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Abstract

We present a probabilistic model that si-
multaneously learns alignments and dis-
tributed representations for bilingual data.
By marginalizing over word alignments
the model captures a larger semantic con-
text than prior work relying on hard align-
ments. The advantage of this approach is
demonstrated in a cross-lingual classifica-
tion task, where we outperform the prior
published state of the art.

1 Introduction

Distributed representations have become an in-
creasingly important tool in machine learning.
Such representations—typically continuous vec-
tors learned in an unsupervised setting—can fre-
quently be used in place of hand-crafted, and thus
expensive, features. By providing a richer rep-
resentation than what can be encoded in discrete
settings, distributed representations have been suc-
cessfully used in many areas. This includes Al and
reinforcement learning (Mnih et al., 2013), image
retrieval (Kiros et al., 2013), language modelling
(Bengio et al., 2003), sentiment analysis (Socher
etal., 2011; Hermann and Blunsom, 2013), frame-
semantic parsing (Hermann et al., 2014), and doc-
ument classification (Klementiev et al., 2012).

In Natural Language Processing (NLP), the use
of distributed representations is motivated by the
idea that they could capture semantics and/or syn-
tax, as well as encoding a continuous notion of
similarity, thereby enabling information sharing
between similar words and other units. The suc-
cess of distributed approaches to a number of
tasks, such as listed above, supports this notion
and its implied benefits (see also Turian et al.
(2010) and Collobert and Weston (2008)).

While most work employing distributed repre-
sentations has focused on monolingual tasks, mul-
tilingual representations would also be useful for
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several NLP-related tasks. Such problems include
document classification, machine translation, and
cross-lingual information retrieval, where multi-
lingual data is frequently the norm. Furthermore,
learning multilingual representations can also be
useful for cross-lingual information transfer, that
is exploiting resource-fortunate languages to gen-
erate supervised data in resource-poor ones.

We propose a probabilistic model that simulta-
neously learns word alignments and bilingual dis-
tributed word representations. As opposed to pre-
vious work in this field, which has relied on hard
alignments or bilingual lexica (Klementiev et al.,
2012; Mikolov et al., 2013), we marginalize out
the alignments, thus capturing more bilingual se-
mantic context. Further, this results in our dis-
tributed word alignment (DWA) model being the
first probabilistic account of bilingual word repre-
sentations. This is desirable as it allows better rea-
soning about the derived representations and fur-
thermore, makes the model suitable for inclusion
in higher-level tasks such as machine translation.

The contributions of this paper are as follows.
We present a new probabilistic similarity measure
which is based on an alignment model and prior
language modeling work which learns and relates
word representations across languages. Subse-
quently, we apply these embeddings to a standard
document classification task and show that they
outperform the current published state of the art
(Hermann and Blunsom, 2014b). As a by-product
we develop a distributed version of FASTALIGN
(Dyer et al., 2013), which performs on par with
the original model, thereby demonstrating the ef-
ficacy of the learned bilingual representations.

2 Background

The IBM alignment models, introduced by Brown
et al. (1993), form the basis of most statistical ma-
chine translation systems. In this paper we base
our alignment model on FASTALIGN (FA), a vari-
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ation of IBM model 2 introduced by Dyer et al.
(2013). This model is both fast and produces
alignments on par with the state of the art. Further,
to induce the distributed representations we incor-
porate ideas from the log-bilinear language model
presented by Mnih and Hinton (2007).

2.1 IBM Model 2

Given a parallel corpus with aligned sentences, an
alignment model can be used to discover matching
words and phrases across languages. Such mod-
els are an integral part of most machine translation
pipelines. An alignment model learns p(f, ale) (or
p(e, a’|f)) for the source and target sentences e
and f (sequences of words). a represents the word
alignment across these two sentences from source
to target. IBM model 2 (Brown et al., 1993) learns
alignment and translation probabilities in a gener-
ative style as follows:

J
p(f,ale) = p(J|I) H (as15,1,7) p(fjlea;)

where p(J|I) captures the two sentence lengths;
p(ajlj, I, J) the alignment and p(fjleq,) the
translation probability. Sentence likelihood is
given by marginalizing out the alignments, which
results in the following equation:

p(fle) = p(J|I) H p(ilg, I, J) p(fjlei) -

We use FASTALIGN (FA) (Dyer et al., 2013), a
log-linear reparametrization of IBM model 2. This
model uses an alignment distribution defined by
a single parameter that measures how close the
alignment is to the diagonal. This replaces the
original multinomial alignment distribution which
often suffered from sparse counts. This improved
model was shown to run an order of magnitude
faster than IBM model 4 and yet still outperformed
it in terms of the BLEU score and, on Chinese-
English data, in alignment error rate (AER).

