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Abstract

We present a novel way of generating un-
seen words, which is useful for certain ap-
plications such as automatic speech recog-
nition or optical character recognition in
low-resource languages. We test our vo-
cabulary generator on seven low-resource
languages by measuring the decrease in
out-of-vocabulary word rate on a held-out
test set. The languages we study have
very different morphological properties;
we show how our results differ depend-
ing on the morphological complexity of
the language. In our best result (on As-
samese), our approach can predict 29% of
the token-based out-of-vocabulary with a
small amount of unlabeled training data.

1 Introduction

In many applications in human language technolo-
gies (HLT), the goal is to generate text in a target
language, using its standard orthography. Typical
examples include automatic speech recognition
(ASR, also known as STT or speech-to-text), opti-
cal character recognition (OCR), or machine trans-
lation (MT) into a target language. We will call
such HLT applications “target-language genera-
tion technologies” (TLGT). The best-performing
systems for these applications today rely on train-
ing on large amounts of data: in the case of ASR,
the data is aligned audio and transcription, plus
large unannotated data for the language model-
ing; in the case of OCR, it is transcribed optical
data; in the case of MT, it is aligned bitexts. More
data provides for better results. For languages with
rich resources, such as English, more data is often
the best solution, since the required data is readily
available (including bitexts), and the cost of anno-
tating (e.g., transcribing) data is outweighed by the
potential significance of the systems that the data

will enable. Thus, in HLT, improvements in qual-
ity are often brought about by using larger data
sets (Banko and Brill, 2001).

When we move to low-resource languages, the
solution of simply using more data becomes less
appealing. Unannotated data is less readily avail-
able: for example, at the time of publishing this
paper, 55% of all websites are in English, the top
10 languages collectively account for 90% of web
presence, and the top 36 languages have a web
presence that covers at least 0.1% of web sites.!
All other languages (and all languages considered
in this paper except Persian) have a web presence
of less than 0.1%. Considering Wikipedia, another
resource often used in HLT, English has 4.4 mil-
lion articles, while only 48 other languages have
more than 100,000.2 As attention turns to de-
veloping HLT for more languages, including low-
resource languages, alternatives to “more-data”
approaches become important.

At the same time, it is often not possible to use
knowledge-rich approaches. For low-resource lan-
guages, resources such as morphological analyz-
ers are not usually available, and even good schol-
arly descriptions of the morphology (from which
a tool could be built) are often not available. The
challenge is therefore to use data, but to make do
with a small amount of data, and thus to use data
better. This paper is a contribution to this goal.
Specifically, we address TLGTs, i.e., the types
of HLT mentioned above that generate target lan-
guage text. We propose a new approach to gener-
ating unseen words of the target language which
have not been seen in the training data. Our ap-
proach is entirely unsupervised. It assumes that
word-units are specified, typically by whitespace
and punctuation.

'"http://en.wikipedia.org/wiki/
Languages_used_on_the_Internet

http://meta.wikimedia.org/wiki/List_
of_Wikipedias
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Expanding the vocabulary of the target lan-
guage can be useful for TLGTs in different ways.
For ASR and OCR, which can compose words
from smaller units (phones or graphically recog-
nized letters), an expanded target language vocab-
ulary can be directly exploited without the need
for changing the technology at all: the new words
need to be inserted into the relevant resources (lex-
icon, language model) etc, with appropriately es-
timated probabilities. In the case of MT into mor-
phologically rich low-resource languages, mor-
phological segmentation is typically used in devel-
oping the translation models to reduce sparsity, but
this does not guarantee against generating wrong
word combinations. The expanded word combi-
nations can be used to extend the language models
used for MT to bias against incoherent hypothe-
sized new sequences of segmented words.

Our approach relies on unsupervised morpho-
logical segmentation. We do not in this paper con-
tribute to research in unsupervised morphological
segmentation; we only use it. The contribution
of this paper lies in proposing how to use the re-
sults of unsupervised morphological segmentation
in order to generate unseen words of the language.
We investigate several ways of doing so, and we
test them on seven low-resource languages. These
languages have very different morphological prop-
erties, and we show how our results differ depend-
ing on the morphological complexity of the lan-
guage. In our best result (on Assamese), we show
that our approach can predict 29% of the token-
based out-of-vocabulary with a small amount of
unlabeled training data.

