itself, but it can be solved by analyzing the con-
text of the word. For example, if a coreference
resolution system needs to determine whether the
unknown word “Xiulan” (a Chinese first name)
in “he helped Xiulan to find a flat” refers to an
animate or an inanimate entity, then the SkipB
“helped*to” is a good indicator for the animacy of
the unknown word – whereas the unknown word
itself provides no clue.

From a cognitive point of view, it can be argued
that many basic units that the human cognitive sys-
tem uses have multiple words. Particularly con-
vincing examples for such units are phrasal verbs
in English, which often have a non-compositional
meaning. It is implausible to suppose that we
retrieve atomic representations for, say, “keep”,
“up”, “on” and “from” and then combine them to
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form the meanings of the expressions “keep your
head up,” “keep the pressure on,” “keep him from
laughing”. Rather, it is more plausible that we rec-
ognize “keep up”, “keep on” and “keep from” as
relevant basic linguistic units in these contexts and
that the human cognitive systems represents them
as units.

We can view SkipBs and discontinuous phrases
as extreme cases of treating two words that do not
occur next to each other as a unit. SkipBs are de-
fined purely statistically and we will consider any
pair of words as a potential SkipB in our exper-
iments below. In contrast, discontinuous phrases
are well motivated. It is clear that the words
“picked” and “up” in the sentences “I picked it
up” belong together and form a unit very similar to
the word “collected” in “I collected it”. The most
useful definition of discontinuous units probably
lies in between SkipBs and phrases: we definitely
want to include all phrases, but also some (but not
all) statistical SkipBs. The initial work presented
in this paper may help in finding a good “compro-
mise” definition.

This paper contributes to a preliminary inves-
tigation of generalized phrase embeddings and
shows that they are better suited than word em-
bedding for a coreference resolution classification
task and for paraphrase identification. Another
contribution lies in that the phrase embeddings we
release2 could be a valuable resource for others.

The remainder of this paper is organized as fol-
lows. Section 2 and Section 3 introduce how to
learn embeddings for SkipBs and phrases, respec-
tively. Experiments are provided in Section 4.
Subsequently, we analyze related work in Section
5, and conclude our work in Section 6.

2 Embedding learning for SkipBs

With English Gigaword Corpus (Parker et al.,
2009), we use the skip-gram model as imple-
mented in word2vec3 (Mikolov et al., 2013) to in-
duce embeddings. Word2vec skip-gram scheme is
a neural network language model, using a given
word to predict its context words within a window
size. To be able to use word2vec directly with-
out code changes, we represent the corpus as a
sequence of sentences, each consisting of two to-
kens: a SkipB and a word that occurs between the

2http://www.cis.lmu.de/pub/
phraseEmbedding.txt.bz2

3https://code.google.com/p/word2vec/

two enclosing words of the SkipB. The distance
k between the two enclosing words can be var-
ied. In our experiments, we use either distance
k = 2 or distance 2 ≤ k ≤ 3. For example, for
k = 2, the trigram wi−1 wi wi+1 generates the sin-
gle sentence “wi−1*wi+1 wi”; and for 2 ≤ k ≤ 3,
the fourgram wi−2 wi−1 wi wi+1 generates the
four sentences “wi−2*wi wi−1”, “wi−1*wi+1 wi”,
“wi−2*wi+1 wi−1” and “wi−2*wi+1 wi”.

In this setup, the middle context of SkipBs are
kept (i.e., the second token in the new sentences),
and the surrounding context of words of original
sentences are also kept (i.e., the SkipB in the new
sentences). We can run word2vec without any
changes on the reformatted corpus to learn embed-
dings for SkipBs. As a baseline, we run word2vec
on the original corpus to compute embeddings for
words. Embedding size is set to 200.

