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Abstract

We introduce ConnotationWordNet, a con-
notation lexicon over the network of words
in conjunction with senses. We formulate
the lexicon induction problem as collec-
tive inference over pairwise-Markov Ran-
dom Fields, and present a loopy belief
propagation algorithm for inference. The
key aspect of our method is that it is
the first unified approach that assigns the
polarity of both word- and sense-level
connotations, exploiting the innate bipar-
tite graph structure encoded in WordNet.
We present comprehensive evaluation to
demonstrate the quality and utility of the
resulting lexicon in comparison to existing
connotation and sentiment lexicons.

1 Introduction

We introduce ConnotationWordNet, a connotation
lexicon over the network of words in conjunction
with senses, as defined in WordNet. A connotation
lexicon, as introduced first by Feng et al. (2011),
aims to encompass subtle shades of sentiment a
word may conjure, even for seemingly objective
words such as “sculpture”, “Ph.D.”, “rosettes”.
Understanding the rich and complex layers of con-
notation remains to be a challenging task. As a
starting point, we study a more feasible task of
learning the polarity of connotation.

For non-polysemous words, which constitute a
significant portion of English vocabulary, learning
the general connotation at the word-level (rather
than at the sense-level) would be a natural oper-
ational choice. However, for polysemous words,
which correspond to most frequently used words,
it would be an overly crude assumption that the
same connotative polarity should be assigned for
all senses of a given word. For example, consider
“abound”, for which lexicographers of WordNet
prescribe two different senses:

ychoilcs.stonybrook.edu

e (v) abound: (be abundant of plentiful; exist
in large quantities)

e (v) abound, burst, bristle: (be in a state of
movement or action) “The room abounded
with screaming children”; “The garden bris-
tled with toddlers”

For the first sense, which is the most commonly
used sense for “abound”, the general overtone of
the connotation would seem positive. That is, al-
though one can use this sense in both positive and
negative contexts, this sense of “abound” seems
to collocate more often with items that are good to
be abundant (e.g., “resources”), than unfortunate
items being abundant (e.g., “complaints”).

However, as for the second sense, for which
“burst” and “bristle” can be used interchangeably
with respect to this particular sense,' the general
overtone is slightly more negative with a touch of
unpleasantness, or at least not as positive as that of
the first sense. Especially if we look up the Word-
Net entry for “bristle”, there are noticeably more
negatively connotative words involved in its gloss
and examples.

This word sense issue has been a universal chal-
lenge for a range of Natural Language Processing
applications, including sentiment analysis. Recent
studies have shown that it is fruitful to tease out
subjectivity and objectivity corresponding to dif-
ferent senses of the same word, in order to improve
computational approaches to sentiment analysis
(e.g. Pestian et al. (2012), Mihalcea et al. (2012)
Balahur et al. (2014)). Encouraged by these recent
successes, in this study, we investigate if we can
attain similar gains if we model the connotative
polarity of senses separately.

There is one potential practical issue we would
like to point out in building a sense-level lexical
resource, however. End-users of such a lexicon
may not wish to deal with Word Sense Disam-

"Hence a sense in WordNet is defined by synset (= syn-
onym set), which is the set of words sharing the same sense.
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biguation (WSD), which is known to be often too
noisy to be incorporated into the pipeline with re-
spect to other NLP tasks. As a result, researchers
often would need to aggregate labels across differ-
ent senses to derive the word-level label. Although
such aggregation is not entirely unreasonable, it
does not seem to be the most optimal and princi-
pled way of integrating available resources.

Therefore, in this work, we present the first uni-
fied approach that learns both sense- and word-
level connotations simultaneously. This way, end-
users will have access to more accurate sense-level
connotation labels if needed, while also having ac-
cess to more general word-level connotation la-
bels. We formulate the lexicon induction problem
as collective inference over pairwise-Markov Ran-
dom Fields (pairwise-MRF) and derive a loopy be-
lief propagation algorithm for inference.

The key aspect of our approach is that we ex-
ploit the innate bipartite graph structure between
words and senses encoded in WordNet. Although
our approach seems conceptually natural, previous
approaches, to our best knowledge, have not di-
rectly exploited these relations between words and
senses for the purpose of deriving lexical knowl-
edge over words and senses collectively. In ad-
dition, previous studies (for both sentiment and
connotation lexicons) aimed to produce only ei-
ther of the two aspects of the polarity: word-level
or sense-level, while we address both.