The paper is structured as follows. We first dis-
cuss related work in Section 2. We then present
our method in Section 3, and present experimental
results in Section 4. We conclude with a discus-
sion of future work in Section 5.

2 Related Work

Approaches to Morphological Modeling
Computational morphology is a very active area
of research with a multitude of approaches that
vary in the degree of manual annotation needed,
and the amount of machine learning used. At one
extreme, we find systems that are painstakingly
and carefully designed by hand (Koskenniemi,
1983; Buckwalter, 2004; Habash and Rambow,
2006; Détrez and Ranta, 2012). Next on the
continuum, we find work that focuses on defining

morphological models with limited lexica that
are then extended using raw text (Clément et al.,
2004; Forsberg et al., 2006). In the middle of
this continuum, we find efforts to learn complete
paradigms using fully supervised methods relying
on completely annotated data points with rich
morphological information (Durrett and DeNero,
2013; Eskander et al., 2013). Next, there is
work on minimally supervised methods that use
available resources such as dictionaries, bitexts,
and other additional morphological annotations
(Yarowsky and Wicentowski, 2000; Cucerzan and
Yarowsky, 2002; Neuvel and Fulop, 2002; Snyder
and Barzilay, 2008). At the other extreme, we
find unsupervised methods that learn morphology
models from unannotated data (Creutz and Lagus,
2007; Monson et al., 2008; Dreyer and Eisner,
2011; Sirts and Goldwater, 2013).

The work we present in this paper makes no
use of any morphological annotations whatsoever,
yet we are quite distinct from the approaches cited
above. We compare our work to two efforts specif-
ically. First, consider work in automatic mor-
phological segmentation learning from unanno-
tated data (Creutz and Lagus, 2007; Monson et
al., 2008). Unlike these approaches which provide
segmentations for training data and produce mod-
els that can be used to segment unseen words, our
approach can generate words that have not been
seen in the training data. The focus of efforts is
rather complementary: we actually use an off-the-
shelf unsupervised segmentation system (Creutz
and Lagus, 2007) as part of our approach. Second,
consider paradigm completion methods such as
the work of Dreyer and Eisner (2011). This effort
is closely related to our work although unlike it,
we make no assumptions about the data and do not
introduce any restrictions along the lines of deriva-
tion/inflectional morphology: Dreyer and Eisner
(2011) limited their work to verbal paradigms and
used annotated training data in addition to basic
assumptions about the problem such as the size
of the paradigms. In our approach, we have zero
annotated information and we do not distinguish
between inflectional and derivational morphology,
nor do we limit ourselves to a specific part-of-
speech (POS).

Vocabulary Expansion in HLT There have
been diverse approaches towards dealing with out-
of-vocabulary (OOV) words in ASR. In some
models, the approach is to expand the lexicon by
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adding new words or pronunciations. Ohtsuki et
al. (2005) propose a two-run model where in the
first run, the input speech is recognized by the
reference vocabulary and relevant words are ex-
tracted from the vocabulary database and added
thereafter to the reference vocabulary to build an
expanded lexicon. Word recognition is done in the
second run based on the lexicon. Lei et al. (2009)
expanded the pronunciation lexicon via generat-
ing all possible pronunciations for a word be-
fore lattice generation and indexation. There are
also other methods for generating abbreviations in
voice search systems such as Yang et al. (2012).
While all of these approaches involve lexicon ex-
pansion, they do not employ any morphological
information.

In the context of MT, several researchers have
addressed the problem of OOV words by relating
them to known in-vocabulary (INV) words. Yang
and Kirchhoff (2006) anticipated OOV words
that are potentially morphologically related using
phrase-based backoff models. Habash (2008) con-
sidered different techniques for vocabulary expan-
sion online. One of their techniques learned mod-
els of morphological mapping between morpho-
logically rich source words in Arabic that pro-
duce the same English translation. This was used
to relate an OOV word to a morphologically re-
lated INV word. Another technique expanded
the MT phrase tables with possible transliterations
and spelling alternatives.

3 Morphology-based Vocabulary
Expansion

3.1 Approach

Our approach to morphology-based vocabulary
expansion consists of three steps (Figure 1). We
start with a “training” corpus of (unannotated)
words and generate a list of new (unseen) words
that expands the vocabulary of the training corpus.

1. Unsupervised Morphology Segmentation
The first step is to segment each word in the
training corpus into sequences of prefixes,
stem and suffixes, where the prefixes and suf-
fixes are optional.?

