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Abstract

Many NLP applications rely on type sys-
tems to represent higher-level classes.
Domain-specific ones are more informa-
tive, but have to be manually tailored to
each task and domain, making them in-
flexible and expensive. We investigate a
largely unsupervised approach to learning
interpretable, domain-specific entity types
from unlabeled text. It assumes that any
common noun in a domain can function as
potential entity type, and uses those nouns
as hidden variables in a HMM. To con-
strain training, it extracts co-occurrence
dictionaries of entities and common nouns
from the data. We evaluate the learned
types by measuring their prediction ac-
curacy for verb arguments in several do-
mains. The results suggest that it is pos-
sible to learn domain-specific entity types
from unlabeled data. We show significant
improvements over an informed baseline,
reducing the error rate by 56%.

1 Introduction

Many NLP applications, such as question answer-
ing (QA) or information extraction (IE), use type
systems to represent relevant semantic classes.
Types allow us to find similarities at a higher level
to group lexically different entities together. This
helps to filter out candidates that violate certain
constraints (e.g., in QA, if the intended answer
type is PERSON, we can ignore all candidate an-
swers with a different type), but is also used for
feature generation and fact-checking.

A central question is: where do the types
come from? Typically, they come from a hand-
constructed set. This has some disadvantages.
Domain-general types, such as named entities or
WordNet supersenses (Fellbaum, 1998), often fail

to capture critical domain-specific information (in
the medical domain, we might want ANTIBI-
OTIC, SEDATIVE, etc., rather than just ARTI-
FACT). Domain-specific types perform much bet-
ter (Ferrucci et al., 2010), but must be manually
adapted to each new domain, which is expensive.
Alternatively, unsupervised approaches (Ritter et
al., 2010) can be used to learn clusters of similar
words, but the resulting types (=cluster numbers)
are not human-interpretable, which makes analy-
sis difficult. Furthermore, it requires us to define
the number of clusters beforehand.

Ideally, we would like to learn domain-specific
types directly from data. To this end, pattern-
based approaches have long been used to induce
type systems (Hearst, 1992; Kozareva et al., 2008).
Recently, Hovy et al. (2011) proposed an ap-
proach that uses co-occurrence patterns to find en-
tity type candidates, and then learns their appli-
cability to relation arguments by using them as la-
tent variables in a first-order HMM. However, they
only evaluate their method using human sensibil-
ity judgements for one domain. While this shows
that the types are coherent, it does not tell us much
about their applicability.

We extend their approach with three important
changes:

1. we evaluate the types by measuring accuracy
when using them in an extrinsic task,

2. we evaluate on more than one domain, and

3. we explore a variety of different models.

We measure prediction accuracy when us-
ing the learned types in a selectional restriction
task for frequent verbs. E.g., given the rela-
tion throw(X, pass) in the football domain, we
compare the model prediction to the gold data
X=QUARTERBACK. The results indicate that the
learned types can be used to in relation extraction
tasks.
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Our contributions in this paper are:

• we empirically evaluate an approach to learn-
ing types from unlabeled data

• we investigate several domains and models

• the learned entity types can be used to predict
selectional restrictions with high accuracy

2 Related Work

In relation extraction, we have to identify the re-
lation elements, and then map the arguments to
types. We follow an open IE approach (Banko and
Etzioni, 2008) and use dependencies to identify
the elements. In contrast to most previous work
(Pardo et al., 2006; Yao et al., 2011; Yao et al.,
2012), we have no pre-defined set of types, but
try to learn it along with the relations. Some ap-
proaches use types from general data bases such
as Wikipedia, Freebase, etc. (Yan et al., 2009;
Eichler et al., 2008; Syed and Viegas, 2010), side-
stepping the question how to construct those DBs
in the first place. We are less concerned with ex-
traction performance, but focus on the accuracy of
the learned type system by measuring how well it
performs in a prediction task.