Another contribution of our work is the intro-
duction of loopy belief propagation (loopy-BP)
as a lexicon induction algorithm. Loopy-BP in
our study achieves statistically significantly better
performance over the constraint optimization ap-
proaches previously explored. In addition, it runs
much faster and it is considerably easier to imple-
ment. Last but not least, by using probabilistic rep-
resentation of pairwise-MRF in conjunction with
Loopy-BP as inference, the resulting solution has
the natural interpretation as the intensity of con-
notation. This contrasts to approaches that seek
discrete solutions such as Integer Linear Program-
ming(Papadimitriou and Steiglitz, 1998).

ConnotationWordNet, the final outcome of our
study, is a new lexical resource that has conno-
tation labels over both words and senses follow-
ing the structure of WordNet. The lexicon is pub-
licly available at: http://www.cs.sunysb.
edu/ -~ junkang/connotation_wordnet.)

In what follows, we will first describe the net-
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Figure 1: GWORP*SENSE with words and senses.

work of words and senses (Section 2), then intro-
duce the representation of the network structure as
pairwise Markov Random Fields, and a loopy be-
lief propagation algorithm as collective inference
(Section 3). We then present comprehensive eval-
uation (Section 4 & 5 & 6), followed by related
work (Section 7) and conclusion (Section 8).

2 Network of Words and Senses

The connotation graph, called GWORPHSENSE g 5

heterogeneous graph with multiple types of nodes
and edges. As shown in Figure 1, it contains two
types of nodes; (i) lemmas (i.e., words, 115K)
and (ii) synsets (63K), and four types of edges;
(t1) predicate-argument (179K), (¢2) argument-
argument (144K), (t3) argument-synset (126K),
and (t4) synset-synset (3.4K) edges.

The predicate-argument edges, first introduced
by Feng et al. (2011), depict the selectional prefer-
ence of connotative predicates (i.e., the polarity of
a predicate indicates the polarity of its arguments)
and encode their co-occurrence relations based
on the Google Web 1T corpus. The argument-
argument edges are based on the distributional
similarities among the arguments. The argument-
synset edges capture the synonymy between argu-
ment nodes through the corresponding synsets. Fi-
nally, the synset-synset edges depict the antonym
relations between synset pairs.

In general, our graph construction is similar to
that of Feng et al. (2013), but there are a few im-
portant differences. Most notably, we model both
words and synsets explicitly, and exploit the mem-
bership relations between words and senses. We
expect that edges between words and senses will
encourage senses that belong to the same word to
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receive the same connotation label. Conversely,
we expect that these edges will also encourage
words that belong to the same sense (i.e., synset
definition) to receive the same connotation label.

Another benefit of our approach is that for var-
ious WordNet relations (e.g., antonym relations),
which are defined over synsets (not over words),
we can add edges directly between corresponding
synsets, rather than projecting (i.e., approximat-
ing) those relations over words. Note that the lat-
ter, which has been employed by several previous
studies (e.g., Kamps et al. (2004), Takamura et al.
(2005), Andreevskaia and Bergler (2006), Su and
Markert (2009), Lu et al. (2011), Kaji and Kit-
suregawa (2007), Feng et al. (2013)), could be a
source of noise, as one needs to assume that the
semantic relation between a pair of synsets trans-
fers over the pair of words corresponding to that
pair of synsets. For polysemous words, this as-
sumption may be overly strong.

3 Pairwise Markov Random Fields and
Loopy Belief Propagation

We formulate the task of learning sense- and word-
level connotation lexicon as a graph-based clas-
sification task (Sen et al., 2008). More formally,
we denote the connotation graph GWORP+SENSE py
G = (V, E), in which a total of n word and synset
nodes V. = {vq,...,v,} are connected with
typed edges e(v;,vj,t) € E, where edge types
t € {pred-arg,arg-arg, syn-arg, syn-syn} de-
pict the four edge types as described in Section
2. A neighborhood function N, where N, =
{u| e(u,v) € E} C V, describes the underlying
network structure.

In our collective classification formulation, each
node in V' is represented as a random variable that
takes a value from an appropriate class label do-
main; in our case, L = {+, —} for positive and
negative connotation. In this classification task,
we denote by )Y the nodes the labels of which need
to be assigned, and let y; refer to Y;’s label.

3.1 Pairwise Markov Random Fields

We next define our objective function. We pro-
pose to use an objective formulation that utilizes
pairwise Markov Random Fields (MRFs) (Kinder-
mann and Snell, 1980), which we adapt to our
problem setting. MRFs are a class of probabilistic
graphical models that are suited for solving infer-
ence problems in networked data. An MRF con-

sists of an undirected graph where each node can
be in any of a finite number of states (i.e., class
labels). The state of a node is assumed to be de-
pendent on each of its neighbors and independent
of other nodes in the graph.” In pairwise MRFs,
the joint probability of the graph can be written as
a product of pairwise factors, parameterized over
the edges. These factors are referred to as clique
potentials in general MRFs, which are essentially
functions that collectively determine the graph’s
joint probability.