2. FST-based Morphology Expansion We
then construct new word models using the
3In this paper, we use an off-the-shelf system for this step

but plan to explore new methods in the future, such as joint
segmentation and expansion.

segmented stems and affixes. We explore two
different techniques for morphology-based
vocabulary expansion that we discuss below.
The output of these models is represented as
a weighted finite state machine (WFST).

3. Reranking Models Given that the size of the
expanded vocabulary can be quite large and
it may include a lot of over-generation, we
rerank the expanded set of words before tak-
ing the top n words to use in downstream
processes. We consider four reranking con-
ditions which we describe below.

Training Transcripts

Unsupervised

Morphology
Segmentation

Segmented Words

FST-based

Expansion Model

Expanded List
m

Reranked Expansion

Figure 1: The flowchart of the lexicon expansion
system.

3.2 Morphology Expansion Techniques

As stated above, the input to the morphology ex-
pansion step is a list of words segmented into mor-
phemes: zero or more prefixes, one stem, and zero
or more suffixes. Figure 2a presents an example of
such input using English words (for clarity).

We use two different models of morphology ex-
pansion in this paper: Fixed Affix model and Bi-
gram Affix model.

3.2.1 Fixed Affix Expansion Model

In the Fixed Affix model, we construct a set of
fused prefixes from all the unique prefix sequences
in the training data; and we similarly construct a
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re+ pro+ duc +e
func +tion +al

re+ duc +e

re+ duc +tion +s

m

pro+ duct

concept +u +al + ly

(a) Training data with morpheme boundaries. Prefixes end with and suffixes start with “+” signs.

duc

(c) FST for the Bigram Affix expansion model

Figure 2: Two models of word generation from morphologically annotated data. In our experiments, we
used weighted finite state machine. We use character-based WFST in the implementation to facilitate

analyzing inputs as well as word generation.

set of fused suffixes from all the unique suffix se-
quences in the training data. In other words, we
simply pick characters from beginning of the word
up to the first stem as the prefix and characters
from the first suffix to the end of the word as the
suffix. Everything in the middle is the stem. In
this model, each word has one single prefix and
one single suffix (each of which can be empty in-
dependently). The Fixed Affix model is simply
the concatenation of the disjunction of all prefixes
with the disjunction of all stems and the disjunc-
tion of all suffixes into one FST:
prefix — stem — suffix

The morpheme paths in the FST are weighted to
reflect their probability in the training corpus.*
Figure 2b exemplifies a Fixed Affix model derived
from the example training data in Figure 2a.

“We convert the probability into a cost by taking the neg-
ative of the log of the probability.

3.2.2 Bigram Affix Expansion Model

In the Bigram Affix model, we do the same for the
stem as in the Fixed Affix model, but for prefixes
and suffixes, we create a bigram language model
in the finite state machine. The advantage of this
technique is that unseen compound affixes can be
generated by our model. For example, the Fixed
Affix model in Figure 2b cannot generate the word
func+tion+al+ly since the suffix +tionally is not
seen in the training data. However, this word can
be generated in the Bigram Affix model as shown
in Figure 2c: there is a path passing0) — 4 — 1 —
2 — 5 — 6 — 3 in the FST that can produce this
word. We expect this model to have better recall
for generating new words in the language because
of its affixation flexibility.

3.3 Reranking Techniques

The expanded models allow for a large number of
words to be generated. We limit the number of vo-
cabulary expansion using different thresholds af-
ter reranking or reweighing the WFSTs generated
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above. We consider four reranking conditions.

3.3.1 No Reranking (NRR)

The baseline reranking option is no reranking
(NRR). In this approach we use the weights in
the WEST, which are based on the independent
prefix/stem/suffix probabilities, to determine the
ranking of the expanded vocabulary.

3.3.2 Trigraph-based Reweighting (WoTr)

We reweight the weights in the WFST model
(Fixed or Bigram) by composing it with a letter
trigraph language model (WoTr). A letter tri-
graph LM is itself a WFST where each trigraph (a
sequence of three consequent letters) has an asso-
ciated weight equal to its negative log-likelihood
in the training data. This reweighting allows us
to model preferences of sequences of word letters
seen more in the training data. For example, in a
word like producttions, the trigraphs ctt and tti are
very rare and thus decrease its probability.