Talukdar et al. (2008) and Talukdar and Pereira
(2010) present graph-based approaches to the sim-
ilar problem of class-instance learning. While
this provides a way to discover types, it requires
a large graph that does not easily generalize to
new instances (transductive), since it produces no
predictive model. The models we use are trans-
ductive and can be applied to unseen data. Our
approach follows Hovy et al. (2011). However,
they only evaluate one model on football by col-
lecting sensibility ratings from Mechanical Turk.
Our method provides extrinsic measures of perfor-
mance on several domains.

3 Model

Our goal is to find semantic type candidates in the
data, and apply them in relation extraction to see
which ones are best suited. We restrict ourselves
to verbal relations. We build on the approach by
Hovy et al. (2011), which we describe briefly be-
low. It consists of two parts: extracting the type
candidates and fitting the model.

The basic idea is that semantic types are usu-
ally common nouns, often frequent ones from the

y3y1 y2

x3x1

Montana throw ball

y3y1 y2

x3x2

throw Montana ball

quarterback
player throw ball

throw
quarterback
player ball

a)

b)Figure 1: Example of input sentence x and out-
put types for the HMM. Note that the verb type is
treated as observed variable.

domain at hand. Thus all common nouns are pos-
sible types, and can be used as latent variables in
an HMM. By estimating emission and transition
parameters with EM, we can learn the subset of
nouns to apply.

However, assuming the set of all common
nouns as types is intractable, and would not al-
low for efficient learning. To restrict the search
space and improve learning, we first have to learn
which types modify entities and record their co-
occurrence, and use this as dictionary.

Kleiman: professor:25, expert:13, (specialist:1)

Tilton: executive:37, economist:17, (chairman:4, presi-

dent:2)

Figure 2: Examples of dictionary entries with
counts. Types in brackets are not considered.

Dictionary Construction The number of com-
mon nouns in a domain is generally too high to
consider all of them for every entity. A com-
mon way to restrict the number of types is to pro-
vide a dictionary that lists all legal types for each
entity (Merialdo, 1994; Ravi and Knight, 2009;
Täckström et al., 2013). To construct this dictio-
nary, we collect for each entity (i.e., a sequence
of words labeled with NNP or NNPS tags) in our
data all common nouns (NN, NNS) that modify it.
These are

1. nominal modifiers (“judge Scalosi ...”),

2. appositions (“Tilton, a professor at ...”), and

3. copula constructions (“Finton, who is the in-
vestor ...”).

These modifications can be collected from the de-
pendency parse trees. For each entity, we store the
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type candidates and their associated counts. See
Figure 2 for examples. We only consider types
observed more than 10 times. Any entity with-
out type information, as well as dictionary entities
with only singleton types are treated as unknown
tokens (“UNK”). We map UNK to the 50 most
common types in the dictionary. Verbs are con-
sidered to each have their own type, i.e., token and
label for verbs are the same.
We do not modify this step.

Original Model Hovy et al. (2011) construct
a HMM using subject-verb-object (SVO) parse
triples as observations, and the type candidates as
hidden variables. Similar models have been used
in (Abney and Light, 1999; Pardo et al., 2006).
We estimate the free model parameters with EM
(Dempster et al., 1977), run for a fixed number of
iterations (30) or until convergence.

Note that Forward-backward EM has time com-
plexity of O(N2T ), where N is the number of
states, and T the number of time steps. T = 3 in
the model formulations used here, but N is much
larger than typically found in NLP tasks (see also
Table 3). The only way to make this tractable is
to restrict the free parameters the model needs to
estimate to the transitions.

The model is initialized by jointly normalizing
1 the dictionary counts to obtain the emission pa-
rameters, which are then fixed (except for the un-
known entities (P (word = UNK|type = ·)). Tran-
sition parameters are initialized uniformly (re-
stricted to potentially observable type sequences),
and kept as free parameters for the model to opti-
mize.

Common nouns can be both hidden variables
and observations in the model, so they act like an-
notated items: their legal types are restricted to the
identity. All entities are thus constrained by the
dictionary, as in (Merialdo, 1994). To further con-
strain the model, only the top three types of each
entity are considered. Since the type distribution
typically follows a Zipf curve, this still captures
most of the information.