Specifically, let G = (V, E') denote a network
of random variables, where V' consists of the un-
observed variables ) that need to be assigned val-
ues from label set £. Let ¥ denote a set of clique
potentials that consists of two types of factors:

e Foreach Y; € YV, ¢; € VU is a prior map-
ping ¢; : L — R>(, where R>( denotes non-
negative real numbers.

e Foreach e(Y;,Yj,t) € E, ¢}; € W is a com-
patibility mapping 1}, : £ x L — Rxo.

Objective formulation Given an assignment y
to all the unobserved variables ) and x to ob-
served ones X (variables with known labels, if
any), our objective function is associated with the
following joint probability distribution

P(ylx) = Z(lx) ITew I v

Y€y e(Y;,Y; t)EE
(1

where Z(x) is the normalization function. Our
goal is then to infer the maximum likelihood as-
signment of states (i.e., labels) to unobserved vari-
ables (i.e., nodes) that will maximize Equation (1).

Problem Definition Having introduced our
graph-based classification task and objective for-
mulation, we define our problem more formally.

Given )
- a connotation graph G = (V, E) of words

and synsets connected with typed edges,
- prior knowledge (i.e., probabilities) of (some
or all) nodes belonging to each class,

- compatibility of two nodes with a given pair
of labels being connected to each other;
Classify the nodes Y; € ), into one of two classes;
L = {4+, —}, such that the class assignments y;

maximize our objective in Equation (1).
We can further rank the network objects by the
probability of their connotation polarity.

“This assumption yields a pairwise Markov Random Field
(MRF); a special case of general MRFs (Yedidia et al., 2003).

1546



3.2 Loopy Belief Propagation

Finding the best assignments to unobserved vari-
ables in our objective function is the inference
problem. The brute force approach through enu-
meration of all possible assignments is exponen-
tial and thus intractable. In general, exact in-
ference is known to be NP-hard and there is
no known algorithm which can be theoretically
shown to solve the inference problem for gen-
eral MRFs. Therefore in this work, we em-
ploy a computationally tractable (in fact linearly
scalable with network size) approximate infer-
ence algorithm called Loopy Belief Propagation
(LBP) (Yedidia et al., 2003), which we extend to
handle typed graphs like our connotation graph.
Our inference algorithm is based on iterative
message passing and the core of it can be concisely
expressed as the following two equations:

i) = 3 (50 0

yi€L

H mkﬂ'(yz‘)) Vyie L (2)

Y, EN; ﬁy\Yj

bi(yi) = Bvily) [[ mj—i(vi), Vi€ £

Y;eN;NY
3)

A message m;_.; is sent from node 7 to node j
and captures the belief of 7 about j, which is the
probability distribution over the labels of j; i.e.
what ¢ “thinks” j’s label is, given the current la-
bel of ¢ and the fype of the edge that connects ¢
and j. Beliefs refer to marginal probability dis-
tributions of nodes over labels; for example b;(y;)
denotes the belief of node 7 having label y;. o and
[ are the normalization constants, which respec-
tively ensure that each message and each set of
marginal probabilities sum to 1. At every iteration,
each node computes its belief based on messages
received from its neighbors, and uses the compat-
ibility mapping to transform its belief into mes-
sages for its neighbors. The key idea is that after
enough iterations of message passes between the
nodes, the “conversations” are likely to come to a
consensus, which determines the marginal proba-
bilities of all the unknown variables.

The pseudo-code of our method is given in Al-
gorithm 1. It first initializes all messages to 1
and priors to unbiased (i.e., equal) probabilities
for all nodes except the seed nodes for which the
sentiment is known (lines 3-9). It then proceeds
by making each Y; € )Y communicate messages

Algorithm 1: CONNOTATION INFERENCE

i Input: Connotation graph G=(V, E), prior
potentials 15 for seed words s € S, and
compatibility potentials wfj

. Output: Connotation label probabilities for
eachnode i € V\P

s foreach e(Y;, Y], t) € E do// initialize msg.s

. foreach y; € L do

: | miy(y;) — 1

« foreach i € V do // initialize priors

7 foreach y; € L do

‘ L if i € S then ¢;(y;) < ;(y;) else
dily;) — 1/IL]

» repeat // iterative message passing
w | foreache(Y;,Yj,t) € E,Y; € YV\% do
1 foreach y; € L do

L L Use Equation (2)

» until all messages stop changing
« foreach Y; € Y'Y\ do // compute final beliefs
15 foreach y; € £ do

L L Use Equation (3)

with their neighbors in an iterative fashion until
the messages stabilize (lines 10-14), i.e. conver-
gence is reached.> At convergence, we calculate
the marginal probabilities, that is of assigning Y;
with label y;, by computing the final beliefs b;(y;)
(lines 15-17). We use these maximum likelihood
probabilities for label assignment; for each node i,
we assign the label £; « max ,, b;(y;).

