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Abstract

Recent work classifying citations in scien-
tific literature has shown that it is possi-
ble to improve classification results with
extensive feature engineering. While this
result confirms that citation classification
is feasible, there are two drawbacks to
this approach: (i) it requires a large anno-
tated corpus for supervised classification,
which in the case of scientific literature
is quite expensive; and (ii) feature engi-
neering that is too specific to one area of
scientific literature may not be portable to
other domains, even within scientific liter-
ature. In this paper we address these two
drawbacks. First, we frame citation clas-
sification as a domain adaptation task and
leverage the abundant labeled data avail-
able in other domains. Then, to avoid
over-engineering specific citation features
for a particular scientific domain, we ex-
plore a deep learning neural network ap-
proach that has shown to generalize well
across domains using unigram and bigram
features. We achieve better citation clas-
sification results with this cross-domain
approach than using in-domain classifica-
tion.

1 Introduction

Citations have been categorized and studied for
a half-century (Garfield, 1955) to better under-
stand when and how citations are used, and
to record and measure how information is ex-
changed (e.g., networks of co-cited papers or au-
thors (Small and Griffith, 1974)). Recently, the
value of this information has been shown in practi-
cal applications such as information retrieval (IR)

∗ This work was primarily conducted at the IMS – Uni-
versity of Stuttgart.

(Ritchie et al., 2008), summarization (Qazvinian
and Radev, 2008), and even identifying scientific
breakthroughs (Small and Klavans, 2011). We ex-
pect that by identifying and labeling the function
of citations we can improve the effectiveness of
these applications.

There has been no consensus on what aspects
or functions of a citation should be annotated and
how. Early citation classification focused more on
citation motivation (Garfield, 1964), while later
classification considered more the citation func-
tion (Chubin and Moitra, 1975). Recent stud-
ies using automatic classification have continued
this tradition of introducing a new classification
scheme with each new investigation into the use
of citations (Nanba and Okumura, 1999; Teufel
et al., 2006a; Dong and Schäfer, 2011; Abu-Jbara
et al., 2013). One distinction that has been more
consistently annotated across recent citation clas-
sification studies is between positive and negative
citations (Athar, 2011; Athar and Teufel, 2012;
Abu-Jbara et al., 2013).1 The popularity of this
distinction likely owes to the prominence of sen-
timent analysis in NLP (Liu, 2010). We follow
much of the recent work on citation classification
and concentrate on citation polarity.

2 Domain Adaptation

By concentrating on citation polarity we are able
to compare our classification to previous citation
polarity work. This choice also allows us to access
the wealth of existing data containing polarity an-
notation and then frame the task as a domain adap-
tation problem. Of course the risk in approaching
the problem as domain adaptation is that the do-
mains are so different that the representation of
a positive instance of a movie or product review,
for example, will not coincide with that of a posi-

1Dong and Schäfer (2011) also annotate polarity, which
can be found in their dataset (described later), but this is not
discussed in their paper.
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tive scientific citation. On the other hand, because
there is a limited amount of annotated citation data
available, by leveraging large amounts of anno-
tated polarity data we could potentially even im-
prove citation classification.

We treat citation polarity classification as a sen-
timent analysis domain adaptation task and there-
fore must be careful not to define features that are
too domain specific. Previous work in citation po-
larity classification focuses on finding new cita-
tion features to improve classification, borrowing
a few from text classification in general (e.g., n-
grams), and perhaps others from sentiment analy-
sis problems (e.g., the polarity lexicon from Wil-
son et al. (2005)). We would like to do as little
feature engineering as possible to ensure that the
features we use are meaningful across domains.
However, we do still want features that somehow
capture the inherent positivity or negativity of our
labeled instances, i.e., citations or Amazon prod-
uct reviews. Currently a popular approach for ac-
complishing this is to use deep learning neural net-
works (Bengio, 2009), which have been shown
to perform well on a variety of NLP tasks us-
ing only bag-of-word features (Collobert et al.,
2011). More specifically related to our work, deep
learning neural networks have been successfully
employed for sentiment analysis (Socher et al.,
2011) and for sentiment domain adaptation (Glo-
rot et al., 2011). In this paper we examine one
of these approaches, marginalized stacked denois-
ing autoencoders (mSDA) from Chen et al. (2012),
which has been successful in classifying the po-
larity of Amazon product reviews across product
domains. Since mSDA achieved state-of-the-art
performance in Amazon product domain adapta-
tion, we are hopeful it will also be effective when
switching to a more distant domain like scientific
citations.

