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Abstract
Automated methods for identifying
whether sentences are grammatical
have various potential applications (e.g.,
machine translation, automated essay
scoring, computer-assisted language
learning). In this work, we construct a
statistical model of grammaticality using
various linguistic features (e.g., mis-
spelling counts, parser outputs, n-gram
language model scores). We also present
a new publicly available dataset of learner
sentences judged for grammaticality on
an ordinal scale. In evaluations, we
compare our system to the one from Post
(2011) and find that our approach yields
state-of-the-art performance.

1 Introduction

In this paper, we develop a system for the task
of predicting the grammaticality of sentences, and
present a dataset of learner sentences rated for
grammaticality. Such a system could be used, for
example, to check or to rank outputs from systems
for text summarization, natural language genera-
tion, or machine translation. It could also be used
in educational applications such as essay scoring.

Much of the previous research on predicting
grammaticality has focused on identifying (and
possibly correcting) specific types of grammati-
cal errors that are typically made by English lan-
guage learners, such as prepositions (Tetreault and
Chodorow, 2008), articles (Han et al., 2006), and
collocations (Dahlmeier and Ng, 2011). While
some applications (e.g., grammar checking) rely
on such fine-grained predictions, others might be
better addressed by sentence-level grammaticality
judgments (e.g., machine translation evaluation).

Regarding sentence-level grammaticality, there
has been much work on rating the grammatical-

ity of machine translation outputs (Gamon et al.,
2005; Parton et al., 2011), such as the MT Quality
Estimation Shared Tasks (Bojar et al., 2013, §6),
but relatively little on evaluating the grammatical-
ity of naturally occurring text. Also, most other re-
search on evaluating grammaticality involves arti-
ficial tasks or datasets (Sun et al., 2007; Lee et al.,
2007; Wong and Dras, 2010; Post, 2011).

Here, we make the following contributions.

• We develop a state-of-the-art approach for
predicting the grammaticality of sentences on
an ordinal scale, adapting various techniques
from the previous work described above.

• We create a dataset of grammatical and un-
grammatical sentences written by English
language learners, labeled on an ordinal scale
for grammaticality. With this unique data set,
which we will release to the research com-
munity, it is now possible to conduct realis-
tic evaluations for predicting sentence-level
grammaticality.

2 Dataset Description

We created a dataset consisting of 3,129 sentences
randomly selected from essays written by non-
native speakers of English as part of a test of
English language proficiency. We oversampled
lower-scoring essays to increase the chances of
finding ungrammatical sentences. Two of the au-
thors of this paper, both native speakers of English
with linguistic training, annotated the data. We
refer to these annotators as expert judges. When
making judgments of the sentences, they saw the
previous sentence from the same essay as context.
These two authors were not directly involved in
development of the system in §3.

Each sentence was annotated on a scale from
1 to 4 as described below, with 4 being the most
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grammatical. We use an ordinal rather than bi-
nary scale, following previous work such as that of
Clark et al. (2013) and Crocker and Keller (2005)
who argue that the distinction between grammati-
cal and ungrammatical is not simply binary. Also,
for practical applications, we believe that it is use-
ful to distinguish sentences with minor errors from
those with major errors that may disrupt communi-
cation. Our annotation scheme was influenced by
a translation rating scheme by Coughlin (2003).

Every sentence judged on the 1–4 scale must be
a clause. There is an extra category (“Other”) for
sentences that do not fit this criterion. We exclude
instances of “Other” in our experiments (see §4).

4. Perfect The sentence is native-sounding. It has
no grammatical errors, but may contain very mi-
nor typographical and/or collocation errors, as in
Example (1).

(1) For instance, i stayed in a dorm when i
went to collge.

3. Comprehensible The sentence may contain
one or more minor grammatical errors, includ-
ing subject-verb agreement, determiner, and mi-
nor preposition errors that do not make the mean-
ing unclear, as in Example (2).

(2) We know during Spring Festival, Chinese
family will have a abundand family banquet
with family memebers.

“Chinese family”, which could be corrected to
“Chinese families”, “each Chinese family”, etc.,
would be an example of a minor grammatical er-
ror involving determiners.

2. Somewhat Comprehensible The sentence
may contain one or more serious grammatical
errors, including missing subject, verb, object,
etc., verb tense errors, and serious preposition
errors. Due to these errors, the sentence may
have multiple plausible interpretations, as in
Example (3).

(3) I can gain the transportations such as buses
and trains.

1. Incomprehensible The sentence contains so
many errors that it would be difficult to correct,
as in Example (4).

(4) Or you want to say he is only a little boy do
not everything clearly?