To completely define our algorithm, we need to
instantiate the potentials W, in particular the priors
and the compatibilities, which we discuss next.

Priors The prior beliefs 1); of nodes can be suit-
ably initialized if there is any prior knowledge for
their connotation sentiment (e.g., enjoy is posi-
tive, suffer is negative). As such, our method
is flexible to integrate available side information.
In case there is no prior knowledge available, each
node is initialized equally likely to have any of the
possible labels, i.e., ﬁ as in Algorithm 1 (line 9).

Compatibilities The compatibility potentials
can be thought of as matrices, with entries

3 Although convergence is not theoretically guaranteed, in
practice LBP converges to beliefs within a small threshold of
change (e.g., 10~°) fairly quickly with accurate results (Pan-
dit et al., 2007; McGlohon et al., 2009; Akoglu et al., 2013).

1547



wfj(yi, y;) that give the likelihood of a node hav-
ing label y;, given that it has a neighbor with label
y; to which it is connected through a type ¢ edge.
A key difference of our method from earlier mod-
els is that we use clique potentials that differ for
edge types, since the connotation graph is hetero-
geneous. This is exactly because the compatibil-
ity of class labels of two adjacent nodes depends
on the type of the edge connecting them: e.g.,
+ I L s highly compatible, whereas +
SYn-syn . .
——— + is unlikely; as syn-arg edges capture
synonymy; i.e., words-sense memberships, while
syn-syn edges depict antonym relations.

A sample instantiation of the compatibilities
is shown in Table 1. Notice that the potentials
for pred-arg, arg-arg, and syn-arg capture ho-
mophily, i.e., nodes with the same label are likely
to connect to each other through these types of
edges.* On the other hand, syn-syn edges con-
nect nodes that are antonyms of each other, and
thus the compatibilities capture the reverse rela-
tionship among their labels.

Table 1: Instantiation of compatibility potentials.
Entry wfj(yi,yj) is the compatibility of a node
with label y; having a neighbor labeled y;, given
the edge between ¢ and 7 is type ¢, for small e.

t:t1 A t: to A
P + — A + —
+ 1-€ € + 1-2¢ 2e
— € 1-€ — 2e 1-2¢
(t1) pred-arg (t2) arg-arg
t: t3 A t: t4 S
S + — S + —
+ 1-€ € + € 1-¢
— € 1-€ — 1-€ €

(t4) syn-syn
(antonym relations)

(t3) syn-arg
(synonym relations)

Complexity analysis Most demanding compo-
nent of Algorithm 1 is the iterative message pass-
ing over the edges (lines 10-14), with time com-
plexity O(mi?r), where m = |E| is the num-
ber of edges in the connotation graph, [ = |L|,
the classes, and r, the iterations until convergence.
Often, [ is quite small (in our case, [ = 2) and
r < m. Thus running time grows linearly with the
number of edges and is scalable to large datasets.

*arg-arg edges are based on co-occurrence (see Section
2), which does not carry as strong indication of the same con-
notation as e.g., synonymy. Thus, we enforce less homophily
for nodes connected through edges of arg-arg type.

4 Evaluation I: Agreement with
Sentiment Lexicons

ConnotationWordNet is expected to be the super-
set of a sentiment lexicon, as it is highly likely for
any word with positive/negative sentiment to carry
connotation of the same polarity. Thus, we use
two conventional sentiment lexicons, General In-
quirer (GENINQ) (Stone et al., 1966) and MPQA
(Wilson et al., 2005b), as surrogates to measure
the performance of our inference algorithm.

4.1 Variants of Graph Construction

The construction of the connotation graph, de-
noted by GWORPSENSE which includes words and
synsets, has been described in Section 2. In ad-
dition to this graph, we tried several other graph
constructions, the first three of which have previ-
ously been used in (Feng et al., 2013). We briefly
describe these graphs below, and compare perfor-
mance on all the graphs in the proceeding.

GWORP w/ PRED-ARG: This is a (bipartite)
subgraph of GWORP+SENSE ' which only includes
the connotative predicates and their arguments. As
such, it contains only type ¢; edges. The edges
between the predicates and the arguments can be
weighted by their Point-wise Mutual Information
(PMI)> based on the Google Web 1T corpus.