2.2 Log-Bilinear Language Model

Language models assign a probability measure
to sequences of words. We use the log-bilinear
language model proposed by Mnih and Hinton
(2007). It is an n-gram based model defined in
terms of an energy function E(w,;wi.,—1). The
probability for predicting the next word w,, given
its preceding context of n — 1 words is expressed
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using the energy function

n—1

E(wm wl:n—l) == (Z Tgi C’L) ,rwn_b;{'rwn_blU’n
=1

%C €Xp (*E(wn; wl:n71)>
exp (—E(wy; wi.p—1)) is the

as p(wn|w1:n71)
where Z. = )
normalizer, 7, € R are word representations,
C; € R4 are context transformation matrices,
and b, € R%, b, € R are representation and word
biases respectively. Here, the sum of the trans-
formed context-word vectors endeavors to be close
to the word we want to predict, since the likelihood
in the model is maximized when the energy of the
observed data is minimized.

This model can be considered a variant of a
log-linear language model in which, instead of
defining binary n-gram features, the model learns
the features of the input and output words, and
a transformation between them. This provides a
vastly more compact parameterization of a lan-
guage model as n-gram features are not stored.

Wn

2.3 Multilingual Representation Learning

There is some recent prior work on multilin-
gual distributed representation learning. Simi-
lar to the model presented here, Klementiev et
al. (2012) and Zou et al. (2013) learn bilingual
embeddings using word alignments. These two
models are non-probabilistic and conditioned on
the output of a separate alignment model, un-
like our model, which defines a probability dis-
tribution over translations and marginalizes over
all alignments. These models are also highly re-
lated to prior work on bilingual lexicon induc-
tion (Haghighi et al., 2008). Other recent ap-
proaches include Sarath Chandar et al. (2013),
Lauly et al. (2013) and Hermann and Blunsom
(2014a, 2014b). These models avoid word align-
ment by transferring information across languages
using a composed sentence-level representation.
While all of these approaches are related to the
model proposed in this paper, it is important to
note that our approach is novel by providing a
probabilistic account of these word embeddings.
Further, we learn word alignments and simultane-
ously use these alignments to guide the represen-
tation learning, which could be advantageous par-
ticularly for rare tokens, where a sentence based
approach might fail to transfer information.
Related work also includes Mikolov et al.
(2013), who learn a transformation matrix to



reconcile monolingual embedding spaces, in an
lo norm sense, using dictionary entries instead of
alignments, as well as Schwenk et al. (2007) and
Schwenk (2012), who also use distributed repre-
sentations for estimating translation probabilities.
Faruqui and Dyer (2014) use a technique based on
CCA and alignments to project monolingual word
representations to a common vector space.

3 Model

Here we describe our distributed word alignment
(DWA) model. The DWA model can be viewed
as a distributed extension of the FA model in that
it uses a similarity measure over distributed word
representations instead of the standard multino-
mial translation probability employed by FA. We
do this using a modified version of the log-bilinear
language model in place of the translation proba-
bilities p( f;|e;) at the heart of the FA model. This
allows us to learn word representations for both
languages, a translation matrix relating these vec-
tor spaces, as well as alignments at the same time.
Our modifications to the log-bilinear model are
as follows. Where the original log-bilinear lan-
guage model uses context words to predict the next
word—this is simply the distributed extension of
an n-gram language model—we use a word from
the source language in a parallel sentence to pre-
dict a target word. An additional aspect of our
model, which demonstrates its flexibility, is that it
is simple to include further context from the source
sentence, such as words around the aligned word
or syntactic and semantic annotations. In this pa-
per we experiment with a transformed sum over
k context words to each side of the aligned source
word. We evaluate different context sizes and re-
port the results in Section 5. We define the energy
function for the translation probabilities to be

k
E(f €)= — <Z T£+ST5> rp=brry=by (1)

s=—k

where 7,7 € R? are vector representations for
source and target words e¢;1s € Vg, f € Vg in
their respective vocabularies, Ty € R?*¢ is the
transformation matrix for each surrounding con-
text position, b, € R< are the representation bi-
ases, and by € R is a bias for each word f € V.