3 Embedding learning for phrases

3.1 Phrase collection
Phrases defined by a lexicon have not been deeply
investigated before in deep learning. To collect
canonical phrase set, we extract two-word phrases
defined in Wiktionary4, and two-word phrases de-
fined in Wordnet (Miller and Fellbaum, 1998) to
form a collection of size 95218. This collection
contains phrases whose parts always occur next to
each other (e.g., “cold cuts”) and phrases whose
parts more often occur separated from each other
(e.g., “take (something) apart”).

3.2 Identification of phrase continuity
Wiktionary and WordNet do not categorize
phrases as continuous or discontinous. So we need
a heuristic for determining this automatically.

For each phrase “A B”, we compute
[c1, c2, c3, c4, c5] where ci, 1 ≤ i ≤ 5, indi-
cates there are ci occurrences of A and B in that
order with a distance of i. We compute these
statistics for a corpus consisting of Gigaword
and Wikipedia. We set the maximal distance
to 5 because discontinuous phrases are rarely
separated by more than 5 tokens.

If c1 is 10 times higher than (c2+c3+c4+c5)/4,
we classify “A B” as continuous, otherwise as dis-
continuous. Taking phrase “pick off” as an ex-
ample, it gets vector [1121, 632, 337, 348, 4052],
c1 (1121) is smaller than the average 1342.25, so

4http://en.wiktionary.org/wiki/
Wiktionary:Main_Page
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“pick off” is set as “discontinuous”. Further con-
sider “Cornell University” which gets [14831, 16,
177, 331, 3471], satisfying above condition, hence
it is treated as a continuous phrase.

3.3 Sentence reformatting

Given the continuity information of phrases,
sentence “· · ·A · · ·B · · · ” is reformated into
“· · ·A B · · ·A B · · · ” if “A B” is a discontinu-
ous phrase and is separated by maximal 4 words,
and sentence “· · ·AB · · · ” into “· · ·A B · · · ” if
“A B” is a continuous phrase.

In the first case, we use phrase “A B” to replace
each of its component words for the purpose of
making the context of both constituents available
to the phrase in learning. For the second situation,
it is natural to combine the two words directly to
form an independent semantic unit.

Word2vec is run on the reformatted corpus to
learn embeddings for both words and phrases.
Embedding size is also set to 200.

3.4 Examples of phrase neighbors

Usually, compositional methods for learning rep-
resentations of multi-word text suffer from the dif-
ficulty in integrating word form representations,
like word embeddings. To our knowledge, there is
no released embeddings which can directly facil-
itate measuring the semantic affinity between lin-
guistic units of arbitrary lengths. Table 1 attempts
to provide some nearest neighbors for given typ-
ical phrases to show the promising perspective
of our work. Note that discontinuous phrases
like “turn off” have plausible single word nearest
neighbors like “unplug”.

4 Experiments

Our motivation for generalized phrases in Sec-
tion 1 was that they can be used to infer the at-
tributes of the context they enclose and that they
can capture non-compositional semantics. Our hy-
pothesis was that they are more suitable for this
than word embeddings. In this section we carry
out two experiments to test this hypothesis.

4.1 Animacy classification for markables

A markable in coreference resolution is a linguis-
tic expression that refers to an entity in the real
world or another linguistic expression. Examples
of markables include noun phrases (“the man”),

named entities (“Peter”) and nested nominal ex-
pressions (“their”). We address the task of ani-
macy classification of markables: classifying them
as animate/inanimate. This feature is useful for
coreference resolution systems because only ani-
mate markables can be referred to using masculine
and feminine pronouns in English like “him” and
“she”. Thus, this is an important clue for automat-
ically clustering the markables of a document into
correct coreference chains.

To create training and test sets, we extract all
39,689 coreference chains from the CoNLL2012
OntoNotes corpus.5 We label chains that con-
tain an animate pronoun markable (“she”, “her”,
“he”, “him” or “his”) and no inanimate pronoun
markable (“it” or “its”) as animate; and chains
that contain an inanimate pronoun markable and
no animate pronoun markable as inanimate. Other
chains are discarded.