GWORP w/ OVERLAY: The second graph is also
a proper subgraph of GWORP+SENSE " ywhich in-
cludes the predicates and all the argument words.
Predicate words are connected to their arguments
as before. In addition, argument pairs (a1, ag) are
connected if they occurred together in the “a; and
a2” or “ag and a;” coordination (Hatzivassiloglou
and McKeown, 1997; Pickering and Branigan,
1998). This graph contains both type ¢; and o
edges. The edges can also be weighted based on
the distributional similarities of the word pairs.

GWORP:  The third graph is a super-graph of

GWVORP W/ OVERLAY, with additional edges,
where argument pairs in synonym and antonym
relation are connected to each other. Note that un-
like the connotation graph GWORP*SENSE it does
not contain any synset nodes. Rather, the words
that are synonyms or antonyms of each other are
directly linked in the graph. As such, this graph
contains all edge types t; through 4.

SPMI scores are widely used in previous studies to mea-

sure association between words (e.g., (Church and Hanks,
1990), (Turney, 2001), (Newman et al., 2009)).
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GWORD+SENSE w/ QyNSIM: This is a super-
graph of our original GWORP*SENSE graph:  that
is, it has all the predicate, arguments, and synset
nodes, as well as the four types of edges between
them. In addition, we add edges of a fifth type ¢5
between the synset nodes to capture their similar-
ity. To define similarity, we use the glossary def-
initions of the synsets and derive three different
scores. Each score utilizes the count(sy, s2) of
overlapping nouns, verbs, and adjectives/adverbs
among the glosses of the two synsets s; and ss.

G WORD+SENSE w/ SyNSIM1: We discard edges
with count less than 3. The weighted version has
the counts normalized between O and 1.

GWORD+SENSE w/ SyNSIM2: We normalize
the counts by the length of the gloss (the
avg of two lengths), that is, p = count /
avg (len_gloss(sy), len_gloss(ss2))
and discard edges with p < 0.5. The weighted
version contains p values as edge weights.

G WORD+SENSE v/ §yNSIM3: To further sparsify
the graph we discard edges with p < 0.6. To
weigh the edges, we use the cosine similarity be-
tween the gloss vectors of the synsets based on the
TF-IDF values of the words the glosses contain.

Note that the connotation inference algorithm,
as given in Algorithm 1, remains exactly the same
for all the graphs described above. The only dif-
ference is the set of parameters used; while G kP
w/ PRED-ARG and GWORP w/ OVERLAY contain
one and two edge types, respectively and only use
compatibilities (¢;) and (t2), GWORP uses all four
as given in Table 1. The GWORP+SENSE y/ QyN-
SIM graphs use an additional compatibility matrix
for the synset similarity edges of type t5, which is
the same as the one used for ¢1, i.e., similar synsets
are likely to have the same connotation label. This
flexibility is one of the key advantages of our al-
gorithm as new types of nodes and edges can be
added to the graph seamlessly.

4.2 Sentiment-Lexicon based Performance

In this section, we first compare the performance
of our connotation graph GWORP+SENSE (4 oraphs
that do not include synset nodes but only words.
Then we analyze the performance when the addi-
tional synset similarity edges are added. First, we
briefly describe our performance measures.

The sentiment lexicons we use as gold standard
are small, compared to the size (i.e., number of
words) our graphs contain. Thus, we first find
the overlap between each graph and a senti-

GENINQ MPQA
| R F F

— W
Variations of G"°*"

W/ PRED-ARG 88.0 67.6 765 57.3
W/ PRED-ARG-W | 84.9 689 76.1 57.8

W/ OVERLAY 878 704 781 58.4
W/ OVERLAY-W 82.2 677 742 54.2
GVorD 885 83.1 857 697
GWVORP_wy 755 715 734 | 532
Variations of G ORD¥SENSE

G WVORD+SENSE 88.8 84.1 864 [ 70.0
G WORD+SENSE vy 76.8 730 749 54.6
W/ SYNSIM1 87.2 83.3 852 67.9
W/ SYNSIM2 839 80.8 823 65.1
w/ SYNSIM3 86.5 83.2 848 67.8

w/ SYNSIM1-w 88.0 84.3 86.1 69.2
W/ SYNSIM2-W 86.4 837 850 68.5
W/ SYNSIM3-w 86.7 834 850 68.2

Table 2: Connotation inference performance on
various graphs. ‘-W’ indicates weighted versions
(see §4.1). P: precision, R: recall, F: F1-score (%).

ment lexicon. Note that the overlap size may be
smaller than the lexicon size, as some sen-
timent words may be missing from our graphs.
Then, we calculate the number of correct la-
bel assignments. As such, precision is defined as
(correct /overlap), and recall as (correct
/lexicon size). Finally, Fl-score is their har-
monic mean and reflects the overall accuracy.