3.3.3 Trigraph-based Reranking (TRR)

When we compose our initial WFST with the tri-
graph FST, the probability of each generated word
from the new FST is equal to the product of the
probability of its morphemes and the probabilities
of each trigraph in that word. This basically makes
the model prefer shorter words and may degrade
the effect of morphology information. Instead of
reweighting the WFST, we get the n-best list of
generated words and rerank them using their tri-
graph probabilities. We will refer to this technique
as TRR.

3.3.4 Reranking Morpheme Boundaries
(BRR)

The last reranking technique reranks the n-best
generated word list with trigraphs that are incident
on the morpheme boundaries (in case of Bigram
Affix model, the last prefix and first suffix). The
intuition is that we already know that any mor-
pheme that is generated from the morphology FST
is already seen in the training data but the bound-
ary for different morphemes are not guaranteed to
be seen in the training data. For example, for the
word producttions, we only take into account the
trigraphs rod, odu, ctt and tti instead of all possible
trigraphs. We will refer to this technique as BRR.

4 Evaluation

4.1 Evaluation Data and Tools

Evaluation Data The IARPA Babel program is
a research program for developing rapid spoken
detection systems for under-resourced languages
(Harper, 2013). We use the IARPA Babel pro-
gram limited language pack data which consists
of 20 hours of telephone speech with transcrip-
tion. We use six languages which are known
to have rich morphology: Assamese (IARPA-
babel102b-v0.5a), Bengali (IARPA-babell03b-
v0.4b), Pashto (IARPA-babel104b-v0.4bY), Taga-
log (IARPA-babel106-v0.2g), Turkish (IARPA-
babel105b-v0.4) and Zulu (IARPA-babel206b-
v0.le). Speech annotation such as silences and
hesitations are removed from transcription and all
words are turned into lower-case (for languages
using the Roman script — Tagalog, Turkish and
Zulu). Moreover, in order to be able to perform a
manual error analysis, we include a language that
has rich morphology and of which the first author
is a native speaker: Persian. We sampled data from
the training and development set of the Persian de-
pendency treebank (Rasooli et al., 2013) to create
a comparable seventh dataset in Persian. Statis-
tics about the datasets are shown in Table 1. We
also conduct further experiments on just verbs and
nouns in the data set for Persian (Persian-N and
Persian V). As shown in Table 1, the training data
is very small and the OOV rate is high especially
in terms of types. For some languages that have
richer morphology such as Turkish and Zulu, the
OOV rate is much higher than other languages.

Word Generation Tools and Settings For un-
supervised learning of morphology, we use Mor-
fessor CAT-MAP (v. 0.9.2) which was shown to be
a very accurate morphological analyzer for mor-
phologically rich languages (Creutz and Lagus,
2007). In order to be able to analyze Unicode-
based data, we convert each character in our
dataset to some conventional ASCII character and
then train Morfessor on the mapped dataset; after
finishing the training, we map the data back to the
original character set. We use the default setting
in Morfessor for unsupervised learning.

For preparing the WEST, we use OpenFST (Ri-
ley et al., 2009). We get the top one million short-
est paths (i.e., least costly paths of words) and ap-
ply our reranking models on them. It is worth
pointing out that our WFSTs are character-based
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Language Training Data Development Data
Type  Token | Type  Token Type OOV% Token OOV %

Assamese | 8694 73151 | 7253 66184 49.57 8.28
Bengali 9460 81476 | 7794 70633 50.65 8.47
Pashto 6968 115069 | 6135 108137 44.89 4.25
Persian 14047 71527 | 10479 42939 44.16 12.78
Tagalog 6213 69577 | 5480 64334 54.95 7.81
Turkish 11985 77128 | 9852 67042 56.84 12.34
Zulu 15868 65655 | 13756 57141 68.72 21.76
Persian-N | 9204 31369 | 7502 18816 46.36 22.11
Persian-V | 2653 11409 | 1332 7318 41.07 9.01

Table 1: Statistics of training and development data for morphology-based unsupervised word generation

experiments.

and thus we also have a morphological analyzer
that can give all possible segmentations for a given
word. By running the morphological analyzer on
the OOVs, we can have the potential upper bound
of OOV reduction by the system (labeled “co” in
Tables 2 and 3).

4.2 Lexicon Expansion Results

The results for lexicon expansion are shown in Ta-
ble 2 for types and Table 3 for tokens.

