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Abstract

Annotation errors can significantly hurt
classifier performance, yet datasets are
only growing noisier with the increased
use of Amazon Mechanical Turk and tech-
niques like distant supervision that auto-
matically generate labels. In this paper,
we present a robust extension of logistic
regression that incorporates the possibil-
ity of mislabelling directly into the objec-
tive. This model can be trained through
nearly the same means as logistic regres-
sion, and retains its efficiency on high-
dimensional datasets. We conduct exper-
iments on named entity recognition data
and find that our approach can provide a
significant improvement over the standard
model when annotation errors are present.

1 Introduction
Almost any large dataset has annotation errors,
especially those complex, nuanced datasets com-
monly used in natural language processing. Low-
quality annotations have become even more com-
mon in recent years with the rise of Amazon Me-
chanical Turk, as well as methods like distant su-
pervision and co-training that involve automati-
cally generating training data.

Although small amounts of noise may not be
detrimental, in some applications the level can
be high: upon manually inspecting a relation ex-
traction corpus commonly used in distant super-
vision, Riedel et al. (2010) report a 31% false
positive rate. In cases like these, annotation er-
rors have frequently been observed to hurt perfor-
mance. Dingare et al. (2005), for example, con-
duct error analysis on a system to extract relations
from biomedical text, and observe that over half
of the system’s errors could be attributed to incon-
sistencies in how the data was annotated. Simi-
larly, in a case study on co-training for natural lan-

guage tasks, Pierce and Cardie (2001) find that
the degradation in data quality from automatic la-
belling prevents these systems from performing
comparably to their fully-supervised counterparts.

In this work we argue that incorrect exam-
ples should be explicitly modelled during train-
ing, and present a simple extension of logistic re-
gression that incorporates the possibility of mis-
labelling directly into the objective. Following a
technique from robust statistics, our model intro-
duces sparse ‘shift parameters’ to allow datapoints
to slide along the sigmoid, changing class if ap-
propriate. It has a convex objective, is well-suited
to high-dimensional data, and can be efficiently
trained with minimal changes to the logistic re-
gression pipeline.

In experiments on a large, noisy NER dataset,
we find that this method can provide an improve-
ment over standard logistic regression when anno-
tation errors are present. The model also provides
a means to identify which examples were misla-
belled: through experiments on biological data,
we demonstrate how our method can be used to
accurately identify annotation errors. This robust
extension of logistic regression shows particular
promise for NLP applications: it helps account
for incorrect labels, while remaining efficient on
large, high-dimensional datasets.

2 Related Work

Much of the previous work on dealing with anno-
tation errors centers around filtering the data be-
fore training. Brodley and Friedl (1999) introduce
what is perhaps the simplest form of supervised
filtering: they train various classifiers, then record
their predictions on a different part of the train set
and eliminate contentious examples. Sculley and
Cormack (2008) apply this approach to spam fil-
tering with noisy user feedback.

One obvious issue with these methods is that the
noise-detecting classifiers are themselves trained
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on noisy labels. Unsupervised filtering tries to
avoid this problem by clustering training instances
based solely on their features, then using the clus-
ters to detect labelling anomalies (Rebbapragada
et al., 2009). Recently, Intxaurrondo et al. (2013)
applied this approach to distantly-supervised rela-
tion extraction, using heuristics such as the num-
ber of mentions per tuple to eliminate suspicious
examples.

Unsupervised filtering, however, relies on the
perhaps unwarranted assumption that examples
with the same label lie close together in feature
space. Moreover filtering techniques in general
may not be well-justified: if a training example
does not fit closely with the current model, it is
not necessarily mislabelled. It may represent an
important exception that would improve the over-
all fit, or appear unusual simply because we have
made poor modelling assumptions.

Perhaps the most promising approaches are
those that directly model annotation errors, han-
dling mislabelled examples as they train. This
way, there is an active trade-off between fitting the
model and identifying suspected errors. Bootkra-
jang and Kaban (2012) present an extension of
logistic regression that models annotation errors
through flipping probabilities. While intuitive, this
approach has shortcomings of its own: the objec-
tive function is nonconvex and the authors note
that local optima are an issue, and the model can
be difficult to fit when there are many more fea-
tures than training examples.

