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In recent years, dependency parsing has gain
universal interest due to its usefulness in a wid
range of applications such as synonym gene
ation (Shinyama et al.,
tion (Nguyen et al., 2009) and machine trans-"9:
lation (Katz-Brown et al., 2011; Xie et al.,

Several supervised dependency parsin
algorithms (Nivre and Scholz, 2004; McDonald
et al., 2005a; McDonald et al., 2005b; McDon-

2011).
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Abstract

We present a novel approach for induc-

ing unsupervised dependency parsers for
languages that have no labeled training
data, but have translated text in a resource-
rich language. We train probabilistic pars-

ing models for resource-poor languages by
transferring cross-lingual knowledge from

resource-rich language with entropy reg-
ularization. Our method can be used as
a purely monolingual dependency parser,
requiring no human translations for the

test data, thus making it applicable to a
wide range of resource-poor languages.
We perform experiments on three Data
sets — Version 1.0 and version 2.0 of

Google Universal Dependency Treebanks
and Treebanks from CoNLL shared-tasks,
across ten languages. We obtain state-
of-the art performance of all the three

data sets when compared with previously
studied unsupervised and projected pars-
ing systems.
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However, the manually annotated treebanks that
these parsers rely on are highly expensive to cre-
ate, in particular when we want to build treebanks
for resource-poor languages. This led to a vast
amount of research on unsupervised grammar in-
duction (Carroll and Charniak, 1992; Klein and
Manning, 2004; Smith and Eisner, 2005; Cohen
and Smith, 2009; Spitkovsky et al., 2010; Blun-
som and Cohn, 2010; Marecek and Straka, 2013;
Spitkovsky et al., 2013), which appears to be a
natural solution to this problem, as unsupervised
methods require only unannotated text for training
parsers. Unfortunately, the unsupervised gram-
mar induction systems’ parsing accuracies often
significantly fall behind those of supervised sys-
tems (McDonald et al., 2011). Furthermore, from
a practical standpoint, it is rarely the case that we
are completely devoid of resources for most lan-
guages.

In this paper, we consider a practically moti-
vated scenario, in which we want to build statisti-
cal parsers for resource-poor target languages, us-
ing existing resources from a resource-rich source
language (like English).We assume that there are
absolutely no labeled training data for the target
language, but we have access to parallel data with

g resource-rich language and a sufficient amount
f labeled training data to build an accurate parser
rfor the resource-rich language. This scenario ap-

2002), relation extrac-Pears similar to the setting in bilingual text pars-

However, most bilingual text parsing ap-
proaches require bilingual treebanks — treebanks
§1at have manually annotated tree structures on
oth sides of source and target languages (Smith
and Smith, 2004; Burkett and Klein, 2008), or

ald and Pereira. 2006: Carreras. 2007: Koo anglave tree structures on the source side and trans-
Collins, 2010; Ma and Zhao, 2012; Zhang et al_1Iated sentences in the target languages (Huang et

2013) have been proposed and achieved high pars- ‘For the sake of simplicity, we refer to the resource-poor
ing accuracies on several treebanks, due in larg@nguage as the “targetlanguage”, and resource-rich &gegu

part to the availability of dependency treebanks i

as the “source language”. In addition, in this study we use En
r’t;lish as the source resource-rich language, but our metthodo

a number of languages (McDonald et al., 2013)ogy can be applied to any resource-rich languages.
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al., 2009; Chen et al., 2010). Obviously, bilingual

treebanks are much more difficult to acquire than J/—‘ HJ HJ J mJ
the resources required in our scenario, since the laxoot Economic news had little  effect on financial markets
beled training data and the parallel text in our case

are completely separated. What is more impor- Figure 1: An example dependency tree.
tant is that most studies on bilingual text parsing

assumed that the parser is applied only on bllln;eap to fully supervised dependency parsing per-

gual text. But our goal is to develop a parser tha
: : . ormance.
can be used in completely monolingual setting fo