As shown in Table 2 (top), we first observe that
including the synonym and antonym relations in
the graph, as with GWORP and GWORP+SENSE iy
prove the performance significantly, almost by an
order of magnitude, over graphs GV°*P w/ PRED-
ARG and GVORP w/ OVERLAY that do not contain
those relation types. Furthermore, we notice that
the performances on the GWORP+SENSE oraph are
better than those on the word-only graphs. This
shows that including the synset nodes explicitly in
the graph structure is beneficial. What is more,
it gives us a means to obtain connotation labels
for the synsets themselves, which we use in the
evaluations in the next sections. Finally, we note
that using the unweighted versions of the graphs
provide relatively more robust performance, po-
tentially due to noise in the relative edge weights.

Next we analyze the performance when the new
edges between synsets are introduced, as given in
Table 2 (bottom). We observe that connecting the
synset nodes by their gloss-similarity (at least in
the ways we tried) does not yield better perfor-
mance than on our original GWORP+SENSE graph
Different from earlier, the weighted versions of
the similarity based graphs provide better perfor-
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mance than their unweighted counterparts. This
suggests that glossary similarity would be a more
robust means to correlate nodes; we leave it as fu-
ture work to explore this direction for predicate-
argument and argument-argument relations.

4.3 Parameter Sensitivity

Our belief propagation based connotation senti-
ment inference algorithm has one user-specified
parameter € (see Table 1). To study the sensitivity
of its performance to the choice of ¢, we reran our
experiments for ¢ = {0.02,0.04,...,0.24}° and
report the accuracy results on our GWORP+SENSE jpy
Figure 2 for the two lexicons. The results indicate
that the performances remain quite stable across a
wide range of the parameter choice.

100 100
g0 =E=g=—p—A=¢ i Y8 SV UV SIPNED SP S2
7] . o w——
60 o e e e G O Ol

60

40

40

Performance
Performance

] —o— precision i
20 o= recall 204
, -= F-score f

—o- precision
~o- recall
—= F-score

0 T T T T T Ot 7 T ~ 1 1
0.02 0.06 0.10 0.14 0.18 0.22 0.02 0.06 0.10 0.14 0.18 0.22
€ €

(a) GENINQ EvAL (b) MPQA EVAL
Figure 2: Performance is stable across various e.

5 Evaluation II: Human Evaluation on
ConnotationWordNet

In this section, we present the result of human
evaluation we executed using Amazon Mechani-
cal Turk (AMT). We collect two separate sets of
labels: a set of labels at the word-level, and an-
other set at the sense-level. We first describe the
labeling process of sense-level connotation: We
selected 350 polysemous words and one of their
senses, and each Turker was asked to rate the con-
notative polarity of a given word (or of a given
sense), from -5 to 5, 0 being the neutral.” For each
word, we asked 5 Turkers to rate and we took the
average of the 5 ratings as the connotative inten-
sity score of the word. We labeled a word as nega-
tive if its intensity score is less than 0 and positive
otherwise. For word-level labels we apply similar
procedure as above.

®Note that for ¢ > 0.25, compatibilities of ¥ in Table 1
are reversed, hence the maximum of 0.24.

"Because senses in WordNet can be tricky to understand,
care should be taken in designing the task so that the Turkers
will focus only on the corresponding sense of a word. There-
fore, we provided the part of speech tag, the WordNet gloss
of the selected sense, and a few examples as given in Word-
Net. As an incentive, each Turker was rewarded $0.07 per hit
which consists of 10 words to label.

Lexicon | Word-level | Sense-level
SentiWordNet 27.22 14.29
OpinionFinder 31.95 -
Feng2013 62.72 -

G WORD+SENSE (9507, 84.91 83.43

G WORDHSENSE (997 84.91 83.71
E-GWORP+SENSE (9507 86.98 86.29
E-G WORD+SENSE (9007 86.69 85.71

Table 3: Word-/Sense-level evaluation results

5.1 Word-Level Evaluation

We first evaluate the word-level assignment of
connotation, as shown in Table 3. The agreement
between the new lexicon and human judges varies
between 84% and 86.98%. Sentiment lexicons
such as SentiWordNet (Baccianella et al. (2010))
and OpinionFinder (Wilson et al. (2005a)) show
low agreement rate with human, which is some-
what as expected: human judges in this study are
labeling for subtle connotation, not for more ex-
plicit sentiment. OpinionFinder’s low agreement
rate was mainly due to the low hit rate of the words
(successful look-up rate, 33.43%). Feng2013 is
the lexicon presented in (Feng et al., 2013) and it
showed a relatively higher 72.13% hit rate.