There is a growing body of literature on learn-
ing from several annotators, each of whom may be
inaccurate (Bachrach et al., 2012; Raykar et al.,
2009). It is important to note that we are consid-
ering a separate, and perhaps more general, prob-
lem: we have only one source of noisy labels, and
the errors need not come from the human annota-
tors, but could be introduced through contamina-
tion or automatic labelling.

The field of ‘robust statistics’ seeks to develop
estimators that are not unduly affected by devi-
ations from the model assumptions (Huber and
Ronchetti, 2009). Since mislabelled points are
one type of outlier, this goal is naturally related
to our interest in dealing with noisy data, and it
seems many of the existing techniques would be
relevant. A common strategy is to use a modi-
fied loss function that gives less influence to points
far from the boundary, and several models along
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Figure 1: Fit resulting from a standard vs. robust
model, where data is generated from the dashed
sigmoid and negative labels flipped with probabil-
ity 0.2.

these lines have been proposed (Ding and Vish-
wanathan., 2010; Masnadi-Shirazi et al., 2010).
Unfortunately these approaches require optimiz-
ing nonstandard, often nonconvex objectives, and
fail to give insight into which datapoints are mis-
labelled.

In a recent advance, She and Owen (2011)
demonstrate that introducing a regularized ‘shift
parameter’ per datapoint can help increase the ro-
bustness of linear regression. Candes et al. (2009)
propose a similar approach for principal compo-
nent analysis, while Wright and Ma (2009) ex-
plore its effectiveness in sparse signal recovery. In
this work we adapt the technique to logistic re-
gression. To the best of our knowledge, we are
the first to experiment with adding ‘shift param-
eters’ to logistic regression and demonstrate that
the model is especially well-suited to the type of
high-dimensional, noisy datasets commonly used
in NLP.

3 Model

Recall that in binary logistic regression, the prob-
ability of an example xi being positive is modeled
as

g(θTxi) =
1

1 + e−θT xi
.

For simplicity, we assume the intercept term has
been folded into the weight vector θ, so θ ∈ Rm+1

where m is the number of features.
Following She and Owen (2011), we propose

the following robust extension: for each datapoint
i = 1, . . . , n, we introduce a real-valued shift pa-
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rameter γi so that the sigmoid becomes

g(θTxi + γi) =
1

1 + e−θT xi−γi
.

Since we believe that most examples are correctly
labelled, we L1-regularize the shift parameters to
encourage sparsity. Letting yi ∈ {0, 1} be the la-
bel for datapoint i and fixing λ ≥ 0, our objective
is now given by

l(θ, γ) =
n∑
i=1

[
yi log g(θTxi + γi) (1)

+ (1− yi) log
(
1− g(θTxi + γi)

)]− λ n∑
i=1

|γi|.

These parameters γi let certain datapoints shift
along the sigmoid, perhaps switching from one
class to the other. If a datapoint i is correctly an-
notated, then we would expect its corresponding
γi to be zero. If it actually belongs to the posi-
tive class but is labelled negative, then γi might be
positive, and analogously for the other direction.

One way to interpret the model is that it al-
lows the log-odds of select datapoints to be
shifted. Compared to models based on label-
flipping, where there is a global set of flipping
probabilities, our method has the advantage of tar-
geting each example individually.

It is worth noting that there is no difficulty in
regularizing the θ parameters as well. For exam-
ple, if we choose to use an L1 penalty then our
objective becomes

l(θ, γ) =
n∑
i=1

[
yi log g(θTxi + γi) (2)

+ (1− yi) log
(
1− g(θTxi + γi)

)]
− κ

m∑
j=1

|θj | − λ
n∑
i=1

|γi|.

Finally, it may seem concerning that we have
introduced a new parameter for each datapoint.
But in many applications the number of features
already exceeds n, so with proper regularization,
this increase is actually quite reasonable.

