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Abstract

This study investigates on building a
better Chinese word segmentation mod-
el for statistical machine translation. It
aims at leveraging word boundary infor-
mation, automatically learned by bilin-
gual character-based alignments, to induce
a preferable segmentation model. We
propose dealing with the induced word
boundaries as soft constraints to bias the
continuous learning of a supervised CRF-
s model, trained by the treebank data (la-
beled), on the bilingual data (unlabeled).
The induced word boundary information
is encoded as a graph propagation con-
straint. The constrained model induction
is accomplished by using posterior reg-
ularization algorithm. The experiments
on a Chinese-to-English machine transla-
tion task reveal that the proposed model
can bring positive segmentation effects to
translation quality.

1 Introduction

Word segmentation is regarded as a critical pro-
cedure for high-level Chinese language process-
ing tasks, since Chinese scripts are written in con-
tinuous characters without explicit word bound-
aries (e.g., space in English). The empirical works
show that word segmentation can be beneficial to
Chinese-to-English statistical machine translation
(SMT) (Xu et al., 2005; Chang et al., 2008; Zhao
et al., 2013). In fact most current SMT models
assume that parallel bilingual sentences should be
segmented into sequences of tokens that are meant
to be “words” (Ma and Way, 2009). The practice
in state-of-the-art MT systems is that Chinese sen-
tences are tokenized by a monolingual supervised
word segmentation model trained on the hand-
annotated treebank data, e.g., Chinese treebank

(CTB) (Xue et al., 2005). These models are con-
ducive to MT to some extent, since they common-
ly have relatively good aggregate performance and
segmentation consistency (Chang et al., 2008).
But one outstanding problem is that these mod-
els may leave out some crucial segmentation fea-
tures for SMT, since the output words conform to
the treebank segmentation standard designed for
monolingually linguistic intuition, rather than spe-
cific to the SMT task.

In recent years, a number of works (Xu et al.,
2005; Chang et al., 2008; Ma and Way, 2009;
Xi et al., 2012) attempted to build segmentation
models for SMT based on bilingual unsegment-
ed data, instead of monolingual segmented data.
They proposed to learn gainful bilingual knowl-
edge as golden-standard segmentation supervi-
sions for training a bilingual unsupervised mod-
el. Frequently, the bilingual knowledge refers to
the mappings of an individual English word to one
or more consecutive Chinese characters, generat-
ed via statistical character-based alignment. They
leverage such mappings to either constitute a Chi-
nese word dictionary for maximum-matching seg-
mentation (Xu et al., 2004), or form labeled data
for training a sequence labeling model (Paul et al.,
2011). The prior works showed that these models
help to find some segmentations tailored for SMT,
since the bilingual word occurrence feature can be
captured by the character-based alignment (Och
and Ney, 2003). However, these models tend to
miss out other linguistic segmentation patterns as
monolingual supervised models, and suffer from
the negative effects of erroneously alignments to
word segmentation.

This paper proposes an alternative Chinese
Word Segmentation (CWS) model adapted to the
SMT task, which seeks not only to maintain the
advantages of a monolingual supervised model,
having hand-annotated linguistic knowledge, but
also to assimilate the relevant bilingual segmenta-
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tion nature. We propose leveraging the bilingual
knowledge to form learning constraints that guide
a supervised segmentation model toward a better
solution for SMT. Besides the bilingual motivat-
ed models, character-based alignment is also em-
ployed to achieve the mappings of the successive
Chinese characters and the target language word-
s. Instead of directly merging the characters in-
to concrete segmentations, this work attempts to
extract word boundary distributions for character-
level trigrams (types) from the “chars-to-word”
mappings. Furthermore, these word boundaries
are encoded into a graph propagation (GP) expres-
sion, in order to widen the influence of the induced
bilingual knowledge among Chinese texts. The G-
P expression constrains similar types having ap-
proximated word boundary distributions. Crucial-
ly, the GP expression with the bilingual knowledge
is then used as side information to regularize a
CRFs (conditional random fields) model’s learn-
ing over treebank and bitext data, based on the
posterior regularization (PR) framework (Ganchev
et al., 2010). This constrained learning amounts to
a jointly coupling of GP and CRFs, i.e., integrating
GP into the estimation of a parametric structural
model.