3 Experimental Setup

3.1 Corpora

We are interested in domain adaptation for citation
classification and therefore need a target dataset of
citations and a non-citation source dataset. There
are two corpora available that contain citation
function annotation, the DFKI Citation Corpus
(Dong and Schäfer, 2011) and the IMS Citation
Corpus (Jochim and Schütze, 2012). Both corpora
have only about 2000 instances; unfortunately,
there are no larger corpora available with citation

annotation and this task would benefit from more
annotated data. Due to the infrequent use of neg-
ative citations, a substantial annotation effort (an-
notating over 5 times more data) would be nec-
essary to reach 1000 negative citation instances,
which is the number of negative instances in a sin-
gle domain in the multi-domain corpus described
below.

The DFKI Citation Corpus2 has been used for
classifying citation function (Dong and Schäfer,
2011), but the dataset also includes polarity an-
notation. The dataset has 1768 citation sentences
with polarity annotation: 190 are labeled as pos-
itive, 57 as negative, and the vast majority, 1521,
are left neutral. The second citation corpus, the
IMS Citation Corpus3 contains 2008 annotated ci-
tations: 1836 are labeled positive and 172 are la-
beled negative. Jochim and Schütze (2012) use
annotation labels from Moravcsik and Murugesan
(1975) where positive instances are labeled confir-
mative, negative instances are labeled negational,
and there is no neutral class. Because each of
the citation corpora is of modest size we combine
them to form one citation dataset, which we will
refer to as CITD. The two citation corpora com-
prising CITD both come from the ACL Anthol-
ogy (Bird et al., 2008): the IMS corpus uses the
ACL proceedings from 2004 and the DFKI corpus
uses parts of the proceedings from 2007 and 2008.
Since mSDA also makes use of large amounts of
unlabeled data, we extend our CITD corpus with
citations from the proceedings of the remaining
years of the ACL, 1979–2003, 2005–2006, and
2009.

There are a number of non-citation corpora
available that contain polarity annotation. For
these experiments we use the Multi-Domain Senti-
ment Dataset4 (henceforth MDSD), introduced by
Blitzer et al. (2007). We use the version of the
MDSD that includes positive and negative labels
for product reviews taken from Amazon.com in
the following domains: books, dvd, electronics,
and kitchen. For each domain there are 1000 pos-
itive reviews and 1000 negative reviews that com-
prise the “labeled” data, and then roughly 4000
more reviews in the “unlabeled”5 data. Reviews

2https://aclbib.opendfki.de/repos/
trunk/citation_classification_dataset/

3http://www.ims.uni-stuttgart.de/
˜jochimcs/citation-classification/

4http://www.cs.jhu.edu/˜mdredze/
datasets/sentiment/

5It is usually treated as unlabeled data even though it ac-
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Corpus Instances Pos. Neg. Neut.

DFKI 1768 190 57 1521
IMS 2008 1836 172 –
MDSD 27,677 13,882 13,795 –

Table 1: Polarity corpora.

were preprocessed so that for each review you find
a list of unigrams and bigrams with their frequency
within the review. Unigrams from a stop list of 55
stop words are removed, but stop words in bigrams
remain.

Table 1 shows the distribution of polarity labels
in the corpora we use for our experiments. We
combine the DFKI and IMS corpora into the CITD
corpus. We omit the citations labeled neutral from
the DFKI corpus because the IMS corpus does not
contain neutral annotation nor does the MDSD. It
is the case in many sentiment analysis corpora that
only positive and negative instances are included,
e.g., (Pang et al., 2002).

The citation corpora presented above are both
unbalanced and both have a highly skewed distri-
bution. The MDSD on the other hand is evenly
balanced and an effort was even made to keep
the data treated as “unlabeled” rather balanced.
For this reason, in line with previous work us-
ing MDSD, we balance the labeled portion of the
CITD corpus. This is done by taking 179 unique
negative sentences in the DFKI and IMS corpora
and randomly selecting an equal number of posi-
tive sentences. The IMS corpus can have multiple
labeled citations per sentence: there are 122 sen-
tences containing the 172 negative citations from
Table 1. The final CITD corpus comprises this
balanced corpus of 358 labeled citation sentences
plus another 22,093 unlabeled citation sentences.

3.2 Features
In our experiments, we restrict our features to un-
igrams and bigrams from the product review or
citation context (i.e., the sentence containing the
citation). This follows previous studies in do-
main adaptation (Blitzer et al., 2007; Glorot et al.,
2011). Chen et al. (2012) achieve state-of-the-art
results on MDSD by testing the 5000 and 30,000
most frequent unigram and bigram features.

