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Abstract

This paper provides a method for improv-
ing tensor-based compositional distribu-
tional models of meaning by the addition
of an explicit disambiguation step prior to
composition. In contrast with previous re-
search where this hypothesis has been suc-
cessfully tested against relatively simple
compositional models, in our work we use
a robust model trained with linear regres-
sion. The results we get in two experi-
ments show the superiority of the prior dis-
ambiguation method and suggest that the
effectiveness of this approach is model-
independent.

1 Introduction

The provision of compositionality in distributional
models of meaning, where a word is represented as
a vector of co-occurrence counts with every other
word in the vocabulary, offers a solution to the
fact that no text corpus, regardless of its size, is
capable of providing reliable co-occurrence statis-
tics for anything but very short text constituents.
By composing the vectors for the words within
a sentence, we are still able to create a vectorial
representation for that sentence that is very useful
in a variety of natural language processing tasks,
such as paraphrase detection, sentiment analysis
or machine translation. Hence, given a sentence
w1w2 . . . wn, a compositional distributional model
provides a function f such that:

−→s = f(−→w1,
−→w2, . . . ,

−→wn) (1)

where −→wi is the distributional vector of the ith
word in the sentence and −→s the resulting compos-
ite sentential vector.

An interesting question that has attracted the at-
tention of researchers lately refers to the way in
which these models affect ambiguous words; in
other words, given a sentence such as “a man was
waiting by the bank”, we are interested to know to
what extent a composite vector can appropriately

reflect the intended use of word ‘bank’ in that con-
text, and how such a vector would differ, for exam-
ple, from the vector of the sentence “a fisherman
was waiting by the bank”.

Recent experimental evidence (Reddy et al.,
2011; Kartsaklis et al., 2013; Kartsaklis and
Sadrzadeh, 2013) suggests that for a number of
compositional models the introduction of a dis-
ambiguation step prior to the actual composi-
tional process results in better composite represen-
tations. In other words, the suggestion is that Eq.
1 should be replaced by:

−→s = f(φ(−→w1), φ(−→w2), . . . , φ(−→wn)) (2)
where the purpose of function φ is to return a dis-
ambiguated version of each word vector given the
rest of the context (e.g. all the other words in the
sentence). The composition operation, whatever
that could be, is then applied on these unambigu-
ous representations of the words, instead of the
original distributional vectors.

Until now this idea has been verified on rela-
tively simple compositional functions, usually in-
volving some form of element-wise operation be-
tween the word vectors, such as addition or mul-
tiplication. An exception to this is the work of
Kartsaklis and Sadrzadeh (2013), who apply Eq.
2 on partial tensor-based compositional models.
In a tensor-based model, relational words such
as verbs and adjectives are represented by multi-
linear maps; composition takes place as the ap-
plication of those maps on vectors representing
the arguments (usually nouns). What makes the
models of the above work ‘partial’ is that the au-
thors used simplified versions of the linear maps,
projected onto spaces of order lower than that re-
quired by the theoretical framework. As a result,
a certain amount of transformational power was
traded off for efficiency.

A potential explanation then for the effective-
ness of the proposed prior disambiguation method
can be sought on the limitations imposed by the
compositional models under test. After all, the
idea of having disambiguation emerge as a direct
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consequence of the compositional process, with-
out the introduction of any explicit step, seems
more natural and closer to the way the human
mind resolves lexical ambiguities.

The purpose of this paper is to investigate
the hypothesis whether prior disambiguation is
important in a pure tensor-based compositional
model, where no simplifying assumptions have
been made. We create such a model by using lin-
ear regression, and we explain how an explicit dis-
ambiguation step can be introduced to this model
prior to composition. We then proceed by com-
paring the composite vectors produced by this ap-
proach with those produced by the model alone in
a number of experiments. The results show a clear
superiority of the priorly disambiguated models
following Eq. 2, confirming previous research and
suggesting that the reasons behind the success of
this approach are more fundamental than the form
of the compositional function.