1This preserves the observed entity-specific distributions.
Under conditional normalization, the type candidates from
frequent entities tend to dominate those of infrequent entities.
I.e., the model favors an unlikely candidate for entity a if it is
frequent for entity b.

The model can be fully specified as

P (x,y) = P (y1)·P (x1|y1)
3∏

i=2

P (yi|yi−1)·P (xi|yi)

(1)
where x is an input triple of a verb and its argu-
ments, and y a sequence of types.

4 Extending the Model

The model used by Hovy et al. (2011) was a sim-
ple first order HMM, with the elements in SVO or-
der (see Figure 3a). We observe two points: we al-
ways deal with the same number of elements, and
we have observed variables. We can thus move
from a sequential model to a general graphical
model by adding transitions and re-arranging the
structure.

Since we do not model verbs (they each have
their identity as type), they act like observed vari-
ables. We can thus move them in first position and
condition the subject on it (3b).

y3y1 y2

OVS

y2y1

O

V

S

V

y2y1

OS

V

y2y1

OS

a) b)

c) d)

Figure 3: Original SVO. model (a), modified VSO
order (b), extension to general models (c and d)

By adding additional transitions, we can con-
strain the latent variables further. This is similar
to moving from a first to a second order HMM. In
contrast to the original model, we also distinguish
between unknown entities in the first and second
argument position.

The goal of these modifications is to restrict the
number of potential values for the argument po-
sitions. This allows us to use the models to type
individual instances. In contrast, the objective in
Hovy et al. (2011) was to collect frequent relation
templates from a domain to populate a knowledge
base.

The modifications presented here extend to
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Football Finances Law
system arg1 arg2 avg ∆BL arg1 arg2 avg ∆BL arg1 arg2 avg ∆BL

baseline 0.28 0.26 0.27 — 0.39 0.42 0.41 — 0.37 0.32 0.35 —
orig. 0.05 0.23 0.14 –0.13 0.08 0.39 0.23 –0.18 0.06 0.31 0.18 –0.17
VSO, seq. 0.37 0.28 0.32 +0.05 0.38 0.45 0.41 0.0 0.45 0.37 0.41 +0.06
SVO, net 0.63 0.60 0.62 +0.35 0.55 0.63 0.59 +0.18 0.69 0.68 0.68 +0.33
VSO, net 0.66 0.58 0.62 +0.35 0.61 0.54 0.57 +0.16 0.71 0.62 0.66 +0.31

Table 1: Accuracy for most frequent sense baseline and different models on three domains. Italic num-
bers denote significant improvement over baseline (two-tailed t-test at p < 0.01). ∆BL = difference to
baseline.

Football Finances Law
system arg1 arg2 avg arg1 arg2 avg arg1 arg2 avg
orig. 0.17 0.38 0.27 0.18 0.52 0.35 0.17 0.48 0.32
VSO, seq. 0.56 0.42 0.49 0.55 0.58 0.57 0.61 0.51 0.56
SVO, net 0.75 0.69 0.72 0.68 0.73 0.71 0.78 0.77 0.78
VSO, net 0.78 0.67 0.72 0.74 0.66 0.70 0.81 0.72 0.76

Table 2: Mean reciprocal rank for models on three domains.

verbs with more than two arguments, but in the
present paper, we focus on binary relations.

5 Experiments

Since the labels are induced dynamically from the
data, traditional precision/recall measures, which
require a known ground truth, are difficult to ob-
tain. Hovy et al. (2011) measured sensibility by
obtaining human ratings and measuring weighted
accuracies over all relations. While this gives an
intuition of the general methodology, it is harder
to put in context. Here, we want to evaluate the
model’s performance in a downstream task. We
measure its ability to predict the correct types for
verbal arguments. We evaluate on three different
domains.

As test case, we use a cloze test, or fill-in-the-
blank. We select instances that contain a type-
candidate word in subject or object position and
replace that word with the unknown token. We can
then compare the model’s prediction to the origi-
nal word to measure accuracy.