3.1 Training

Notice that adding these shift parameters is equiv-
alent to introducing n features, where the ith new
feature is 1 for datapoint i and 0 otherwise. With

this observation, we can simply modify the fea-
ture matrix and parameter vector and train the lo-
gistic model as usual. Specifically, we let θ′ =
(θ0, . . . , θm, γ1, . . . , γn) and X ′ = [X|In] so that
the objective (1) simplifies to

l(θ′) =
n∑
i=1

[
yi log g(θ′Tx′i)

+ (1− yi) log
(
1− g(θ′Tx′i)

)]− λm+n∑
j=m+1

|θ′(j)|.

Upon writing the objective in this way, we imme-
diately see that it is convex, just as standard L1-
penalized logistic regression is convex.

3.2 Testing

To obtain our final logistic model, we keep only
the θ parameters. Predictions are then made as
usual:

I{g(θ̂Tx) > 0.5}.
3.3 Selecting Regularization Parameters

The parameter λ from equation (1) would nor-
mally be chosen through cross-validation, but our
set-up is unusual in that the training set may con-
tain errors, and even if we have a designated devel-
opment set it is unlikely to be error-free. We found
in simulations that the errors largely do not inter-
fere in selecting λ, so in the experiments below we
cross-validate as normal.

Notice that λ has a direct effect on the number
of nonzero shifts γ and hence the suspected num-
ber of errors in the training set. So if we have in-
formation about the noise level, we can directly
incorporate it into the selection procedure. For ex-
ample, we may believe the training set has no more
than 15% noise, and so would restrict the choice
of λ during cross-validation to only those values
where 15% or fewer of the estimated shift param-
eters are nonzero.

We now consider situations in which the θ pa-
rameters are regularized as well. Assume, for ex-
ample, that we use L1-regularization as in equa-
tion (2), so that we now need to optimize over both
κ and λ. We perform the following simple proce-
dure:

1. Cross-validate using standard logistic regres-
sion to select κ.

2. Fix this value for κ, and cross-validate using
the robust model to find the best choice of λ.
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method suspects identified false positives
Alon et al. (1999) T2 T30 T33 T36 T37 N8 N12 N34 N36
Furey et al. (2000) • • • • • •
Kadota et al. (2003) • • • • • T6, N2
Malossini et al. (2006) • • • • • • • T8, N2, N28, N29
Bootkrajang et al. (2012) • • • • • • •
Robust LR • • • • • • •

Table 1: Results of various error-identification methods on the colon cancer dataset. The first row lists
the samples that are biologically confirmed to be suspicious, and each other row gives the output from
an automatic detection method. Bootkrajang et al. report confidences, so we threshold at 0.5 to obtain
these results.

4 Experiments

We conduct two sets of experiments to assess the
effectiveness of the approach, in terms of both
identifying mislabelled examples and producing
accurate predictions.

4.1 Contaminated Data

Our first experiment is centered around a biologi-
cal dataset with suspected labelling errors. Called
the colon cancer dataset, it contains the expres-
sion levels of 2000 genes from 40 tumor and 22
normal tissues (Alon et al., 1999). There is evi-
dence in the literature that certain tissue samples
may have been cross-contaminated. In particular,
5 tumor and 4 normal samples should have their
labels flipped.

In this experiment, we examine the model’s
ability to identify mislabelled training examples.
Because there are many more features than data-
points and it is likely that not all genes are relevant,
we choose to place an L1 penalty on θ.

Using glmnet, an R package for training reg-
ularized models (Friedman et al., 2009), we se-
lect κ and λ using cross-validation. Looking at
the resulting values for γ, we find that only 7 of
the shift parameters are nonzero and that each one
corresponds to a suspicious datapoint. As further
confirmation, the signs of the gammas correctly
match the direction of the mislabelling. Compared
to previous attempts to automatically detect errors
in this dataset, our approach identifies at least as
many suspicious examples but with no false posi-
tives. A detailed comparison is given in Table 1.
Although Bootkrajang and Kaban (2012) are quite
accurate, it is worth noting that due to its noncon-
vexity, their model needed to be trained 20 times
to achieve these results.