This paper is structured as follows: Section 2
points out the main differences with the related
works of this study. Section 3 presents the de-
tails of the proposed segmentation model. Section
4 reports the experimental results of the proposed
model for a Chinese-to-English MT task. The con-
clusion is drawn in Section 5.

2 Related Work

In the literature, many approaches have been pro-
posed to learn CWS models for SMT. They can
be put into two categories, monolingual-motivated
and bilingual-motivated. The former primarily op-
timizes monolingual supervised models according
to some predefined segmentation properties that
are manually summarized from empirical MT e-
valuations. Chang et al. (2008) enhanced a CRF-
s segmentation model in MT tasks by tuning the
word granularity and improving the segmentation
consistence. Zhang et al. (2008) produced a bet-
ter segmentation model for SMT by concatenat-
ing various corpora regardless of their differen-
t specifications. Distinct from their behaviors,
this work uses automatically learned constraints
instead of manually defined ones. Most impor-

tantly, the constraints have a better learning guid-
ance since they originate from the bilingual texts.
On the other hand, the bilingual-motivated CWS
models typically rely on character-based align-
ments to generate segmentation supervisions. Xu
et al. (2004) proposed to employ “chars-to-word”
alignments to generate a word dictionary for max-
imum matching segmentation in SMT task. The
works in (Ma and Way, 2009; Zhao et al., 2013)
extended the dictionary extraction strategy. Ma
and Way (2009) adopted co-occurrence frequency
metric to iteratively optimize “candidate words”
extract from the alignments. Zhao et al. (2013) at-
tempted to find an optimal subset of the dictionary
learned by the character-based alignment to maxi-
mize the MT performance. Paul et al. (2011) used
the words learned from “chars-to-word” align-
ments to train a maximum entropy segmentation
model. Rather than playing the “hard” uses of
the bilingual segmentation knowledge, i.e., direct-
ly merging “char-to-word” alignments to words
as supervisions, this study extracts word bound-
ary information of characters from the alignments
as soft constraints to regularize a CRFs model’s
learning.

The graph propagation (GP) technique provides
a natural way to represent data in a variety of tar-
get domains (Belkin et al., 2006). In this tech-
nique, the constructed graph has vertices consist-
ing of labeled and unlabeled examples. Pairs of
vertices are connected by weighted edges encod-
ing the degree to which they are expected to have
the same label (Zhu et al., 2003). Many recent
works, such as by Subramanya et al. (2010), Das
and Petrov (2011), Zeng et al. (2013; 2014) and
Zhu et al. (2014), proposed GP for inferring the la-
bel information of unlabeled data, and then lever-
age these GP outcomes to learn a semi-supervised
scalable model (e.g., CRFs). These approaches are
referred to as pipelined learning with GP. This s-
tudy also works with a similarity graph, encoding
the learned bilingual knowledge. But, unlike the
prior pipelined approaches, this study performs a
joint learning behavior in which GP is used as a
learning constraint to interact with the CRFs mod-
el estimation.

One of our main objectives is to bias CRF-
s model’s learning on unlabeled data, under a
non-linear GP constraint encoding the bilingual
knowledge. This is accomplished by the poste-
rior regularization (PR) framework (Ganchev et
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al., 2010). PR performs regularization on poste-
riors, so that the learned model itself remains sim-
ple and tractable, while during learning it is driven
to obey the constraints through setting appropriate
parameters. The closest prior study is constrained
learning, or learning with prior knowledge. Chang
et al. (2008) described constraint driven learning
(CODL) that augments model learning on unla-
beled data by adding a cost for violating expec-
tations of constraint features designed by domain
knowledge. Mann and McCallum (2008) and M-
cCallum et al. (2007) proposed to employ gener-
alized expectation criteria (GE) to specify prefer-
ences about model expectations in the form of lin-
ear constraints on some feature expectations.