The translation probability is given by
p(flei) = Z%iexp (—E(f,ei)), where
Ze, = Y pexp (—E(f, €;)) is the normalizer.

In addition to these translation probabilities, we
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have parameterized the translation probabilities
for the null word using a softmax over an addi-
tional weight vector.

3.1 Class Factorization

We improve training performance using a class
factorization strategy (Morin and Bengio, 2005)
as follows. We augment the translation probabil-
ity to be p(fle) = p(crle)p(flcr,e) where ¢y
is a unique predetermined class of f; the class
probability is modeled using a similar log-bilinear
model as above, but instead of predicting a word
representation 7y we predict the class representa-
tion 7. ; (which is learned with the model) and we
add respective new context matrices and biases.
Note that the probability of the word f depends
on both the class and the given context words: it is
normalized only over words in the class cy.

In our training we create classes based on word
frequencies in the corpus as follows. Considering
words in the order of their decreasing frequency,
we add word types into a class until the total fre-
quency of the word types in the currently consid-
ered class is less than @Lokens 554 the class size is

VIVE|
less than +/|Vr|. We have found that the maximal

class size affects the speed the most.

4 Learning

The original FA model optimizes the likelihood
using the expectation maximization (EM) algo-
rithm where, in the M-step, the parameter update
is analytically solvable, except for the A parameter
(the diagonal tension), which is optimized using
gradient descent (Dyer et al., 2013). We modified
the implementations provided with CDEC (Dyer et
al., 2010), retaining its default parameters.

In our model, DWA, we optimize the likelihood
using the EM as well. However, while training we
fix the counts of the E-step to those computed by
FA, trained for the default 5 iterations, to aid the
convergence rate, and optimize the M-step only.
Let 0 be the parameters for our model. Then the
gradient for each sentence is given by

—~

0
%logp fle) =

! p(|k, 1, J) p( frler)

S plilk, I, J) p(fxle:)
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where the first part are the counts from the FA
model and second part comes from our model.
We compute the gradient for the alignment
probabilities in the same way as in the FA model,
and the gradient for the translation probabilities
using back-propagation (Rumelhart et al., 1986).
For parameter update, we use ADAGRAD as the
gradient descent algorithm (Duchi et al., 2011).

5 Experiments

We first evaluate the alignment error rate of our
approach, which establishes the model’s ability to
both learn alignments as well as word representa-
tions that explain these alignments. Next, we use
a cross-lingual document classification task to ver-
ify that the representations are semantically useful.
We also inspect the embedding space qualitatively
to get some insight into the learned structure.

5.1 Alignment Evaluation

We compare the alignments learned here with
those of the FASTALIGN model which produces
very good alignments and translation BLEU
scores. We use the same language pairs and
datasets as in Dyer et al. (2013), that is the FBIS
Chinese-English corpus, and the French-English
section of the Europarl corpus (Koehn, 2005). We
used the preprocessing tools from CDEC and fur-
ther replaced all unique tokens with UNK. We
trained our models with 100 dimensional repre-
sentations for up to 40 iterations, and the FA
model for 5 iterations as is the default.

Table 1 shows that our model learns alignments
on part with those of the FA model. This is in line
with expectation as our model was trained using
the FA expectations. However, it confirms that
the learned word representations are able to ex-
plain translation probabilities. Surprisingly, con-
text seems to have little impact on the alignment
error, suggesting that the model receives sufficient
information from the aligned words themselves.

5.2 Document Classification

A standard task for evaluating cross-lingual word
representations is document classification where
training is performed in one and evaluation in an-
other language. This tasks require semantically
plausible embeddings (for classification) which
are valid across two languages (for the semantic
transfer). Hence this task requires more of the
word embeddings than the previous task.
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Languages Model
FA DWA DWA
k=0 k=3
ZH|EN 494 484 487
EN|ZH 449 453 459
FR|EN 7.1 172 170
EN|FR 16,6 163 16.1
Table 1: Alignment error rate (AER) compar-

ison, in both directions, between the FASTAL-
IGN (FA) alignment model and our model (DWA)
with k£ context words (see Equation 1). Lower
numbers indicate better performance.