Previous work in citation classification has
largely focused on identifying new features for

tually contains positive and negative labels, which have been
used, e.g., in (Chen et al., 2012).

improving classification accuracy. A significant
amount of effort goes into engineering new fea-
tures, in particular for identifying cue phrases,
e.g., (Teufel et al., 2006b; Dong and Schäfer,
2011). However, there seems to be little consen-
sus on which features help most for this task. For
example, Abu-Jbara et al. (2013) and Jochim and
Schütze (2012) find the list of polar words from
Wilson et al. (2005) to be useful, and neither study
lists dependency relations as significant features.
Athar (2011) on the other hand reported significant
improvement using dependency relation features
and found that the same list of polar words slightly
hurt classification accuracy. The classifiers and
implementation of features varies between these
studies, but the problem remains that there seems
to be no clear set of features for citation polarity
classification.

The lack of consensus on the most useful cita-
tion polarity features coupled with the recent suc-
cess of deep learning neural networks (Collobert et
al., 2011) further motivate our choice to limit our
features to the n-grams available in the product re-
view or citation context and not rely on external
resources or tools for additional features.

3.3 Classification with mSDA

For classification we use marginalized stacked de-
noising autoencoders (mSDA) from Chen et al.
(2012)6 plus a linear SVM. mSDA takes the con-
cept of denoising – introducing noise to make the
autoencoder more robust – from Vincent et al.
(2008), but does the optimization in closed form,
thereby avoiding iterating over the input vector to
stochastically introduce noise. The result of this
is faster run times and currently state-of-the-art
performance on MDSD, which makes it a good
choice for our domain adaptation task. The mSDA
implementation comes with LIBSVM, which we
replace with LIBLINEAR (Fan et al., 2008) for
faster run times with no decrease in accuracy. LIB-
LINEAR, with default settings, also serves as our
baseline.

3.4 Outline of Experiments

Our initial experiments simply extend those of
Chen et al. (2012) (and others who have used
MDSD) by adding another domain, citations. We
train on each of the domains from the MDSD –

6We use their MATLAB implementation available at
http://www.cse.wustl.edu/˜mchen/code/
mSDA.tar.
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Figure 1: Cross domain macro-F1 results train-
ing on Multi-Domain Sentiment Dataset and test-
ing on citation dataset (CITD). The horizontal line
indicates macro-F1 for in-domain citation classifi-
cation.

books, dvd, electronics, and kitchen – and test on
the citation data. We split the labeled data 80/20
following Blitzer et al. (2007) (cf. Chen et al.
(2012) train on all “labeled” data and test on the
“unlabeled” data). These experiments should help
answer two questions: does a larger amount of
training data, even if out of domain, improve ci-
tation classification; and how well do the differ-
ent product domains generalize to citations (i.e.,
which domains are most similar to citations)?

In contrast to previous work using MDSD, a lot
of the work in domain adaptation also leverages a
small amount of labeled target data. In our second
set of experiments, we follow the domain adap-
tation approaches described in (Daumé III, 2007)
and train on product review and citation data be-
fore testing on citations.

4 Results and Discussion

4.1 Citation mSDA
Our initial results show that using mSDA for do-
main adaptation to citations actually outperforms
in-domain classification. In Figure 1 we com-
pare citation classification with mSDA to the SVM
baseline. Each pair of vertical bars represents
training on a domain from MDSD (e.g., books)
and testing on CITD. The dark gray bar indicates
the F1 scores for the SVM baseline using the

30,000 features and the lighter gray bar shows the
mSDA results. The black horizontal line indicates
the F1 score for in-domain citation classification,
which sometimes represents the goal for domain
adaptation. We can see that using a larger dataset,
even if out of domain, does improve citation clas-
sification. For books, dvd, and electronics, even
the SVM baseline improves on in-domain classifi-
cation. mSDA does better than the baseline for all
domains except dvd. Using a larger training set,
along with mSDA, which makes use of the un-
labeled data, leads to the best results for citation
classification.

In domain adaptation we would expect the do-
mains most similar to the target to lead to the
highest results. Like Dai et al. (2007), we mea-
sure the Kullback-Leibler divergence between the
source and target domains’ distributions. Accord-
ing to this measure, citations are most similar to
the books domain. Therefore, it is not surprising
that training on books performs well on citations,
and intuitively, among the domains in the Amazon
dataset, a book review is most similar to a scien-
tific citation. This makes the good mSDA results
for electronics a bit more surprising.