3 Methodology

This work aims at building a CWS model adapted
to the SMT task. The model induction is shown in
Algorithm 1. The input data requires two type-
s of training resources, segmented Chinese sen-
tences from treebank Dj and parallel unsegment-
ed sentences of Chinese and foreign language D¢,
and DJ. The first step is to conduct character-
based alignment over bitexts D, and ij, where
every Chinese character is an alignment target.
Here, we are interested on n-to-1 alignment pat-
terns, i.e., one target word is aligned to one or
more source Chinese characters. The second step
aims to collect word boundary distributions for al-
I types, i.e., character-level trigrams, according to
the n-to-1 mappings (Section 3.1). The third step
is to encode the induced word boundary informa-
tion into a k-nearest-neighbors (k-NN) similarity
graph constructed over the entire set of types from
Dy and Dy, (Section 3.2). The final step trains a
discriminative sequential labeling model, condi-
tional random fields, on D; and Dy, under bilin-
gual constraints in a graph propagation expression
(Section 3.3). This constrained learning is carried
out based on posterior regularization (PR) frame-
work (Ganchev et al., 2010).

3.1 Word Boundaries Learned from
Character-based Alignments

The gainful supervisions toward a better segmen-
tation solution for SMT are naturally extracted
from MT training resources, i.e., bilingual parallel
data. This study employs an approximated method
introduced in (Xu et al., 2004; Ma and Way, 2009;
Chung and Gildea, 2009) to learn bilingual seg-

Algorithm 1 CWS model induction with bilingual
constraints
Require:
Segmented Chinese sentences from treebank
Dy, Parallel sentences of Chinese and foreign

language Df, and DZ:
Ensure:
#: the CRFs model parameters
. D/ — char_align bitext (DS, D}})
7 « learn_word_bound (D)
: G < encode_graph_constraint (D;, Dy, )
: 6 < pr_crf_graph (Df, D5, G)

mentation knowledge. This relies on statistical
character-based alignment: first, every Chinese
character in the bitexts is divided by a white s-
pace so that individual characters are regarded as
special “words” or alignment targets, and second,
they are connected with English words by using
a statistical word aligner, e.g., GIZA++ (Och and
Ney, 2003). Note that the aligner is restricted to
use an n-to-1 alignment pattern. The primary idea
is that consecutive Chinese characters are grouped
to a candidate word, if they are aligned to the same
foreign word. It is worth mentioning that prior
works presented a straightforward usage for can-
didate words, treating them as golden segmenta-
tions, either dictionary units or labeled resources.
But this study treats the induced candidate word-
s in a different way. We propose to extract the
word boundary distributions! for character-level
trigrams (fype)?, as shown in Figure 1, instead of
the very specific words. There are two main rea-
sons to do so. First, it is a more general expression
which can reduce the impact amplification of er-
roneous character alignments. Second, boundary
distributions can play more flexible roles as con-
straints over labelings to bias the model learning.
The type-level word boundary extraction is for-
mally described as follows. Given the ith sen-
tence pair (:z:f,xic ,Afﬂf ) of the aligned bilin-
gual corpus D/, the Chinese sentence x§ con-
sisting of m characters {J:fjl,vaz, - Jiam}, and
the foreign language sentence !

1

consisting of

"The distribution is on four word boundary labels indi-
cating the character positions in a word, i.e., B (begin), M
(middle), E (end) and S (single character).

2A word boundary distribution corresponds to the center
character of a type. In fact, it aims at reducing label ambi-
guities to collect boundary information of character trigrams,
rather than individual characters (Altun et al., 2006).
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set of alignment pairs a; = <C’j,:czf ;) that de-
fines connections between a few Chinese char-
acters C) {5,258, xi; } and a sin-
gle foreign word x{ - For an alignment a; =
(Cj,z;. j), only the sequence of characters C; =
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T € {B, M, E, S}, and then count across the en-
tire corpus to collect the tag distributions r; =

{rie;t € T} for each type af ; xf ;af ;4.

B/e‘i;ng Olympus Beijing Olympus
/ > ﬁ / = L

EI- S S ow oz 2 %
BE BME
Word boundaries

AL

i S

W

Character-based alignment .
Type-level Word
Bei Jing Ren boundary distributions

|
EHA i
Bei Jing Sh/ \ i
LW Ao Yun Hui B
\ rig
03
BeilJingDi ...
JoR 0.9
Quan Yun Hui r
Ex T

02

Bei Ping Shi

:il:-‘i’-‘iK
0.2

Figure 1: An example of similarity graph over
character-level trigrams (types).