2 Composition in distributional models

Compositional distributional models of meaning
vary in sophistication, from simple element-wise
operations between vectors such as addition and
multiplication (Mitchell and Lapata, 2008) to deep
learning techniques based on neural networks
(Socher et al., 2011; Socher et al., 2012; Kalch-
brenner and Blunsom, 2013a). Tensor-based mod-
els, formalized by Coecke et al. (2010), comprise
a third class of models lying somewhere in be-
tween these two extremes. Under this setting rela-
tional words such as verbs and adjectives are rep-
resented by multi-linear maps (tensors of various
orders) acting on a number of arguments. An ad-
jective for example is a linear map f : N → N
(where N is our basic vector space for nouns),
which takes as input a noun and returns a mod-
ified version of it. Since every map of this sort
can be represented by a matrix living in the ten-
sor product space N ⊗ N , we now see that the
meaning of a phrase such as ‘red car’ is given by
red × −→car, where red is an adjective matrix and
× indicates matrix multiplication. The same con-
cept applies for functions of higher order, such as
a transitive verb (a function of two arguments, so
a tensor of order 3). For these cases, matrix mul-
tiplication generalizes to the more generic notion
of tensor contraction. The meaning of a sentence
such as ‘kids play games’ is computed as:

−−→
kidsT × play ×−−−−→games (3)

where play here is an order-3 tensor (a “cube”)
and × now represents tensor contraction. A con-

cise introduction to compositional distributional
models can be found in (Kartsaklis, 2014).

3 Disambiguation and composition

The idea of separating disambiguation from com-
position first appears in a work of Reddy et al.
(2011), where the authors show that the intro-
duction of an explicit disambiguation step prior
to simple element-wise composition is beneficial
for noun-noun compounds. Subsequent work by
Kartsaklis et al. (2013) reports very similar find-
ings for verb-object structures, again on additive
and multiplicative models. Finally, in (Kartsaklis
and Sadrzadeh, 2013) these experiments were ex-
tended to include tensor-based models following
the categorical framework of Coecke et al. (2010),
where again all “unambiguous” models present
superior performance compared to their “ambigu-
ous” versions.

However, in this last work one of the dimen-
sions of the tensors was kept empty (filled in
with zeros). This simplified the calculations but
also weakened the effectiveness of the multi-linear
maps. If, for example, instead of using an order-3
tensor for a transitive verb, one uses some of the
matrix instantiations of Kartsaklis and Sadrzadeh,
Eq. 3 is reduced to one of the following forms:

play � (
−−→
kids⊗−−−−→games) ,

−−→
kids� (play ×−−−−→games)

(
−−→
kidsT × play)�−−−−→games

(4)

where symbol � denotes element-wise multipli-
cation and play is a matrix. Here, the model does
not fully exploit the space provided by the theo-
retical framework (i.e. an order-3 tensor), which
has two disadvantages: firstly, we lose space that
could hold valuable information about the verb in
this case and relational words in general; secondly,
the generally non-commutative tensor contraction
operation is now partly relying on element-wise
multiplication, which is commutative, thus forgets
(part of the) order of composition.

In the next section we will see how to apply lin-
ear regression in order to create full tensors for
verbs and use them for a compositional model that
avoids these pitfalls.

4 Creating tensors for verbs

The essence of any tensor-based compositional
model is the way we choose to create our sentence-
producing maps, i.e. the verbs. In this paper we
adopt a method proposed by Baroni and Zampar-
elli (2010) for building adjective matrices, which
can be generally applied to any relational word.
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In order to create a matrix for, say, the intransi-
tive verb ‘play’, we first collect all instances of
the verb occurring with some subject in the train-
ing corpus, and then we create non-compositional
holistic vectors for these elementary sentences fol-
lowing exactly the same methodology as if they
were words. We now have a dataset with instances
of the form 〈−−−→subji,

−−−−−−→
subji play〉 (e.g. the vector of

‘kids’ paired with the holistic vector of ‘kids play’,
and so on), that can be used to train a linear regres-
sion model in order to produce an appropriate ma-
trix for verb ‘play’. The premise of a model like
this is that the multiplication of the verb matrix
with the vector of a new subject will produce a re-
sult that approximates the distributional behaviour
of all these elementary two-word exemplars used
in training.