5.1 Data

Like Yao et al. (2012) and Hovy et al. (2011), we
derive our data from the New York Times (NYT)
corpus (Sandhaus, 2008). It contains several years
worth of articles, manually annotated with meta-
data such as author, content, etc. Similar to Yao
et al. (2012), we use articles whose content meta-

data field contains certain labels to distinguish data
from different domains. We use the labels Foot-
ball2, Law and Legislation, and Finances.

We remove meta-data and lists, tokenize, parse,
and lemmatize all articles. We then automatically
extract subject-verb-object (SVO) triples from the
parses, provided the verb is a full verb. Similarly
to (Pardo et al., 2006), we focus on the top 100
full verbs for efficiency reasons, though nothing
in our approach prevents us from extending it to
all verbs. For each domain, we select all instances
which have a potential type (common noun) in at
least one argument position. These serve as cor-
pus.

Football Finances Law
unique types 7,139 18,186 10,618
unique entities 38,282 27,528 12,782

Table 3: Statistics for the three domains.

As test data, we randomly select a subset of
1000 instances for each argument, provided they
contain one of the 50 most frequent types in sub-
ject or object position, such as player in “player
throw pass”. This serves as gold data. We then
replace those types by UNK (i.e., we get “UNK
throw pass”) and use this as test set for our model.3

Table 3 shows that the domains vary with re-
2The data likely differs from Hovy et al. (2011).
3We omit cases with two unknown arguments, since this
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spect to the ratio of unique types to unique enti-
ties. Football uses many different entities (e.g.,
team and player names), but has few types (e.g.,
player positions), while the other domains use
more types, but fewer entities (e.g., company
names, law firms, etc.).

5.2 Evaluation

We run Viterbi decoding on each test set with our
trained model to predict the most likely type for
the unknown entities. We then compare these pre-
dictions to the type in the respective gold data and
compute the accuracy for each argument position.
As baseline, we predict the argument types most
frequently observed for the particular verb in train-
ing, e.g., predict PLAYER as subject of tackle in
football. We evaluate the influence of the different
model structures on performance.

6 Results

Table 1 shows the accuracy of the different mod-
els in the prediction task for the three different do-
mains. The low results of the informed baseline
indicate the task complexity.

We note that the original model, a bigram HMM
with SVO order (Figure 3a), fails to improve accu-
racy over the baseline (although its overall results
were judged sensible). Changing the input order
to VSO (Figure 3b) improves accuracy for both
arguments over SVO order and the baseline, albeit
not significantly. The first argument gains more,
since conditioning the subject type on the (unam-
biguous) verb is more constrained than starting out
with the subject. Conditioning the object directly
upon the subject creates sparser bigrams, which
capture “who does what to whom”.

Moving from the HMMs to a general graphi-
cal model structure (Figures 3c and d) creates a
sparser distribution and significantly improves ac-
curacy across the board. Again, the position of the
verb makes a difference: in SVO order, accuracy
for the second argument is better, while in VSO
order, accuracy for the subject increases. This in-
dicates that direct conditioning on the verb is the
strongest predictor. Intuitively, knowing the verb
restricts the possible arguments much more than
knowing the arguments restrict the possible verbs
(the types of entities who can throw something are

becomes almost impossible to predict without further context,
even for humans (compare “UNK make UNK”).

limited, but knowing that the subject is a quarter-
back still allows all kinds of actions).

We also compute the mean reciprocal rank
(MRR) for each condition (see Table 2). MRR de-
notes the inverse rank in the model’s k-best output
at which the correct answer occurs, i.e., 1

k . The
result gives us an intuition of “how far off” the
model predictions are. Across domains, the cor-
rect answer is found on average among the top
two (rank 1.36). Note that since MRR require k-
best outputs, we cannot compute a measure for the
baseline.

7 Conclusion

We evaluated an approach to learning domain-
specific interpretable entity types from unlabeled
data. Type candidates are collected from patterns
and modeled as hidden variables in graphical mod-
els. Rather than using human sensibility judge-
ments, we evaluate prediction accuracy for selec-
tional restrictions when using the learned types in
three domains. The best model improves 35 per-
centage points over an informed baseline. On av-
erage, we reduce the error rate by 56%. We con-
clude that it is possible to learn interpretable type
systems directly from data.
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