3.2 Constraints Encoded by Graph
Propagation Expression

The previous step contributes to generate bilingual
segmentation supervisions, i.e., type-level word
boundary distributions. An intuitive manner is to
directly leverage the induced boundary distribu-
tions as label constraints to regularize segmenta-
tion model learning, based on a constrained learn-
ing algorithm. This study, however, makes further
efforts to elevate the positive effects of the bilin-
gual knowledge via the graph propagation tech-
nique. We adopt a similarity graph to encode
the learned type-level word boundary distribution-
s. The GP expression will be defined as a PR con-
straint in Section 3.3 that reflects the interactions
between the graph and the CRFs model. In other
words, GP is integrated with estimation of para-
metric structural model. This is greatly different
from the prior pipelined approaches (Subramanya
et al., 2010; Das and Petrov, 2011; Zeng et al.,
2013), where GP is run first and its propagated

outcomes are then used to bias the structural mod-
el. This work seeks to capture the GP benefits dur-
ing the modeling of sequential correlations.

In what follows, the graph setting and propa-
gation expression are introduced. As in conven-
tional GP examples (Das and Smith, 2012), a sim-
ilarity graph G = (V| E) is constructed over N
types extracted from Chinese training data, includ-
ing treebank Dj and bitexts Dy,. Each vertex V;
has a |T'|-dimensional estimated measure v; =
{vit;t € T} representing a probability distribu-
tion on word boundary tags. The induced type-
level word boundary distributions r; = {r;;;t €
T} are empirical measures for the corresponding
M graph vertices. The edges I/ € V; x V; connect
all the vertices. Scores between pairs of graph ver-
tices (types), w;;, refer to the similarities of their
syntactic environment, which are computed fol-
lowing the method in (Subramanya et al., 2010;
Das and Petrov, 2011; Zeng et al., 2013). The
similarities are measured based on co-occurrence
statistics over a set of predefined features (intro-
duced in Section 4.1). Specifically, the point-wise
mutual information (PMI) values, between ver-
tices and each feature instantiation that they have
in common, are summed to sparse vectors, and
their cosine distances are computed as the sim-
ilarities. The nature of this similarity graph en-
forces that the connected types with high weight-
s appearing in different texts should have similar
word boundary distributions.

The quality (smoothness) of the similarity graph
can be estimated by using a standard propagation
function, as shown in Equation 1. The square-loss
criterion (Zhu et al., 2003; Bengio et al., 2006) is
used to formulate this function:

T /M
Pv) = Z (Z(Ui’t —7i)?

tl =1

+szw2] Vit — th +PZ vzt >
7j=11i=1

)
The first term in this equation refers to seed match-
es that compute the distances between the estimat-
ed measure v; and the empirical probabilities 7;.
The second term refers to edge smoothness that
measures how vertices v; are smoothed with re-
spect to the graph. Two types connected by an
edge with high weight should be assigned similar
word boundary distributions. The third term, a ¢
norm, evaluates the distribution sparsity (Das and
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Smith, 2012) per vertex. Typically, the GP process
amounts to an optimization process with respect
to parameter v such that Equation 1 is minimized.
This propagation function can be used to reflect
the graph smoothness, where the higher the score,
the lower the smoothness.

3.3 PR Learning with GP Constraint

Our learning problem belongs to semi-supervised
learning (SSL), as the training is done on treebank
labeled data (XL, YL) = {(Xl, V1), eees (Xl7 yl)},
and bilingual unlabeled data (Xy) = {x1, ..., Xy}
where x; = {z!,...,2™} is an input word se-
quence and y; = {y',...,y™},y € T is its corre-
sponding label sequence. Supervised linear-chain
CRFs can be modeled in a standard conditional
log-likelihood objective with a Gaussian prior:

01>

2
o 2)

L(0) = po(yilxi) —

The conditional probabilities py are expressed as a
log-linear form:

m

x0T f T ulx))
k=1

Zp(xi)

po(yilxi) =

Where Zy(x;) is a partition function that normal-
izes the exponential form to be a probability dis-
tribution, and f (yf‘l, y¥,x;) are arbitrary feature
functions.