The phrase “do not everything” makes the sen-
tence practically incomprehensible since the sub-
ject of “do” is not clear.

O. Other/Incomplete This sentence is incom-
plete. These sentences, such as Example (5), ap-
pear in our corpus due to the nature of timed tests.

(5) The police officer handed the

This sentence is cut off and does not at least in-
clude one clause.

We measured interannotator agreement on a
subset of 442 sentences that were independently
annotated by both expert annotators. Exact agree-
ment was 71.3%, unweighted κ = 0.574, and
Pearson’s r = 0.759.1 For our experiments, one
expert annotator was arbitrarily selected, and for
the doubly-annotated sentences, only the judg-
ments from that annotator were retained.

The labels from the expert annotators are dis-
tributed as follows: 72 sentences are labeled 1;
538 are 2; 1,431 are 3; 978 are 4; and 110 are “O”.

We also gathered 5 additional judgments using
Crowdflower.2 For this, we excluded the “Other”
category and any sentences that had been marked
as such by the expert annotators. We used 100
(3.2%) of the judged sentences as “gold” data in
Crowdflower to block contributors who were not
following the annotation guidelines. For those
sentences, only disagreements within 1 point of
the expert annotator judgment were accepted. In
preliminary experiments, averaging the six judg-
ments (1 expert, 5 crowdsourced) for each item
led to higher human-machine agreement. For all
experiments reported later, we used this average
of six judgments as our gold standard.

For our experiments (§4), we randomly split the
data into training (50%), development (25%), and
testing (25%) sets. We also excluded all instances
labeled “Other”. These are relatively uncommon
and less interesting to this study. Also, we believe
that simpler, heuristic approaches could be used to
identify such sentences.

We use “GUG” (“Grammatical” versus “Un-
Grammatical”) to refer to this dataset. The dataset
is available for research at https://github.
com/EducationalTestingService/
gug-data.

1The reported agreement values assume that “Other”
maps to 0. For the sentences where both labels were in the
1–4 range (n = 424), Pearson’s r = 0.767.

2http://www.crowdflower.com
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3 System Description

This section describes the statistical model (§3.1)
and features (§3.2) used by our system.

3.1 Statistical Model
We use `2-regularized linear regression (i.e., ridge
regression) to learn a model of sentence grammat-
icality from a variety of linguistic features.34

To tune the `2-regularization hyperparameter α,
the system performs 5-fold cross-validation on the
data used for training. The system evaluates α ∈
10{−4,...,4} and selects the one that achieves the
highest cross-validation correlation r.

3.2 Features
Next, we describe the four types of features.

3.2.1 Spelling Features
Given a sentence with with n word tokens, the
model filters out tokens containing nonalpha-
betic characters and then computes the num-
ber of misspelled words nmiss (later referred to
as num misspelled), the proportion of mis-
spelled words nmiss

n , and log(nmiss + 1) as fea-
tures. To identify misspellings, we use a freely
available spelling dictionary for U.S. English.5

3.2.2 n-gram Count and Language Model
Features

Given each sentence, the model obtains the counts
of n-grams (n = 1 . . . 3) from English Gigaword
and computes the following features:6

•
∑
s∈Sn

log(count(s) + 1)
‖Sn‖

3We use ridge regression from the scikit-learn
toolkit (Pedregosa et al., 2011) v0.23.1 and the
SciKit-Learn Laboratory (http://github.com/
EducationalTestingService/skll).

4Regression models typically produce conservative pre-
dictions with lower variance than the original training data.
So that predictions better match the distribution of labels in
the training data, the system rescales its predictions. It saves
the mean and standard deviation of the training data gold
standard (Mgold and SDgold, respectively) and of its own
predictions on the training data (Mpred and SDpred, respec-
tively). During cross-validation, this is done for each fold.
From an initial prediction ŷ, it produces the final prediction:
ŷ′ = ŷ−Mpred

SDpred
∗ SDgold + Mgold. This transformation does

not affect Pearson’s r correlations or rankings, but it would
affect binarized predictions.

5http://pythonhosted.org/pyenchant/
6We use the New York Times (nyt), the Los Ange-

les Times-Washington Post (ltw), and the Washington Post-
Bloomberg News (wpb) sections from the fifth edition of En-
glish Gigaword (LDC2011T07).