4.2 Manually Annotated Data

We now consider the problem of named entity
recognition (NER) to evaluate how our model per-
forms in a large-scale prediction task. In tradi-
tional NER, the goal is to determine whether each
word is a person, organization, location, or not a
named entity (‘other’). Since our model is binary,
we concentrate on the task of deciding whether a
word is a person or not. (This task does not triv-
ially reduce to finding the capitalized words, as the
model must distinguish between people and other
named entities like organizations).

For training, we use a large, noisy NER dataset
collected by Jenny Finkel. The data was created
by taking various Wikipedia articles and giving
them to five Amazon Mechanical Turkers to anno-
tate. Few to no quality controls were put in place,
so that certain annotators produced very noisy la-
bels. To construct the train set we chose a Turker
who was about average in how much he disagreed
with the majority vote, and used only his annota-
tions. Negative examples are subsampled to bring
the class ratio to a reasonable level, for a total of
200,000 negative and 24,002 positive examples.
We find that in 0.4% of examples, the majority
agreed they were negative but the chosen annota-
tor marked them positive, and 7.5% were labelled
positive by the majority but negative by the an-
notator. Note that we still include examples for
which there was no majority consensus, so these
noise estimates are quite conservative.

We evaluate on the English development test set
from the CoNLL shared task (Tjong Kim Sang and
Meulder, 2003). This data consists of news arti-
cles from the Reuters corpus, hand-annotated by
researchers at the University of Antwerp.

We extract a set of features using Stanford’s
NER pipeline (Finkel et al., 2005). This set was

127



model precision recall F1
standard 76.99 85.87 81.19
flipping 76.62 86.28 81.17
robust 77.04 90.47 83.22

Table 2: Performance of standard vs. robust logis-
tic regression in the Wikipedia NER experiment.
The flipping model refers to the approach from
Bootkrajang and Kaban (2012).

chosen for simplicity and is not highly engineered
– it largely consists of lexical features such as the
current word, the previous and next words in the
sentence, as well as character n-grams and vari-
ous word shape features. With a total of 393,633
features in the train set, we choose to use L2-
regularization, so that our penalty now becomes

1
2σ2

m∑
j=0

|θj |2 + λ

n∑
i=1

|γi|.

This choice is natural as L2 is the most common
form of regularization in NLP, and we wish to ver-
ify that our approach works for penalties besides
L1.

The robust model is fit using Orthant-Wise
Limited-Memory Quasi Newton (OWL-QN), a
technique for optimizing an L1-penalized objec-
tive (Andrew and Gao, 2007). We tune both
models through 5-fold cross-validation to obtain
σ2 = 1.0 and λ = 0.1. Note that from the way
we cross-validate (first tuning σ using standard lo-
gistic regression, fixing this choice, then tuning λ)
our procedure may give an unfair advantage to the
baseline.

We also compare against the algorithm pro-
posed in Bootkrajang and Kaban (2012), an exten-
sion of logistic regression mentioned in the section
on prior work. This approach assumes that each
example’s true label is flipped with a certain prob-
ability before being observed, and fits the resulting
latent-variable model using EM.

The results of these experiments are shown in
Table 2 as well as Figure 2. Robust logistic re-
gression offers a noticeable improvement over the
baseline, and this improvement holds at essentially
all levels of precision and recall. Interestingly, be-
cause of the large dimension, the flipping model
consistently learns that no labels have been flipped
and thus does not show a substantial difference
with standard logistic regression.
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Figure 2: Precision-recall curve obtained from
training on noisy Wikipedia data and testing on
CoNLL. The flipping model refers to the approach
from Bootkrajang and Kaban (2012).

5 Future Work

A natural direction for future work is to extend the
model to a multi-class setting. One option is to
introduce a γ for every class except the negative
one, so that there are n(c − 1) shift parameters in
all. We could then apply a group lasso, with each
group consisting of the γ for a particular datapoint
(Meier et al., 2008). This way all of a datapoint’s
shift parameters drop out together, which corre-
sponds to the example being correctly labelled.

CRFs and other sequence models could also
benefit from the addition of shift parameters.
Since the extra variables can be neatly folded into
the linear term, convexity is preserved and the
model could essentially be trained as usual.
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