In our setting, the CRFs model is required
to learn from unlabeled data. This work em-
ploys the posterior regularization (PR) frame-
work® (Ganchev et al., 2010) to bias the CRFs
model’s learning on unlabeled data, under a con-
straint encoded by the graph propagation expres-
sion. It is expected that similar types in the graph
should have approximated expected taggings un-
der the CRFs model. We follow the approach in-
troduced by (He et al., 2013) to set up a penalty-
based PR objective with GP: the CRFs likelihood
is modified by adding a regularization term, as
shown in Equation 4, representing the constraints:

Ru(0,q) = KL(q|[ps) + AP(v) 4)

Rather than regularize CRFs model’s posteriors
po(Y|x;) directly, our model uses an auxiliary
distribution ¢(Y|x;) over the possible labelings

3The readers are refered to the original paper of Ganchev
et al. (2010).

Y for x;, and penalizes the CRFs marginal log-
likelihood by a KL-divergence term*, represent-
ing the distance between the estimated posteriors
p and the desired posteriors ¢, as well as a penal-
ty term, formed by the GP function. The hy-
perparameter A is used to control the impacts of
the penalty term. Note that the penalty is fired
if the graph score computed based on the expect-
ed taggings given by the current CRFs model is
increased vis-a-vis the previous training iteration.
This nature requires that the penalty term P(v)
should be formed as a function of posteriors g over
CRFs model predictionsS, i.e., P(q). To state this,
amapping M : ({1,...,u},{1,...,m}) — V from
words in the corpus to vertices in the graph is de-
fined. We can thus decompose v; ; into a function
of ¢ as follows:
M(a,b)=V;

DD =ty = )alylxa)

c=1yey

Vit = m

> 1(M(a,b) = Vi)

)
The final learning objective combines the CRF-
s likelihood with the PR regularization term:
J(0,q9) = L(0) + Ry(6,q). This joint objec-
tive, over # and ¢, can be optimized by an expecta-
tion maximization (EM) style algorithm as report-
ed in (Ganchev et al., 2010). We start from ini-
tial parameters 60, estimated by supervised CRFs
model training on treebank data. The E-step is to
minimize Ry (6, q) over the posteriors ¢ that are
constrained to the probability simplex. Since the
penalty term P(v) is a non-linear form, the opti-
mization method in (Ganchev et al., 2010) via pro-
jected gradient descent on the dual is inefficient®.
This study follows the optimization method (He et
al., 2013) that uses exponentiated gradient descent
(EGD) algorithm. It allows that the variable up-
date expression, as shown in Equation 6, takes a
multiplicative rather than an additive form.

OR )

(w+1) N — o (w) . B —
q YiXi) =(q YIXi) €Xp

where the parameter 1 controls the optimization
rate in the E-step. With the contributions from

“The form of KL term: KL(q||p) = > gey a(y)log %.

The original PR setting also requires that the penalty ter-
m should be a linear (Gancheyv et al., 2010) or non-linear (He
et al., 2013) function on q.

8 According to (He et al., 2013), the dual of quadratic pro-
gram implies an expensive matrix inverse.
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the E-step that further encourage ¢ and p to agree,
the M-step aims to optimize the objective 7 (0, q)
with respect to 6. The M-step is similar to the stan-
dard CRFs parameter estimation, where the gradi-
ent ascent approach still works. This EM-style ap-
proach monotonically increases 7 (¢, ¢) and thus
is guaranteed to converge to a local optimum.

E-step: ¢tV = argminRy (0Y, ¢™)
q

M-step: 00V = arg max£(6)

0
+6) > q" D (ylxi) log pa(y]x:)

i=1yey
(7)

4 [Experiments

4.1 Data and Setup

The experiments in this study evaluated the per-
formances of various CWS models in a Chinese-
to-English translation task. The influence of
the word segmentation on the final translation
is our main investigation. @We adopted three
state-of-the-art metrics, BLEU (Papineni et al.,
2002), NIST (Doddington et al., 2000) and ME-
TEOR (Banerjee and Lavie, 2005), to evaluate the
translation quality.

The monolingual segmented data, trainTp, is
extracted from the Penn Chinese Treebank (CTB-
7) (Xue et al., 2005), containing 51,447 sentences.
The bilingual training data, trainyr, is formed
by a large in-house Chinese-English parallel cor-
pus (Tian et al., 2014). There are in total 2,244,319
Chinese-English sentence pairs crawled from on-
line resources, concentrated in 5 different domains
including laws, novels, spoken, news and miscel-
laneous’. This in-house bilingual corpus is the
MT training data as well. The target-side lan-
guage model is built on over 35 million mono-
lingual English sentences, traing,, crawled from
online resources. The NIST evaluation campaign
data, MT-03 and MT-05, are selected to comprise
the MT development data, devysr, and testing da-
ta, testyrT, respectively.