4.2 Easy Domain Adaptation

The results in Section 4.1 are for semi-supervised
domain adaptation: the case where we have some
large annotated corpus (Amazon product reviews)
and a large unannotated corpus (citations). There
have been a number of other successful attempts at
fully supervised domain adaptation, where it is as-
sumed that some small amount of data is annotated
in the target domain (Chelba and Acero, 2004;
Daumé III, 2007; Jiang and Zhai, 2007). To see
how mSDA compares to supervised domain adap-
tation we take the various approaches presented by
Daumé III (2007). The results of this comparison
can be seen in Table 2. Briefly, “All” trains on
source and target data; “Weight” is the same as
“All” except that instances may be weighted dif-
ferently based on their domain (weights are chosen
on a development set); “Pred” trains on the source
data, makes predictions on the target data, and
then trains on the target data with the predictions;
“LinInt” linearly interpolates predictions using the
source-only and target-only models (the interpola-
tion parameter is chosen on a development set);
“Augment” uses a larger feature set with source-
specific and target-specific copies of features; see
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Domain Baseline All Weight Pred LinInt Augment mSDA

books 54.5 54.8 52.0 51.9 53.4 53.4 57.1
dvd 53.2 50.9 56.0 53.4 51.9 47.5 51.6
electronics 53.4 49.0 50.5 53.4 54.8 51.9 59.2
kitchen 47.9 48.8 50.7 53.4 52.6 49.2 50.1
citations 51.9 – – – – – 54.9

Table 2: Macro-F1 results on CITD using different domain adaptation approaches.

(Daumé III, 2007) for further details.
We are only interested in citations as the tar-

get domain. Daumé’s source-only baseline cor-
responds to the “Baseline” column for domains:
books, dvd, electronics, and kitchen; while his
target-only baseline can be seen for citations in the
last row of the “Baseline” column in Table 2.

The semi-supervised mSDA performs quite
well with respect to the fully supervised ap-
proaches, obtaining the best results for books and
electronics, which are also the highest scores over-
all. Weight and Pred have the highest F1 scores for
dvd and kitchen respectively. Daumé III (2007)
noted that the “Augment” algorithm performed
best when the target-only results were better than
the source-only results. When this was not the
case in his experiments, i.e., for the treebank
chunking task, both Weight and Pred were among
the best approaches. In our experiments, training
on source-only outperforms target-only, with the
exception of the kitchen domain.

We have included the line for citations to see the
results training only on the target data (F1 = 51.9)
and to see the improvement when using all of the
unlabeled data with mSDA (F1 = 54.9).

4.3 Discussion

These results are very promising. Although they
are not quite as high as other published results
for citation polarity (Abu-Jbara et al., 2013)7, we
have shown that you can improve citation polarity
classification by leveraging large amounts of an-
notated data from other domains and using a sim-
ple set of features.

mSDA and fully supervised approaches can also
be straightforwardly combined. We do not present
those results here due to space constraints. The

7Their work included a CRF model to identify the citation
context that gave them an increase of 9.2 percent F1 over a
single sentence citation context. Our approach achieves sim-
ilar macro-F1 on only the citation sentence, but using a dif-
ferent corpus.

combination led to mixed results: adding mSDA
to the supervised approaches tended to improve F1

over those approaches but results never exceeded
the top mSDA numbers in Table 2.

5 Related Work

Teufel et al. (2006b) introduced automatic citation
function classification, with classes that could be
grouped as positive, negative, and neutral. They
relied in part on a manually compiled list of cue
phrases that cannot easily be transferred to other
classification schemes or other scientific domains.
Athar (2011) followed this and was the first to
specifically target polarity classification on scien-
tific citations. He found that dependency tuples
contributed the most significant improvement in
results. Abu-Jbara et al. (2013) also looks at both
citation function and citation polarity. A big con-
tribution of this work is that they also train a CRF
sequence tagger to find the citation context, which
significantly improves results over using only the
citing sentence. Their feature analysis indicates
that lexicons for negation, speculation, and po-
larity were most important for improving polarity
classification.

6 Conclusion

Robust citation classification has been hindered by
the relative lack of annotated data. In this pa-
per we successfully use a large, out-of-domain,
annotated corpus to improve the citation polarity
classification. Our approach uses a deep learning
neural network for domain adaptation with labeled
out-of-domain data and unlabeled in-domain data.
This semi-supervised domain adaptation approach
outperforms the in-domain citation polarity classi-
fication and other fully supervised domain adapta-
tion approaches.
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