We present examples and experiments based
on this method, constructing ambiguous and dis-
ambiguated tensors of order 2 (that is, matrices)
for verbs taking one argument. In principle, our
method is directly applicable to tensors of higher
order, following a multi-step process similar to
that of Grefenstette et al. (2013) who create order-
3 tensors for transitive verbs using similar means.
Instead of using subject-verb constructs as above
we concentrate on elementary verb phrases of the
form verb-object (e.g. ‘play football’, ‘admit stu-
dent’), since in general objects comprise stronger
contexts for disambiguating the usage of a verb.

5 Experimental setting

Our basic vector space is trained from the ukWaC
corpus (Ferraresi et al., 2008), originally using as
a basis the 2,000 content words with the highest
frequency (but excluding a list of stop words as
well as the 50 most frequent content words since
they exhibit low information content). We cre-
ated vectors for all content words with at least
100 occurrences in the corpus. As context we
considered a 5-word window from either side of
the target word, while as our weighting scheme
we used local mutual information (i.e. point-wise
mutual information multiplied by raw counts).
This initial semantic space achieved a score of
0.77 Spearman’s ρ (and 0.71 Pearson’s r) on the
well-known benchmark dataset of Rubenstein and
Goodenough (1965). In order to reduce the time of
regression training, our vector space was normal-
ized and projected onto a 300-dimensional space
using singular value decomposition (SVD). The
performance of the reduced space on the R&G
dataset was again very satisfying, specifically 0.73
Spearman’s ρ and 0.72 Pearson’s r.

In order to create the vector space of the holistic
verb phrase vectors, we first collected all instances
where a verb participating in the experiments ap-
peared at least 100 times in a verb-object relation-
ship with some noun in the corpus. As context of
a verb phrase we considered any content word that
falls into a 5-word window from either side of the
verb or the object. For the 68 verbs participating
in our experiments, this procedure resulted in 22k
verb phrases, a vector space that again was pro-
jected into 300 dimensions using SVD.

Linear regression For each verb we use simple
linear regression with gradient descent directly ap-
plied on matrices X and Y, where the rows of X
correspond to vectors of the nouns that appear as
objects for the given verb and the rows of Y to the
holistic vectors of the corresponding verb phrases.
Our objective function then becomes:

Ŵ = arg min
W

1

2m

(
‖WXT −YT‖2 + λ‖W‖2

)
(5)

wherem is the number of training examples and λ
a regularization parameter. The matrix W is used
as the tensor for the specific verb.

6 Supervised disambiguation

In our first experiment we test the effectiveness
of a prior disambiguation step for a tensor-based
model in a “sandbox” using supervised learning.
The goal is to create composite vectors for a num-
ber of elementary verb phrases of the form verb-
object with and without an explicit disambiguation
step, and evaluate which model approximates bet-
ter the holistic vectors of these verb phrases.

The verb phrases of our dataset are based on the
5 ambiguous verbs of Table 1. Each verb has been
combined with two different sets of nouns that ap-
pear in a verb-object relationship with that verb
in the corpus (a total of 343 verb phrases). The
nouns of each set have been manually selected in
order to explicitly represent a different meaning of
the verb. As an example, in the verb ‘play’ we im-
pose the two distinct meanings of using a musical
instrument and participating in a sport; so the first

Verb Meaning 1 Meaning 2
break violate (56) break (22)
catch capture (28) be on time (21)
play musical instrument (47) sports (29)
admit permit to enter (12) acknowledge (25)
draw attract (64) sketch (39)

Table 1: Ambiguous verbs for the supervised task.
The numbers in parentheses refer to the collected
training examples for each case.
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set of objects contains nouns such as ‘oboe’, ‘pi-
ano’, ‘guitar’, and so on, while in the second set
we see nouns such as ‘football’, ’baseball” etc.