For the settings of our model, we adopted the
standard feature templates introduced by Zhao et
al. (2006) for CRFs. The character-based align-
ment for achieving the “chars-to-word” mappings
is accomplished by GIZA++ aligner (Och and
Ney, 2003). For the GP, a 10-NNs similarity graph

"The in-house corpus has been manually validated, in a
long process that exceeded 500 hours.

was constructed®. Following (Subramanya et al.,
2010; Zeng et al., 2013), the features used to
compute similarities between vertices were (Sup-
pose given a type “ wawswy” surrounding contexts
“wrwowswaws”): unigram (ws), bigram (wywo,
WaWs, WoW4), trigram (wowswy, wowsws,
wiwowy), trigram+context (wjwowsw4ws) and
character classes in number, punctuation, alpha-
betic letter and other (t(ws2)t(ws)t(wy)). There
are four hyperparameters in our model to be tuned
by using the development data (devyr) among
the following settings: for the graph propagation,
p € {0.2,0.5,0.8} and p € {0.1,0.3,0.5,0.8};
for the PR learning, A € {0 < \; < 1} and o €
{0 < g; < 1} where the step is 0.1. The best per-
formed joint settings, u© = 0.5,p = 0.5, A = 0.9
and o0 = 0.8, were used to measure the final per-
formance.

The MT experiment was conducted based on
a standard log-linear phrase-based SMT model.
The GIZA++ aligner was also adopted to obtain
word alignments (Och and Ney, 2003) over the
segmented bitexts. The heuristic strategy of grow-
diag-final-and (Koehn et al., 2007) was used to
combine the bidirectional alignments for extract-
ing phrase translations and reordering tables. A
5-gram language model with Kneser-Ney smooth-
ing was trained with SRILM (Stolcke, 2002) on
monolingual English data. Moses (Koehn et al.,
2007) was used as decoder. The Minimum Error
Rate Training (MERT) (Och, 2003) was used to
tune the feature parameters on development data.

4.2 Various Segmentation Models

To provide a thorough analysis, the MT experi-
ments in this study evaluated three baseline seg-
mentation models and two off-the-shelf models,
in addition to four variant models that also employ
the bilingual constraints. We start from three base-
line models:

e Character Segmenter (CS): this model sim-
ply divides Chinese sentences into sequences
of characters.

e Supervised Monolingual Segmenter (SM-
S): this model is trained by CRFs on treebank
training data (traintg). The same feature
templates (Zhao et al., 2006) are used. The
standard four-tags (B, M, E and S) were used

8We evaluated graphs with top k (from 3 to 20) nearest

neighbors on development data, and found that the perfor-
mance converged beyond 10-NNs.
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as the labels. The stochastic gradient descent
is adopted to optimize the parameters.

e Unsupervised Bilingual Segmenter (UBS):
this model is trained on the bitexts (trainMT)
following the approach introduced in (Ma
and Way, 2009). The optimal set of the mod-
el parameter values was found on devyr to
be k = 3,tac = 0.0 and tcooc = 15.

The comparison candidates also involve two pop-
ular off-the-shelf segmentation models:

o Stanford Segmenter: this model, trained by
Chang et al. (2008), treats CWS as a binary
word boundary decision task. It covers sev-
eral features specific to the MT task, e.g., ex-
ternal lexicons and proper noun features.

e ICTCLAS Segmenter: this model, trained
by Zhang et al. (2003), is a hierarchical
HMM segmenter that incorporates parts-of-
speech (POS) information into the probabili-
ty models and generates multiple HMM mod-
els for solving segmentation ambiguities.