We extract 39,942 markables and their contexts
from the 10,361 animate and inanimate chains.
The context of a markable is represented as a
SkipB: it is simply the pair of the two words occur-
ring to the left and right of the markable. The gold
label of a markable and its SkipB is the animacy
status of its chain: either animate or inanimate. We
divide all SkipBs having received an embedding in
the embedding learning phase into a training set of
11,301 (8097 animate, 3204 inanimate) and a bal-
anced test set of 4036.

We use LIBLINEAR (Fan et al., 2008) for clas-
sification, with penalty factors 3 and 1 for inan-
imate and animate classes, respectively, because
the training data are unbalanced.

4.1.1 Experimental results
We compare the following representations for an-
imacy classification of markables. (i) Phrase em-
bedding: Skip-bigram embeddings with skip dis-
tance k = 2 and 2 ≤ k ≤ 3; (ii) Word em-
bedding: concatenation of the embeddings of the
two enclosing words where the embeddings are
either standard word2vec embeddings (see Sec-
tion 2) or the embeddings published by (Collobert
et al., 2011);6 (iii) the one-hot vector representa-
tion of a SkipB: the concatentation of two one-hot
vectors of dimensionality V where V is the size
of the vocabulary. The first (resp. second) vector

5http://conll.cemantix.org/2012/data.
html

6http://metaoptimize.com/projects/
wordreprs/
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turn off caught up take over macular degeneration telephone interview
switch off mixed up take charge eye disease statement

unplug entangled replace diabetic retinopathy interview

turning off involved take control cataracts conference call

shut off enmeshed stay on periodontal disease teleconference

block out tangled retire epilepsy telephone call

turned off mired succeed glaucoma told

fiddle with engaged step down skin cancer said

Table 1: Phrases and their nearest neighbors

is the one-hot vector for the left (resp. right) word
of the SkipB. Experimental results are shown in
Table 2.

representation accuracy

phrase embedding
k = 2 0.703
2 ≤ k ≤ 3 0.700

word embedding
word2vec 0.668*†

Collobert et al. 0.662*†

one-hot vectors 0.638*†

Table 2: Classification accuracy. Mark “*” means
significantly lower than “phrase embedding”, k =
2; “†” means significantly lower than “phrase em-
bedding”, 2 ≤ k ≤ 3. As significance test, we use
the test of equal proportion, p < .05, throughout.

The results show that phrase embeddings have
an obvious advantage in this classification task,
both for k = 2 and 2 ≤ k ≤ 3. This validates
our hypothesis that learning embeddings for dis-
continuous linguistic units is promising.

In our error analysis, we found two types of
frequent errors. (i) Unspecific SkipBs. Many
SkipBs are equally appropriate for animate and
inanimate markables. Examples of such SkipBs
include “take*in” and “then*goes”. (ii) Untypical
use of specific SkipBs. Even SkipBs that are spe-
cific with respect to what type of markable they
enclose sometimes occur with the “wrong” type
of markable. For example, most markables oc-
curring in the SkipB “of*whose” are animate be-
cause “whose” usually refers to an animate mark-
able. However, in the context “. . . the southeast-
ern area of Fujian whose economy is the most ac-
tive” the enclosed markable is Fujian, a province
of China. This example shows that “whose” occa-
sionally refers to an inanimate entity even though

these cases are infrequent.

4.1.2 Nearest neighbors of SkipBs
Table 3 shows some SkipBs and their nearest
neighbors in descending order, where similarity is
computed with cosine measure.