In more detail, the creation of the dataset was
done in the following way: First, all verb entries
with more than one definition in the Oxford Junior
Dictionary (Sansome et al., 2000) were collected
into a list. Next, a linguist (native speaker of En-
glish) annotated the semantic difference between
the definitions of each verb in a scale from 1 (sim-
ilar) to 5 (distinct). Only verbs with definitions
exhibiting completely distinct meanings (marked
with 5) were kept for the next step. For each one
of these verbs, a list was constructed with all the
nouns that appear at least 50 times under a verb-
object relationship in the corpus with the specific
verb. Then, each object in the list was manually
annotated as exclusively belonging to one of the
two senses; so, an object could be selected only if
it was related to a single sense, but not both. For
example, ‘attention’ was a valid object for the at-
tract sense of verb ‘draw’, since it is unrelated to
the sketch sense of that verb. On the other hand,
‘car’ is not an appropriate object for either sense
of ‘draw’, since it could actually appear under both
of them in different contexts. The verbs of Table
1 were the ones with the highest numbers of ex-
emplars per sense, creating a dataset of significant
size for the intended task (each holistic vector is
compared with 343 composite vectors).

We proceed as follows: We apply linear regres-
sion in order to train verb matrices using jointly
the object sets for both meanings of each verb, as
well as separately—so in this latter case we get
two matrices for each verb, one for each sense. For
each verb phrase, we create a composite vector by
matrix-multiplying the verb matrix with the vector
of the specific object. Then we use 4-fold cross
validation to evaluate which version of composite
vectors (the one created by the ambiguous tensors
or the one created by the unambiguous ones) ap-
proximates better the holistic vectors of the verb
phrases in our test set. This is done by comparing
each holistic vector with all the composite ones,
and then evaluating the rank of the correct com-
posite vector within the list of results.

In order to get a proper mixing of objects from
both senses of a verb in training and testing sets,
we set the cross-validation process as follows: We
first split both sets of objects in 4 parts. For each
fold then, our training set is comprised by 3

4 of set
#1 plus 3

4 of set #2, while the test set consists of
the remaining 1

4 of set #1 plus 1
4 of set #2. The

data points of the training set are presented in the

Accuracy MRR Avg Sim
Amb. Dis. Amb. Dis. Amb. Dis.

break 0.19 0.28 0.41 0.50 0.41 0.43
catch 0.35 0.37 0.58 0.61 0.51 0.57
play 0.20 0.28 0.41 0.49 0.60 0.68
admit 0.33 0.43 0.57 0.64 0.41 0.46
draw 0.24 0.29 0.45 0.51 0.40 0.44

Table 2: Results for the supervised task. ‘Amb.’
refers to models without the explicit disambigua-
tion step, and ‘Dis.’ to models with that step.

learning algorithm in random order.
We measure approximation in three different

metrics. The first one, accuracy, is the strictest,
and evaluates in how many cases the composite
vector of a verb phrase is the closest one (the first
one in the result list) to the corresponding holistic
vector. A more relaxed and perhaps more repre-
sentative method is to calculate the mean recipro-
cal rank (MRR), which is given by:

MRR =
1
m

m∑
i=1

1
ranki

(6)

where m is the number of objects and ranki refers
to the rank of the correct composite vector for the
ith object.

Finally, a third way to evaluate the efficiency of
each model is to simply calculate the average co-
sine similarity between every holistic vector and
its corresponding composite vector. The results
are presented in Table 2, reflecting a clear supe-
riority (p < 0.001 for average cosine similarity)
of the prior disambiguation method for every verb
and every metric.

7 Unsupervised disambiguation

In Section 6 we used a controlled procedure to col-
lect genuinely ambiguous verbs and we trained our
models from manually annotated data. In this sec-
tion we briefly outline how the process of creat-
ing tensors for distinct senses of a verb can be au-
tomated, and we test this idea on a generic verb
phrase similarity task.