This work also evaluated four variant models®
that perform alternative ways to incorporate the
bilingual constraints based on two state-of-the-art
graph-based SSL approaches.

o Self-training Segmenters (STS): two vari-
ant models were defined by the approach re-
ported in (Subramanya et al., 2010) that us-
es the supervised CRFs model’s decodings,
incorporating empirical and constraint infor-
mation, for unlabeled examples as additional
labeled data to retrain a CRFs model. One
variant (STS-NO-GP) skips the GP step, di-
rectly decoding with type-level word bound-
ary probabilities induced from bitexts, while
the other (STS-GP-PL) runs the GP at first
and then decodes with GP outcomes. The
optimal hyperparameter values were found to
be: STS-NO-GP (a = 0.8) and n = 0.6) and
STS-GP-PL (1 = 0.5,p = 0.3, = 0.8 and
n = 0.6).

e Virtual Evidences Segmenters (VES): T-
wo variant models based on the approach
in (Zeng et al., 2013) were defined. The type-
level word boundary distributions, induced

“Note that there are two variant models working with GP.

To be fair, the same similarity graph settings introduced in
this paper were used.

by the character-based alignment (VES-NO-
GP), and the graph propagation (VES-GP-
PL), are regarded as virtual evidences to bias
CRFs model’s learning on the unlabeled da-
ta. The optimal hyperparameter values were
found to be: VES-NO-GP (o« = 0.7) and
VES-GP-PL (1 = 0.5, p = 0.3 and @ = 0.7).

4.3 Main Results

Table 1 summarizes the final MT performance on
the MT-05 test data, evaluated with ten different
CWS models. In what follows, we summarized
four major observations from the results. First-
ly, as expected, having word segmentation does
help Chinese-to-English MT. All other nine CWS
models outperforms the CS baseline which does
not try to identify Chinese words at all. Second-
ly, the other two baselines, SMS and UBS, are on
a par with each other, showing less than 0.36 av-
erage performance differences on the three eval-
uation metrics. This outcome validated that the
models, trained by either the treebank or the bilin-
gual data, performed reasonably well. But they
only capture partial segmentation features so that
less gains for SMT are achieved when compar-
ing to other sophisticated models. Thirdly, we no-
tice that the two off-the-shelf models, Stanford and
ICTCLAS, just brought minor improvements over
the SMS baseline, although they are trained us-
ing richer supervisions. This behaviour illustrates
that the conventional optimizations to the mono-
lingual supervised model, e.g., accumulating more
supervised data or predefined segmentation prop-
erties, are insufficient to help model for achiev-
ing better segmentations for SMT. Finally, high-
lighting the five models working with the bilingual
constraints, most of them can achieve significant
gains over the other ones without using the bilin-
gual constraints. This strongly demonstrates that
bilingually-learned segmentation knowledge does
helps CWS for SMT. The models working with G-
P, STS-GP-PL, VES-GP-PL and ours outperform
all others. We attribute this to the role of GP in
assisting the spread of bilingual knowledge on the
Chinese side. Importantly, it can be observed that
our model outperforms STS-GP, VES-GP, which
greatly supports that joint learning of CRFs and
GP can alleviate the error transfer by the pipelined
models. This is one of the most crucial findings
in this study. Overall, the boldface numbers in the
last row illustrate that our model obtains average
improvements of 1.89, 1.76 and 1.61 on BLEU,
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NIST and METEOR over others.

Models BLEU | NIST | METEOR
CS 29.38 | 59.85 54.07
SMS 30.05 | 61.33 55.95
UBS 30.15 | 61.56 55.39
Stanford 30.40 | 61.94 56.01
ICTCLAS 30.29 | 61.26 55.72
STS-NO-GP | 31.47 | 62.35 56.12
STS-GP-PL 31.94 | 63.20 57.09
VES-NO-GP | 31.98 | 62.63 56.59
VES-GP-PL | 32.04 | 63.49 57.34
Our Model 32.75 | 63.72 57.64

Table 1: Translation performances (%) on MT-05
testing data by using ten different CWS models.

4.4 Analysis & Discussion

This section aims to further analyze the three pri-
mary observations concluded in Section 4.3: ¢)
word segmentation is useful to SMT; ¢¢) the tree-
bank and the bilingual segmentation knowledge
are helpful, performing segmentation of differen-
t nature; and ¢7¢) the bilingual constraints lead to
learn segmentations better tailored for SMT.