Note that belief propagation was run until 95%
and 99% of the nodes were converged in their
beliefs. In addition, the seed words with known
connotation labels originally consist of 20 positive
and 20 negative predicates. We also extended the
seed set with the sentiment lexicon words and de-
note these runs with E- for ‘Extended’.

5.2 Sense-Level Evaluation

We also examined the agreement rates on the
sense-level. Since OpinionFinder and Feng2013
do not provide the polarity scores at the sense-
level, we excluded them from this evaluation. Be-
cause sense-level polarity assignment is a harder
(more subtle) task, the performance of all lexicons
decreased to some degree in comparison to that of
word-level evaluations.

5.3 Pair-wise Intensity Ranking

A notable goodness of our induction algorithm is
that the outcome of the algorithm can be inter-
preted as an intensity of the corresponding conno-
tation. But are these values meaningful? We an-
swer this question in this section. We formulate a
pair-wise ranking task as a binary decision task as
follows: given a pair of words, we ask which one
is more positive (or more negative) than the other.
Since we collect human labels based on scales, we
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Lexicon | Correct | Undecided
SentiWordNet | 33.77 23.34

G WORDHSENSE (957 74.83 0.58

G WORDHSENSE (997 73.01 0.58
E-G WORD+SENSE (9507 73.84 1.16
E-G WORD+SENSE (90 g7 74.01 1.16

Table 4: Results of pair-wise intensity evaluation,
for intensity difference threshold = 2.0

already have this information at hand. Because
different human judges have different notion of
scales however, subtle differences are more likely
to be noisy. Therefore, we experiment with vary-
ing degrees of differences in their scales, as shown
in Figure 3. Threshold values (ranging from 0.5 to
3.0) indicate the minimum differences in scales for
any pair of words, for the pair to be included in the
test set. As expected, we observe that the perfor-
mance improves as we increase the threshold (as
pairs get better separated). Within range [0.5, 1.5]
(249 pairs examined), the accuracies are as high as
68.27%, which shows that even the subtle differ-
ences of the connotative intensities are relatively
well reflected in the new lexicons.

S —

S

Py :

S 60 —+— SentiWordNet

;5 5 GWormSense 95%)

8 4 GWord+Sense(99%)

< & e_GWord+Sense 95%)
40 e_GWord+Sense(gg%)

[ S —

T T
0.5 1.0 2.0 3.0

Threshold
Figure 3: Trend of accuracy for pair-wise intensity
evaluation over threshold

The results for pair-wise intensity evaluation
(threshold=2.0, 1,208 pairs) are given in Table 4.
Despite that intensity is generally a harder prop-
erty to measure (than the coarser binary catego-
rization of polarities), our connotation lexicons
perform surprisingly well, reaching up to 74.83%
accuracy. Further study on the incorrect cases re-
veals that SentiWordNet has many pair of words
with the same polarity score (23.34%). Such cases
seems to be due to the limited score patterns of
SentiWordNet. The ratio of such cases are ac-
counted as Undecided in Table 4.

6 Evaluation III: Sentiment Analysis
using ConnotationWordNet

Finally, to show the utility of the resulting lexi-
con in the context of a concrete sentiment analysis

task, we perform lexicon-based sentiment analy-
sis. We experiment with SemEval dataset (Strap-
parava and Mihalcea, 2007) that includes the hu-
man labeled dataset for predicting whether a news
headline is a good news or a bad news, which we
expect to have a correlation with the use of con-
notative words that we focus on in this paper. The
good/bad news are annotated with scores (ranging
from -100 to 87). We construct several data sets by
applying different thresholds on scores. For exam-
ple, with the threshold set to 60, we discard the in-
stances whose scores lie between -60 and 60. For
comparison, we also test the connotation lexicon
from (Feng et al., 2013) and the combined senti-
ment lexicon GENINQ+MPQA.

Note that there is a difference in how humans
judge the orientation and the degree of connota-
tion for a given word out of context, and how the
use of such words in context can be perceived as
good/bad news. In particular, we conjecture that
humans may have a bias toward the use of posi-
tive words, which in turn requires calibration from
the readers’ minds (Pennebaker and Stone, 2003).
That is, we might need to tone down the level of
positiveness in order to correctly measure the ac-
tual intended positiveness of the message.