First, we use unsupervised learning in order to
detect the latent senses of each verb in the corpus,
following a procedure first described by Schütze
(1998). For every occurrence of the verb, we cre-
ate a vector representing the surrounding context
by averaging the vectors of every other word in
the same sentence. Then, we apply hierarchical
agglomerative clustering (HAC) in order to cluster
these context vectors, hoping that different groups
of contexts will correspond to the different senses
under which the word has been used in the corpus.
The clustering algorithm uses Ward’s method as
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inter-cluster measure, and Pearson correlation for
measuring the distance of vectors within a clus-
ter. Since HAC returns a dendrogram embedding
all possible groupings, we measure the quality of
each partitioning by using the variance ratio crite-
rion (Caliński and Harabasz, 1974) and we select
the partitioning that achieves the best score (so the
number of senses varies from verb to verb).

The next step is to classify every noun that has
been used as an object with that verb to the most
probable verb sense, and then use these sets of
nouns as before for training tensors for the vari-
ous verb senses. Being equipped with a number of
sense clusters created as above for every verb, the
classification of each object to a relevant sense is
based on the cosine distance of the object vector
from the centroids of the clusters.1 Every sense
with less than 3 training exemplars is merged to
the dominant sense of the verb. The union of all
object sets is used for training a single unambigu-
ous tensor for the verb. As usual, data points are
presented to learning algorithm in random order.
No objects in our test set are used for training.

We test this system on a verb phase similarity
task introduced in (Mitchell and Lapata, 2010).
The goal is to assess the similarity between pairs
of short verb phrases (verb-object constructs) and
evaluate the results against human annotations.
The dataset consists of 72 verb phrases, paired
in three different ways to form groups of various
degrees of phrase similarity—a total of 108 verb
phrase pairs.

The experiment has the following form: For ev-
ery pair of verb phrases, we construct composite
vectors and then we evaluate their cosine similar-
ity. For the ambiguous regression model, the com-
position is done by matrix-multiplying the am-
biguous verb matrix (learned by the union of all
object sets) with the vector of the noun. For the
disambiguated version, we first detect the most
probable sense of the verb given the noun, again
by comparing the vector of the noun with the
centroids of the verb clusters; then, we matrix-
multiply the corresponding unambiguous tensor
created exclusively from objects that have been
classified as closer to this specific sense of the
verb with the noun. We also test a number
of baselines: the ‘verbs-only’ model is a non-
compositional baseline where only the two verbs
are compared; ‘additive’ and ‘multiplicative’ com-
pose the word vectors of each phrase by applying
simple element-wise operations.

1In general, our approach is quite close to the multi-
prototype models of Reisinger and Mooney (2010).

Model Spearman’s ρ
Verbs-only 0.331
Additive 0.379
Multiplicative 0.301
Linear regression (ambiguous) 0.349
Linear regression (disamb.) 0.399
Holistic verb phrase vectors 0.403
Human agreement 0.550

Table 3: Results for the phrase similarity task. The
difference between the ambiguous and the disam-
biguated version is s.s. with p < 0.001.

The results are presented in Table 3, where
again the version with the prior disambiguation
step shows performance superior to that of the am-
biguous version. There are two interesting obser-
vations that can be made on the basis of Table
3. First of all, the regression model is based on
the assumption that the holistic vectors of the ex-
emplar verb phrases follow an ideal distributional
behaviour that the model aims to approximate as
close as possible. The results of Table 3 confirm
this: using just the holistic vectors of the corre-
sponding verb phrases (no composition is involved
here) returns the best correlation with human an-
notations (0.403), providing a proof that the holis-
tic vectors of the verb phrases are indeed reli-
able representations of each verb phrase’s mean-
ing. Next, observe that the prior disambiguation
model approximates this behaviour very closely
(0.399) on unseen data, with a difference not sta-
tistically significant. This is very important, since
a regression model can only perform as well as its
training dataset allows it; and in our case this is
achieved to a very satisfactory level.

8 Conclusion and future work

This paper adds to existing evidence from previ-
ous research that the introduction of an explicit
disambiguation step before the composition im-
proves the quality of the produced composed rep-
resentations. The use of a robust regression model
rejects the hypothesis that the proposed methodol-
ogy is helpful only for relatively “weak” composi-
tional approaches. As for future work, an interest-
ing direction would be to see how a prior disam-
biguation step can affect deep learning composi-
tional settings similar to (Socher et al., 2012) and
(Kalchbrenner and Blunsom, 2013b).
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