The first observation derives from the compar-
isons between the CS baseline and other model-
s. Our results, showing the significant CWS ben-
efits to SMT, are consistent with the works re-
ported in the literature (Xu et al., 2004; Chang
et al., 2008). In our experiment, two additional
evidences found in the translation model are pro-
vided to further support that NO tokenization of
Chinese (i.e., the CS model’s output) could har-
m the MT system. First, the SMT phrase extrac-
tion, i.e., building “phrases” on top of the char-
acter sequences, cannot fully capture all meaning-
ful segmentations produced by the CS model. The
character based model leads to missing some use-
ful longer phrases, and to generate many meaning-
less or redundant translations in the phrase table.
Moreover, it is affected by translation ambiguities,
caused by the cases where a Chinese character has
very different meanings in different contextual en-
vironments.

The second observation shifts the emphasis to
SMS and UBS, based on the treebank and the
bilingual segmentation, respectively. Our result-
s show that both segmentation patterns can bring
positive effects to MT. Through analyzing both
models’ segmentations for trainyr and testyr,

we attempted to get a closer inspection on the seg-
mentation preferences and their influence on MT.
Our first finding is that the segmentation consen-
suses between SMS and UBS are positive to MT.
There have about 35% identical segmentations
produced by the two models. If these identical
segmentations are removed, and the experiments
are rerun, the translation scores decrease (on av-
erage) by 0.50, 0.85 and 0.70 on BLEU, NIST
and METEOR, respectively. Our second finding
is that SMS exhibits better segmentation consis-
tency than UBS. One representative example is the
segmentations for “JI%EZ (lonely)”. All the out-
puts of SMS were “JiZE %", while UBS generat-
ed three ambiguous segmentations, “fl(alone) %
% (double zero)”, “IK ZE(lonely)_ZE(zero)” and
“f(alone)_Z (zero)_Z(zero)”. The segmentation
consistency of SMS rests on the high-quality tree-
bank data and the robust CRFs tagging mod-
el. On the other hand, the advantage of UB-
S is to capture the segmentations matching the
aligned target words. For example, UBS grouped
“[El(country)_Pr(border)_|A](between)” to a word
“[E| Py [8] (international)”, rather than two word-
s “[# Pr(international)_[H] (between)” (as given by
SMS), since these three characters are aligned to
a single English word “international”. The above
analysis shows that SMS and UBS have their own
merits and combining the knowledge derived from
both segmentations is highly encouraged.

The third observation concerns the great im-
pact of the bilingual constraints to the segmenta-
tion models in the MT task. The use of the bilin-
gual constraints is the prime objective of this s-
tudy. Our first contribution for this purpose is
on using the word boundary distributions to cap-
ture the bilingual segmentation supervisions. This
representation contributes to reduce the negative
impacts of erroneous ‘““chars-to-word” alignments.
The ambiguous types (having relatively uniform
boundary distribution), caused by alignment er-
rors, cannot directly bias the model tagging pref-
erences. Furthermore, the word boundary distri-
butions are convenient to make up the learning
constraints over the labelings among various con-
strained learning approaches. They have success-
fully played in three types of constraints for our
experiments: PR penalty (Our model), decoding
constraints in self-training (STS) and virtual evi-
dences (VES). The second contribution is the use
of GP, illustrated by STS-GP-PL, VES-GP-PL and
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Our model. The major effect is to multiply the im-
pacts of the bilingual knowledge through the sim-
ilarity graph. The graph vertices (types)!’, with-
out any supervisions, can learn the word bound-
ary information from their similar types (neigh-
borhoods) having the empirical boundary prob-
abilities. The segmentations given by the three
GP models show about 70% positive segmenta-
tion changes, affected by the unlabeled graph ver-
tices, with respect to the ones given by the NO-
GP models, STS-NO-GP and VES-NO-GP. In our
opinion, the learning mechanism of our approach,
joint coupling of GP and CRFs, rather than the
pipelined one as the other two models, contributes
to maximizing the graph smoothness effects to the
CRFs estimation so that the error propagation of
the pipelined approaches is alleviated.

5 Conclusion

This paper proposed a novel CWS model for the
SMT task. This model aims to maintain the lin-
guistic segmentation supervisions from treebank
data and simultaneously integrate useful bilingual
segmentations induced from the bitexts. This ob-
jective is accomplished by three main steps: 1)
learn word boundaries from character-based align-
ments; 2) encode the learned word boundaries into
a GP constraint; and 3) training a CRFs model, un-
der the GP constraint, by using the PR framework.
The empirical results indicate that the proposed
model can yield better segmentations for SMT.
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