We use the trigraph WEST as our baseline
model. This model does not use any morphologi-
cal information. In this case, words are generated
according to the likelihood of their trigraphs, with-
out using any information from the morphologi-
cal segmentation. We call this model the trigraph
WEST (Tr. WFST). We consistently have better
numbers than this baseline in all of our models
except for Pashto when measured by tokens. oo
is the upper-bound OOV reduction for our expan-
sion model: for each word in the development set,
we ask if our model, without any vocabulary size
restriction at all, could generate it.

The best results (again, except for Pashto) are
achieved using one of the three reranking methods
(reranking by trigraph probabilities or morpheme
boundaries) as opposed to doing no reranking. To
our surprise, the Fixed Affix model does a slightly
better job in reducing out of vocabulary than the
Bigram Affix model. We can also see from the
results that reranking in general is very effective.

We also compare our models with the case that
there is much more training data and we do not do
vocabulary expansion at all. In Table 2 and Ta-
ble 3, “FP” indicates the full language pack for
the Babel project data which is approximately six

to eight times larger than the limited pack training
data, and the full training data for Persian which
is approximately five times larger. We see that
the larger training data outperforms our methods
in all languages. However, from the results of co,
which is the upper-bound OOV reduction by our
expansion model, for some languages such as As-
samese, our numbers are close to the FP results
and for Zulu it is even better than FP.

We also study how OOV reduction is affected
by the size of the generated vocabulary. The
trends for different sizes of the lexicon expansion
by Fixed Affix model that is reranked by trigraph
probabilities is shown in Figure 3. As seen in the
results, for languages that have richer morphol-
ogy, it is harder to achieve results near to the up-
per bound. As an outlier, morphology does not
help for Pashto. One possible reason might be that
based on the results in Table 4, Morfessor does not
explore morphology in Pashto as well as other lan-
guages.

Morphological Complexity As for further anal-
ysis, we can study the correlation between mor-
phological complexity and hardness of reducing
OOVs. Much work has been done in linguis-
tics to classify languages (Sapir, 1921; Greenberg,
1960). The common wisdom is that languages
are not either agglutinative or fusional, but are
on a spectrum; however, no work to our knowl-
edge places all languages (or at least the ones we
worked on) on such a spectrum. We propose sev-
eral metrics. First, we can consider the number
of unique affixival morphemes in each language,
as determined by Morfessor. As shown in Table 4
(Ipr| + |sf]), Zulu has the most morphemes and
Pashto the fewest. A second possible metric of the
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Language Tr. Fixed Affix Model Bigram Affix Model FP
WEST | NRR | WoTr | TRR | BRR | oo | NRR | WoTr| TRR | BRR | oo
Assamese | 15.94 |24.03 | 28.46 | 28.15 | 27.15 | 48.07 | 23.50 | 28.15 | 27.84 | 26.59 | 51.02 | 50.96
Bengali 15.68 |20.09 | 24.75 | 24.49 | 22.54 | 40.98 | 21.78 | 24.65 | 24.67 | 23.51 | 42.55 | 48.83
Pashto 18.70 | 19.03 | 19.28 | 19.24 | 18.63 | 25.13 | 19.43 | 18.81 | 18.92 | 18.77 | 25.24 | 64.96
Persian 12.83 | 18.95|18.39 | 19.30 | 19.99 | 50.11 | 18.58 | 18.09 | 18.65 | 18.84 | 53.13 | 58.45
Tagalog 11.39 | 14.61| 16.51 | 16.21 | 16.81 | 35.64 | 14.45 | 16.01 | 15.81 | 16.74 | 38.72 | 53.64
Turkish 07.75 1 09.11 | 14.79 | 14.79 | 14.71 | 55.48 | 09.04 | 13.63 | 14.34 | 13.52 | 66.54 | 53.54
Zulu 07.63 | 11.87 | 12.96 | 13.87 | 13.68 | 66.73 | 12.04 | 12.35 | 13.69 | 13.75 | 82.38 | 35.62
Average | 12.85 |16.81|19.31 |19.31|19.07 | 46.02 |17.02 | 18.81 | 19.13 | 18.81 | 51.37 | 52.29
Persian-N | 14.86 | 24.67 | 22.74 | 22.83 | 24.15 |37.32 | 23.78 | 21.68 | 22.51 | 23.32 | 38.38 | -
Persian-V | 54.84 | 68.19 | 72.39 | 73.49 | 71.12 | 80.44 | 67.28 | 71.48 | 72.58 | 70.02 | 80.62 | -

Table 2: Type-based expansion results for the 50k-best list for different models. Tr. WFST stands for
trigraph WEST, NRR for no reranking, WoTr for trigraph reweighting, TRR for trigraph-based rereank-
ing, BRR for reranking morpheme boundary, and oo for the upper bound of OOV reduction via lexicon
expansion if we produce all words. FP (full-pack data) shows the effect of using bigger data with the size
of about seven times larger than our data set, instead of using our unsupervised approach.