A general phenomenon is that phrase embed-
dings capture high degree of consistency in infer-
ring the attributes of enclosed words. Considering
the neighbor list in the first column, we can esti-
mate that a verb probably appears as the middle
token. Furthermore, noun, pronoun, adjective and
adverb can roughly be inferred for the remaining
columns, respectively.7

4.2 Paraphrase identification task

Paraphrase identification depends on semantic
analysis. Standard approaches are unlikely to as-
sign a high similarity score to the two sentences
“he started the machine” and “he turned the ma-
chine on”. In our approach, embedding of the
phrase “turned on” can greatly help us to infer cor-
rectly that the sentences are paraphrases. Hence,
phrase embeddings and in particular embeddings
of discontinuous phrases seem promising in para-
phrase detection task.

We use the Microsoft Paraphrase Corpus (Dolan
et al., 2004) for evaluation. It consists of a training
set with 2753 true paraphrase pairs and 1323 false
paraphrase pairs, along with a test set with 1147
true and 578 false pairs. After discarding pairs
in which neither sentence contains phrases, 3027
training pairs (2123 true vs. 904 false) and 1273
test pairs (871 true vs. 402 false) remain.

7A reviewer points out that this is only a suggestive anal-
ysis and that corpus statistics about these contexts would be
required to establish that phrase embeddings can predict part-
of-speech with high accuracy.
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who*afghanistan, some*told women*have with*responsibility he*worried
had*afghanistan other*told men*have of*responsibility she*worried

he*afghanistan two*told children*have and*responsibility was*worried

who*iraq –*told girls*have “*responsibility is*worried

have*afghanistan but*told parents*have that*responsibility said*worried

fighters*afghanistan one*told students*have ’s*responsibility that*worried

who*kosovo because*told young*have the* responsibility they*worried

was*afghanistan and*told people*have for*responsibility ’s*worried

Table 3: SkipBs and their nearest neighbors

We tackle the paraphrase identification task via
supervised binary classification. Sentence repre-
sentation equals to the addition over all the to-
ken embeddings (words as well as phrases). A
slight difference is that when dealing with a sen-
tence like “· · ·A B · · ·A B · · · ” we only consider
“A B” embedding once. The system “word em-
bedding” is based on the embeddings of single
words only. Subsequently, pair representation is
derived by concatenating the two sentence vectors.
This concatentation is then classified by LIBLIN-
EAR as “paraphrase” or “no paraphrase”.

4.2.1 Experimental results and analysis
Table 4 shows the performance of two methods.
Phrase embeddings are apparently better. Most
work on paraphrase detection has devised intri-
cate features and achieves performance numbers
higher than what we report here (Ji and Eisenstein,
2013; Madnani et al., 2012; Blacoe and Lapata,
2012). Our objective is only to demonstrate the
superiority of considering phrase embedding over
merely word embedding in this standard task.

We are interested in how phrase embeddings
make an impact on this task. To that end, we per-
form an analysis on test examples where word em-
beddings are better than phrase embeddings and
vice versa.

Table 5 shows four pairs, of which “phrase em-
bedding” outperforms “word embedding” in the

Methods Accuracy F1
baseline 0.684 0.803

word embedding 0.695 0.805
phrase embedding 0.713 0.812

Table 4: Paraphrase task results.

first two examples, “word embedding” defeats
“phrase embedding” in the last two examples. In
the first pair, successful phrase detection enables
to split sentences into better units, thus the gener-
ated representation can convey the sentence mean-
ing more exactly.

The meaning difference in the second pair orig-
inates from the synonym substitution between
“take over as chief financial officer” and “fill
the position”. The embedding of the phrase
“take over” matches the embedding of the single
word “fill” in this context.

“Phrase embedding” in the third pair suffers
from wrong phrase detection. Actually, “in” and
“on” can not be treated as a sound phrase in that
situation even though “in on” is defined by Wik-
tionary. Indeed, this failure, to some extent, re-
sults from the shortcomings of our method in dis-
covering true phrases. Furthermore, figuring out
whether two words are a phrase might need to
analyse syntactic structure in depth. This work is
directly based on naive intuitive knowledge, acting
as an initial exploration. Profound investigation is
left as future work.