• max
s∈Sn

log(count(s) + 1)

• min
s∈Sn

log(count(s) + 1)

where Sn represents the n-grams of order n from
the given sentence. The model computes the fol-
lowing features from a 5-gram language model
trained on the same three sections of English Gi-
gaword using the SRILM toolkit (Stolcke, 2002):

• the average log-probability of the
given sentence (referred to as
gigaword avglogprob later)

• the number of out-of-vocabulary words in the
sentence

Finally, the system computes the average
log-probability and number of out-of-vocabulary
words from a language model trained on a col-
lection of essays written by non-native English
speakers7 (“non-native LM”).

3.2.3 Precision Grammar Features
Following Wagner et al. (2007) and Wagner et
al. (2009), we use features extracted from preci-
sion grammar parsers. These grammars have been
hand-crafted and designed to only provide com-
plete syntactic analyses for grammatically cor-
rect sentences. This is in contrast to treebank-
trained grammars, which will generally provide
some analysis regardless of grammaticality. Here,
we use (1) the Link Grammar Parser8 and (2)
the HPSG English Resource Grammar (Copestake
and Flickinger, 2000) and PET parser.9

We use a binary feature, complete link,
from the Link grammar that indicates whether at
least one complete linkage can be found for a sen-
tence. We also extract several features from the
HPSG analyses.10 They mostly reflect information
about unification success or failure and the associ-
ated costs. In each instance, we use the logarithm
of one plus the frequency.

7This did not overlap with the data described in §2 and
was a subset of the data released by Blanchard et al. (2013).

8http://www.link.cs.cmu.edu/link/
9http://moin.delph-in.net/PetTop

10The complete list of relevant statistics used as features
is: trees, unify cost succ, unify cost fail,
unifications succ, unifications fail,
subsumptions succ, subsumptions fail,
words, words pruned, aedges, pedges,
upedges, raedges, rpedges, medges. During
development, we observed that some of these features vary
for some inputs, probably due to parsing search timeouts. On
10 preliminary runs with the development set, this variance
had minimal effects on correlations with human judgments
(less than 0.00001 in terms of r).
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r

our system 0.668
− non-native LM (§3.2.2) 0.665
− HPSG parse (§3.2.3) 0.664
− PCFG parse (§3.2.4) 0.662
− spelling (§3.2.1) 0.643
− gigaword LM (§3.2.2) 0.638
− link parse (§3.2.3) 0.632
− gigaword count (§3.2.2) 0.630

Table 1: Pearson’s r on the development set, for
our full system and variations excluding each fea-
ture type. “− X” indicates the full model without
the “X” features.

3.2.4 PCFG Parsing Features
We find phrase structure trees and basic depen-
dencies with the Stanford Parser’s English PCFG
model (Klein and Manning, 2003; de Marneffe et
al., 2006).11 We then compute the following:

• the parse score as provided by the Stan-
ford PCFG Parser, normalized for sentence
length, later referred to as parse prob

• a binary feature that captures whether the top
node of the tree is sentential or not (i.e. the
assumption is that if the top node is non-
sentential, then the sentence is a fragment)

• features binning the number of dep rela-
tions returned by the dependency conversion.
These dep relations are underspecified for
function and indicate that the parser was un-
able to find a standard relation such as subj,
possibly indicating a grammatical error.

4 Experiments

Next, we present evaluations on the GUG dataset.

4.1 Feature Ablation
We conducted a feature ablation study to iden-
tify the contributions of the different types of fea-
tures described in §3.2. We compared the perfor-
mance of the full model with all of the features
to models with all but one type of feature. For
this experiment, all models were estimated from
the training set and evaluated on the development
set. We report performance in terms of Pearson’s
r between the averaged 1–4 human labels and un-
rounded system predictions.

The results are shown in Table 1. From these
results, the most useful features appear to be the

n-gram frequencies from Gigaword and whether
the link parser can fully parse the sentence.

4.2 Test Set Results
In this section, we present results on the held-out
test set for the full model and various baselines,
summarized in Table 2. For test set evaluations,
we trained on the combination of the training and
development sets (§2), to maximize the amount of
training data for the final experiments.

We also trained and evaluated on binarized ver-
sions of the ordinal GUG labels: a sentence was
labeled 1 if the average judgment was at least 3.5
(i.e., would round to 4), and 0 otherwise. Evaluat-
ing on a binary scale allows us to measure how
well the system distinguishes grammatical sen-
tences from ungrammatical ones. For some ap-
plications, this two-way distinction may be more
relevant than the more fine-grained 1–4 scale. To
train our system on binarized data, we replaced the
`2-regularized linear regression model with an `2-
regularized logistic regression and used Kendall’s
τ rank correlation between the predicted probabil-
ities of the positive class and the binary gold stan-
dard labels as the grid search metric (§3.1) instead
of Pearson’s r.