Language Tr. Fixed Affix Model Bigram Affix Model FP
WEST | NRR | WoTr | TRR | BRR | oo |NRR |WoTr| TRR | BRR | oo
Assamese | 18.07 |25.70|29.43 [29.12 |28.13 | 47.88 | 25.34 | 29.06 | 28.82 | 27.64 | 50.31 | 58.03
Bengali 17.79 | 20.91 | 25.61 | 25.27 | 23.65 | 40.60 | 22.58 | 25.20 | 25.41 | 24.77 | 42.22 | 55.92
Pashto 21.27 [ 19.40| 19.94 | 19.92 | 18.59 [25.45|19.68 | 19.40 | 19.29 | 18.72 | 25.58 | 71.46
Persian 14.78 | 20.77 | 20.32 | 21.30 | 22.03 | 51.00 | 20.63 | 19.72 | 20.61 | 20.95 | 54.01 | 63.10
Tagalog 12.88 | 14.55| 16.88 | 16.36 | 16.60 | 33.95 | 14.37 | 16.12 | 16.12 | 16.38 | 37.07 | 61.53
Turkish 09.97 | 11.42| 17.82 | 17.67 | 17.23 | 56.54 | 11.05| 16.82 | 17.41 | 15.98 | 66.54 | 59.68
Zulu 08.85 | 13.70 | 14.72 | 15.62 | 15.67 | 68.07 | 13.70 | 14.07 | 15.47 | 15.60 | 87.90 | 41.27
Average | 14.80 | 18.06| 20.67 | 20.75|20.27 | 44.78 | 18.19 | 20.48 | 20.45 | 20.01 | 51.95 | 58.71
Persian-N | 16.82 | 26.46 | 24.42 | 24.56 | 25.71 | 38.40 | 25.69 | 23.50 | 24.20 | 25.04 | 39.41 | -
Persian-V | 60.09 | 71.47 | 75.57 | 76.48 | 73.60 | 82.55|70.56 | 74.81 | 75.72 1 72.53|82.70 | -

Table 3: Token-based expansion results for the 50k-best list for different models.

same as Table 2.

complexity of the morphology is by calculating
the average number of unique prefix-suffix pairs
in the training data after morpheme segmentation
which is shown as |If| in Table 4. Finally, a third
possible metric is the number of all possible words
that can be generated (|L|). These three metrics
correlate fairly well across the languages.

The metrics we propose also correlate with
commonly accepted classifications: e.g., Zulu and
Turkish (highly agglutinative) have higher scores
in terms of our |pr| + |sf|, |If| and |L| metrics in
Table 4 than other languages. The results from full
language packs in Table 3 also show that there is
a reverse interaction of morphological complexity
and the effect of blindly adding more data. Thus
for morphologically rich languages, adding more

Abbreviations are the

data is less effective than for languages with poor
morphology.

The size of the languages (| L|) suggests that we
are suffering from vast overgeneration; we over-
generate because in our model any affix can at-
tach to any stem, which is not in general true.
Thus there is a lack of linguistic knowledge such
as paradigm information (Stump, 2001) for each
word category in our model. In other words, all
morphemes are treated the same in our model
which is not true in natural languages. One way
to tackle this problem is through an unsupervised
POS tagger. The challenge here is that fully unsu-
pervised POS taggers (without any tag dictionary)
are not very accurate (Christodoulopoulos et al.,
2010). Another way is through using joint mor-
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Figure 3: Trends for token-based OOV reduction with different sizes for the Fixed Affix model with

trigraph reranking.