Our implementation discovers the contained
phrases in the fourth pair perfectly. Yet, “word em-
bedding” defeats “phrase embedding” still. The
pair is not a paraphrase partly because the numbers
are different; e.g., there is a big difference between
“5.8 basis points” and “50 basis points”. Only a
method that can correctly treat numerical informa-
tion can succeed here. However, the appearance of
phrases “central bank”, “interest rates” and “ba-
sis points” makes the non-numerical parts more
expressive and informative, leading to less dom-
inant for digital quantifications. On the contrary,
though “word embedding” fails to split the sen-
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G W P sentence 1 sentence 2
1 0 1 Common side effects include

nasal congestion, runny nose, sore throat
and cough, the FDA said .

The most common side effects after get-
ting the nasal spray were nasal congestion,
runny nose, sore throat and cough .

1 0 1 Douglas Robinson, a senior vice president
of finance, will take over as chief financial
officer on an interim basis .

Douglas Robinson, CA senior
vice president, finance, will fill the
position in the interim .

1 1 0 They were being held Sunday in the Camden
County Jail on $ 100,000 bail each .

The Jacksons remained in on Camden
County jail $ 100,000 bail .

0 0 1 The interest rate sensitive two year Schatz
yield was down 5.8 basis points at 1.99 per-
cent .

The Swedish central bank cut inter-
est rates by 50 basis points to 3.0 percent
.

Table 5: Four typical sentence pairs in which the predictions of word embedding system and phrase
embedding system differ. G = gold annotation, W = prediction of word embedding system, P = prediction
of phrase embedding system. The formatting used by the system is shown. The original word order of
sentence 2 of the third pair is “· · · in Camden County jail on $ 100,000 bail”.

tences into better units, it weakens unexpectedly
the expressiveness of subordinate context. This
example demonstrates the difficulty of paraphrase
identification. Differing from simple similarity
tasks, two sentences are often not paraphrases
even though they may contain very similar words.

5 Related work

To date, approaches to extend embedding (or
more generally “representation”) beyond individ-
ual words are either compositional or holistic
(Turney, 2012).

The best known work along the first line is by
(Socher et al., 2010; Socher et al., 2011; Socher
et al., 2012; Blacoe and Lapata, 2012), in which
distributed representations of phrases or even sen-
tences are calculated from the distributed repre-
sentations of their parts. This approach is only
plausible for units that are compositional, i.e.,
whose properties are systematically predictable
from their parts. As well, how to develop a ro-
bust composition function still faces big hurdles;
cf. Table 5.1 in (Mitchell and Lapata, 2010). Our
approach (as well as similar work on continuous
phrases) makes more sense for noncompositional
units.

Phrase representations can also be derived by
methods other than deep learning of embed-
dings, e.g., as vector space representations (Tur-
ney, 2012; Turney, 2013; Dinu et al., 2013). The
main point of this paper – generalizing phrases to
discontinuous phrases and computing representa-

tions for them – is orthogonal to this issue. It
would be interesting to evaluate other types of rep-
resentations for generalized phrases.

6 Conclusion and Future Work

We have argued that generalized phrases are part
of the inventory of linguistic units that we should
compute embeddings for and we have shown that
such embeddings are superior to word form em-
beddings in a coreference resolution task and stan-
dard paraphrase identification task.

In this paper we have presented initial work on
several problems that we plan to continue in the
future: (i) How should the inventory of continu-
ous and discontinous phrases be determined? We
used a purely statistical definition on the one hand
and dictionaries on the other. A combination of
the two methods would be desirable. (ii) How can
we distinguish between phrases that only occur in
continuous form and phrases that must or can oc-
cur discontinuously? (iii) Given a sentence that
contains the parts of a discontinuous phrase in cor-
rect order, how do we determine that the cooccur-
rence of the two parts constitutes an instance of
the discontinuous phrase? (iv) Which tasks benefit
most significantly from the introduction of gener-
alized phrases?
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