We mainly follow the setup of Klementiev et al.
(2012) and use the German-English parallel cor-
pus of the European Parliament proceedings to
train the word representations. We perform the
classification task on the Reuters RCV1/2 corpus.
Unlike Klementiev et al. (2012), we do not use that
corpus during the representation learning phase.
We remove all words occurring less than five times
in the data and learn 40 dimensional word embed-
dings in line with prior work.

To train a classifier on English data and test it
on German documents we first project word rep-
resentations from English into German: we select
the most probable German word according to the
learned translation probabilities, and then compute
document representations by averaging the word
representations in each document. We use these
projected representations for training and subse-
quently test using the original German data and
representations. We use an averaged perceptron
classifier as in prior work, with the number of
epochs (3) tuned on a subset of the training set.

Table 2 shows baselines from previous work
and classification accuracies. Our model outper-
forms the model by Klementiev et al. (2012), and
it also outperforms the most comparable models
by Hermann and Blunsom (2014b) when training
on German data and performs on par with it when
training on English data.! It seems that our model
learns more informative representations towards
document classification, even without additional
monolingual language models or context informa-
tion. Again the impact of context is inconclusive.

"From Hermann and Blunsom (2014a, 2014b) we only
compare with models equivalent with respect to embedding
dimensionality and training data. They still achieve the state
of the art when using additional training data.



Model en —de de —en
Majority class 46.8 46.8
Glossed 65.1 68.6
MT 68.1 67.4
Klementiev et al. 77.6 71.1
BiCVM ADD 83.7 714
BiCVM BI 83.4 69.2
DWA (k = 0) 82.8 76.0
DWA (k =3) 83.1 75.4

Table 2: Document classification accuracy when
trained on 1,000 training examples of the RCV1/2
corpus (train—test). Baselines are the majority
class, glossed, and MT (Klementiev et al., 2012).
Further, we are comparing to Klementiev et al.
(2012), BiCVM ADD (Hermann and Blunsom,
2014a), and BiCVM BI (Hermann and Blunsom,
2014b). k is the context size, see Equation 1.

5.3 Representation Visualization

Following the document classification task we
want to gain further insight into the types of fea-
tures our embeddings learn. For this we visu-
alize word representations using t-SNE projec-
tions (van der Maaten and Hinton, 2008). Fig-
ure 1 shows an extract from our projection of the
2,000 most frequent German words, together with
an expected representation of a translated English
word given translation probabilities. Here, it is
interesting to see that the model is able to learn
related representations for words chair and rat-
sprasidentschaft (presidency) even though these
words were not aligned by our model. Figure 2
shows an extract from the visualization of the
10,000 most frequent English words trained on an-
other corpus. Here again, it is evident that the em-
beddings are semantically plausible with similar
words being closely aligned.

6 Conclusion

We presented a new probabilistic model for learn-
ing bilingual word representations. This dis-
tributed word alignment model (DWA) learns both
representations and alignments at the same time.
We have shown that the DWA model is able
to learn alignments on par with the FASTALIGN
alignment model which produces very good align-
ments, thereby determining the efficacy of the
learned representations which are used to calculate
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Figure 1: A visualization of the expected represen-
tation of the translated English word chair among
the nearest German words: words never aligned
(green), and those seen aligned (blue) with it.
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Figure 2: A cluster of English words from the
10,000 most frequent English words visualized us-
ing t-SNE. Word representations were optimized
for p(zh|en) (k = 0).

word translation probabilities for the alignment
task. Subsequently, we have demonstrated that
our model can effectively be used to project doc-
uments from one language to another. The word
representations our model learns as part of the
alignment process are semantically plausible and
useful. We highlighted this by applying these em-
beddings to a cross-lingual document classifica-
tion task where we outperform prior work, achieve
results on par with the current state of the art and
provide new state-of-the-art results on one of the
tasks. Having provided a probabilistic account of
word representations across multiple languages,
future work will focus on applying this model to
machine translation and related tasks, for which
previous approaches of learning such embeddings
are less suited. Another avenue for further study
is to combine this method with monolingual lan-
guage models, particularly in the context of se-
mantic transfer into resource-poor languages.
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