Language | |pr| [stm| |sf] | [L] | |/f]
Assamese | 4 4791 564 | 10.8M | 1.8
Bengali 3 6496 378 | 74M | 1.5
Pashto 1 5395 271 | 1.5M | 1.3
Persian 49 6998 538 | 184M | 2.0
Tagalog 179 4259 299 | 228M | 1.5
Turkish 45 5266 1801 | 427M | 2.3
Zulu 2254 5680 427 | 5.5B |2.8
Persian-N | 3 6121 268 | 49M | 1.5
Persian-V | 43 788 44 1.5M |34

Table 4: Information about the number of unique
morphemes in the Fixed Affix model for each
dataset including empty affixes. |L| shows the
upper bound of the number of possible unique
words that can be generated from the word gener-
ation model. |1 f| is the average number of unique
prefix-suffix pairs (including empty pairs) for each
stem.

phology and tagging models such as Frank et al.
(2013).

Error Analysis on Turkish Unfortunately for
most languages we could not find an available
rule-based or supervised morphological analyzer
to verify the words generated by our model. The
only available tool for us is a Turkish finite-state
morphological analyzer (Oflazer, 1996) imple-
mented with the Xerox FST toolkit (Beesley and
Karttunen, 2003). As we can see in Table 5, the
system with the largest proportion of correct gen-
erated words reranks the expansion with trigraph
probabilities using a Fixed Affix model. Results
also show that we are overgenerating many non-
sense words that we ought to be pruning from our
results. Another observation is that the recognition
percentage of the morphological analyzer on INV
words is much higher than on OOVs, which shows
that OOVs in Turkish dataset are much harder to
analyze.
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Model Precision

Tr. WFST 17.19
NRR 13.36

. WoTr 25.66
Fixed Affix Model TRR 26.30
BRR 25.14

NRR 12.94

. WoTr 24.21
Bigram Affix Model TRR 75.39
BRR 23.45

words 89.30

Development INVs 95.44
O0OVs 84.64

Table 5: Results from running a hand-crafted

Turkish morphological analyzer (Oflazer, 1996)
on different expansions and on the development
set. Precision refers to the percentage of the words
are recognized by the analyzer. The results on de-
velopment are also separated into INV and OOV.

Error Analysis on Persian From the best 50k
word result for Persian (Fixed Affix Model:BRR),
we randomly picked 200 words and manually an-
alyzed them. 89 words are correct (45.5%) where
55.0% of these words are from noun affixation,
23.6% from verb clitics, 9.0% from verb inflec-
tions, 5.6% from incorrect affixations that acci-
dentally resulted in possible words, 4.5% from un-
inflected stems, and a few from adjective affixa-
tion. Among incorrectly generated words, 65.8%
are from combining a stem of one POS with af-
fixes from another POS (e.g., attaching a noun af-
fix to a verb stem), 14.4% from combining a stem
with affixes which are compatible with POS but
not allowed for that particular stem (e.g., there is
a noun suffix that can only attach to a subset of
noun stems), 9.0% are from wrong affixes pro-
duced by Morfessor and others are from incorrect
vowel harmony or double affixation.

In order to study the effect of vocabulary ex-
pansion more deeply, we trained a subset of all
nouns and verbs in the same dataset (also shown
in Table 1). Verbs in Persian have rich but more
or less regular morphology, while nouns, which
have many irregular cases, have rich morphol-
ogy but not as rich as verbs. The results in Ta-
ble 4 show that Morfessor captures these phenom-
ena. Furthermore, our results in Table 2 and Ta-
ble 3 show that our performance on OOV reduc-
tion with verbs is far superior to our performance

with nouns. We also randomly picked 200 words
from each of the experiments (noun and verbs)
to study the degree of correctness of generated
forms. For nouns, 94 words are correct and for
verbs only 71 words are correct. Most verb errors
are due to incorrect morpheme extraction by Mor-
fessor. In contrast, most noun errors result from
affixes that are only compatible with a subset of
all possible noun stems. This suggests that if we
conduct experiments using more accurate unsu-
pervised morphology and also have a more fine-
grained paradigm completion model, we might
improve our performance.

5 Conclusion and Future Work

We have presented an approach to generating new
words. This approach is useful for low-resource,
morphologically rich languages. It provides words
that can be used in HLT applications that require
target-language generation in this language, such
as ASR, OCR, and MT. An implementation of our
approach, named Babel GUM (Babel General Un-
supervised Morphology), will be publicly avail-
able. Please contact the authors for more infor-
mation.

In future work we will explore the possibil-
ity of jointly performing unsupervised morpho-
logical segmentation with clustering of words
into classes with similar morphological behavior.
These classes will extend POS classes. We will
tune the system for our purposes, namely OOV re-
duction.
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