For the ordinal task, we report Pearson’s r be-
tween the averaged human judgments and each
system. For the binary task, we report percentage
accuracy. Since the predictions from the binary
and ordinal systems are on different scales, we in-
clude the nonparametric statistic Kendall’s τ as a
secondary evaluation metric for both tasks.

We also evaluated the binary system for the or-
dinal task by computing correlations between its
estimated probabilities and the averaged human
scores, and we evaluated the ordinal system for the
binary task by binarizing its predictions.12

We compare our work to a modified version of
the publicly available13 system from Post (2011),
which performed very well on an artificial dataset.
To our knowledge, it is the only publicly available
system for grammaticality prediction. It is very

11We use the Nov. 12, 2013 version of the Stanford Parser.
12We selected a threshold for binarization from a grid of

1001 points from 1 to 4 that maximized the accuracy of bina-
rized predictions from a model trained on the training set and
evaluated on the binarized development set. For evaluating
the three single-feature baselines discussed below, we used
the same approach except with grid ranging from the min-
imum development set feature value to the maximum plus
0.1% of the range.

13The Post (2011) system is available at https://
github.com/mjpost/post2011judging.
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Ordinal Task Binary Task
r Sig.r τ % Acc. Sig.%Acc. τ

our system 0.644 0.479 79.3 0.419
our systemlogistic 0.616 * 0.484 80.7 0.428
Post 0.321 * 0.225 75.5 * 0.195
Postlogistic 0.259 * 0.181 74.4 * 0.181
complete link 0.386 * 0.335 74.8 * 0.302
gigaword avglogprob 0.414 * 0.290 76.7 * 0.280
num misspelled -0.462 * -0.370 74.8 * -0.335

Table 2: Human-machine agreement statistics for our system, the system from Post (2011), and simple
baselines, computed from the averages of human ratings in the testing set (§2). “*” in a Sig. column
indicates a statistically significant difference from “our system” (p < .05, see text for details). A majority
baseline for the binary task achieves 74.8% accuracy. The best results for each metric are in bold.

different from our system since it relies on par-
tial tree-substitution grammar derivations as fea-
tures. We use the feature computation components
of that system but replace its statistical model. The
system was designed for use with a dataset consist-
ing of 50% grammatical and 50% ungrammatical
sentences, rather than data with ordinal or continu-
ous labels. Additionally, its classifier implementa-
tion does not output scores or probabilities. There-
fore, we used the same learning algorithms as for
our system (i.e., ridge regression for the ordinal
task and logistic regression for the binary task).14

To create further baselines for comparison,
we selected the following features that represent
ways one might approximate grammaticality if a
comprehensive model was unavailable: whether
the link parser can fully parse the sentence
(complete link), the Gigaword language
model score (gigaword avglogprob),
and the number of misspelled tokens
(num misspelled). Note that we expect
the number of misspelled tokens to be negatively
correlated with grammaticality. We flipped the
sign of the misspelling feature when computing
accuracy for the binary task.

To identify whether the differences in perfor-
mance for the ordinal task between our system and
each of the baselines are statistically significant,
we used the BCa Bootstrap (Efron and Tibshirani,
1993) with 10,000 replications to compute 95%
confidence intervals for the absolute value of r for
our system minus the absolute value of r for each
of the alternative methods. For the binary task, we

14In preliminary experiments, we observed little difference
in performance between logistic regression and the original
support vector classifier used by the system from Post (2011).

used the sign test to test for significant differences
in accuracy. The results are in Table 2.

5 Discussion and Conclusions

In this paper, we developed a system for predict-
ing grammaticality on an ordinal scale and cre-
ated a labeled dataset that we have released pub-
licly (§2) to enable more realistic evaluations in
future research. Our system outperformed an ex-
isting state-of-the-art system (Post, 2011) in eval-
uations on binary and ordinal scales. This is the
most realistic evaluation of methods for predicting
sentence-level grammaticality to date.

Surprisingly, the system from Post (2011) per-
formed quite poorly on the GUG dataset. We spec-
ulate that this is due to the fact that the Post sys-
tem relies heavily on features extracted from au-
tomatic syntactic parses. While Post found that
such a system can effectively distinguish gram-
matical news text sentences from sentences gen-
erated by a language model, measuring the gram-
maticality of real sentences from language learn-
ers seems to require a wider variety of features,
including n-gram counts, language model scores,
etc. Of course, our findings do not indicate that
syntactic features such as those from Post (2011)
are without value. In future work, it may be pos-
sible to improve grammaticality measurement by
integrating such features into a larger system.
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