With this in mind, we tune the appropriate cali-
bration from a small training data, by using 1 fold
from N fold cross validation, and using the re-
maining N — 1 folds as testing. We simply learn
the mixture coefficient A to scale the contribution
of positive and negative connotation values. We
tune this parameter \® for other lexicons we com-
pare against as well. Note that due to this param-
eter learning, we are able to report better perfor-
mance for the connotation lexicon of (Feng et al.,
2013) than what the authors have reported in their
paper (labeled with *) in Table 5.

Table 5 shows the results for N=15, where the
new lexicon consistently outperforms other com-
petitive lexicons. In addition, Figure 4 shows that
the performance does not change much based on
the size of training data used for parameter tuning
(N={5,10,15,20}).

7 Related Work

Several previous approaches explored the use of
graph propagation for sentiment lexicon induction
(Velikovich et al., 2010) and connotation lexicon

#What is reported is based on A € {20, 40, 60, 80}. More
detailed parameter search does not change the results much.
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SemEval Threshold
20 \ 40 \ 60 \ 80
Instance Size 955 649 341 86
Feng2013 | 71.5 | 77.1 | 81.6 | 90.5
GENINQ+MPQA | 72.8 | 77.2 | 80.4 | 86.7
GWORDHSENSE(9507y | 745 | 79.4 | 86.5 | 91.9
GWORDHSENSE(9907) | 74,6 | 79.4 | 86.8 | 91.9
E-GWORPHSENSE(9507) | 725 | 76.8 | 82.3 | 87.2
E-GWORPHSENSE(997y | 72.6 | 76.9 | 82.5 | 87.2
Feng2013* | 70.8 | 74.6 | 80.8 | 93.5
GENINQ+MPQA* | 64.5 | 69.0 | 74.0 | 80.5

Lexicon

Table 5: SemEval evaluation results, for N=15
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Figure 4: Trend of SemEval performance over IV,
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induction (Feng et al., 2013). Our work intro-
duces the use of loopy belief propagation over
pairwise-MRF as an alternative solution to these
tasks. At a high-level, both approaches share the
general idea of propagating confidence or belief
over the graph connectivity. The key difference,
however, is that in our MRF representation, we
can explicitly model various types of word-word,
sense-sense and word-sense relations as edge po-
tentials. In particular, we can naturally encode re-
lations that encourage the same assignment (e.g.,
synonym) as well as the opposite assignment (e.g.,
antonym) of the polarity labels. Note that integra-
tion of the latter is not straightforward in the graph
propagation framework.

There have been a number of previous studies
that aim to construct a word-level sentiment lex-
icon (Wiebe et al., 2005; Qiu et al., 2009) and
a sense-level sentiment lexicon (Esuli and Sebas-
tiani, 2006). But none of these approaches con-
sidered to induce the polarity labels at both the
word-level and sense-level. Although we focus on
learning connotative polarity of words and senses
in this paper, the same approach would be applica-
ble to constructing a sentiment lexicon as well.

There have been recent studies that address
word sense disambiguation issues for sentiment
analysis. SentiWordNet (Esuli and Sebastiani,
2006) was the very first lexicon developed for

sense-level labels of sentiment polarity. In recent
years, Akkaya et al. (2009) report a successful em-
pirical result where WSD helps improving senti-
ment analysis, while Wiebe and Mihalcea (2006)
study the distinction between objectivity and sub-
jectivity in each different sense of a word, and
their empirical effects in the context of sentiment
analysis. Our work shares the high-level spirit of
accessing the sense-level polarity, while also de-
riving the word-level polarity.

In recent years, there has been a growing re-
search interest in investigating more fine-grained
aspects of lexical sentiment beyond positive and
negative sentiment. For example, Mohammad and
Turney (2010) study the affects words can evoke
in people’s minds, while Bollen et al. (2011) study
various moods, e.g., “tension”, “depression”, be-
yond simple dichotomy of positive and negative
sentiment. Our work, and some recent work by
Feng et al. (2011) and Feng et al. (2013) share this
spirit by targeting more subtle, nuanced sentiment
even from those words that would be considered
as objective in early studies of sentiment analysis.

8 Conclusion

We have introduced a novel formulation of lexicon
induction operating over both words and senses,
by exploiting the innate structure between the
words and senses as encoded in WordNet. In addi-
tion, we introduce the use of loopy belief propaga-
tion over pairwise-Markov Random Fields as an
effective lexicon induction algorithm. A notable
strength of our approach is its expressiveness: var-
ious types of prior knowledge and lexical relations
can be encoded as node potentials and edge po-
tentials. In addition, it leads to a lexicon of bet-
ter quality while also offering faster run-time and
easiness of implementation. The resulting lexi-
con, called ConnotationWordNet, is the first lex-
icon that has polarity labels over both words and
senses. ConnotationWordNet is publicly available
for research and practical use.
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