each target language of interest. 2 Our Approach

This scenario is applicable to a large set of lan-
guages and many research studies (Hwa et alDependency trees represent syntactic relationships
2005) have been made on it. Ganchev et al. (2009jirough labeled directed edges between heads and
presented a parser projection approach via paratheir dependents. For example, Figure 1 shows a
lel text using the posterior regularization frame-dependency tree for the sentenEepnomic news
work (Graca et al., 2007). McDonald et al. (2011)had little effect on financial marketsith the sen-
proposed two parser transfer approaches betwed@nce’s root-symbol as its root. The focus of this
two different languages — one is directly trans-work is on building dependency parsers for target
ferred parser from delexicalized parsers, and thé&nguages, assuming that an accurate English de-
other parser is transferred using constraint drivefpendency parser and some parallel text between
learning algorithm where constraints are drawrthe two languages are available. Central to our ap-
from parallel corpora. In that work, they demon- proach is a maximizing likelihood learning frame-
strate that even the directly transferred delexiwork, in which we use an English parser and par-
calized parser produces significantly higher acallel text to estimate the “transferring distribution”
curacies than unsupervised parsers. Cohen éf the target language parsing model (See Section
al. (2011) proposed an approach for unsupervised.2 for more details). Another advantage of the
dependency parsing with non-parallel multilinguallearning framework is that it combines both the
guidance from one or more helper languages, ifikelihood on parallel data and confidence on unla-
which parallel data is not used. beled data, so that both parallel text and unlabeled

In this work, we propose a learning frame- data can be utilized in our approach.

work for tran;ferring dependency grammars fromz'1 Edge-Factored Parsing Model
a resource-rich language to resource-poor lan-
guages via parallel text. We train probabilistic In this paper, we will use the following notation:
parsing models for resource-poor languages by represents a generic input sentence, anep-
maximizing a combination of likelihood on par- resents a generic dependency tré&x) is used
allel data and confidence on unlabeled data. Oui© denote the set of possible dependency trees
work is based on the learning framework used irfor sentencer. The probabilistic model for de-
Smith and Eisner (2007), which is originally de- pendency parsing defines a family of conditional
signed for parser bootstrapping. We extend thigrobability px(y|x) over ally given sentencer,
learning framework so that it can be used to transwith a log-linear form:

fer cross-lingual knowledge between different lan-

guages. pA(ylz) = % exp { D AiF(y, w)} @y
Throughout this paper, English is used as the J

source language and we evaluate our approach on

ten target languages — Danish (da), Dutch (n))WhereF} are feature functions) = (A1, Az,...)

French (fr), German (de), Greek (el), Italian (it), are parameters of the model, a#idx) is a nor-

Korean (ko), Portuguese (pt), Spanish (es) andnalization factor, which is commonly referred to

Swedish (sv). Our approach achieves significan®S thepartition function

improvement over previous state-of-the-art unsu-

pervised and projected parsing systems across all z(x) = Z exp { Z A F(y, x)} 2)

the ten languages, and considerably bridges the yeT(x) j

1338



A common strategy to make this parsing model efwhere;(-) < j(-z:) andpri(-) < pal-lzs).
ficiently computable is téactor dependency trees j(y|x) is the “transferring distribution” that re-

into sets of edges: flects our uncertainty about the true labels, and we
are trying to learn a parametric mogsl(y|x) by
Fi(y,x) =) file,x). (3)  minimizing the KX function.
ecy

In our scenario, we have a set of aligned par-

That is, dependency treg is treated as a set allel dataP = {z},x}, a;} wherea; is the word
of edgese and each feature functiof;(y, z) is ~ alignment for the pair of source-target sentences

equal to the sum of all the featurgg(e, x). (xf,2f), and a set of unlabeled sentences of the
We denote theveight functiorof each edge as ~ target language’ = {z;}. We also have a trained
follows: English parsing modeb, , (y|z). Then theK in

equation (7) can be divided into two cases, accord-
w(e, ) = exp { Z \ifie, w)} (4) ingto whetherr; belongs to parallel data sétor
j unlabeled data séf. For the unlabeled examples
{z; € U}, some previous studies (e.g., (Abney,
and the conditional probability,(y|z) has the 2004)) simply use a uniform distribution over la-

following form: bels (e.g., parses), to reflect that the label is un-
1 known. We follow the method in Smith and Eis-
pa(ylz) = 7@ [Tw(e =) (5)  ner (2007) and take the transferring distribution
ecy p; to be theactual current beliefpy ;. The total
22 Model Training contribution of theunsupervisedexamples tok
o then simplifies takyy = Y~ H(p»,;), which may
One of the most common model training meth- xieU

ods for supervised dependency parser is Maxibe regarded as the entropy item used to constrain
mum conditional likelihood estimation. For a su- the model's uncertaintyf to be low, as presented
pervised dependency parser with a set of trainin the work on entropy regularization (Jiao et al.,
ing data{ (z;, y;)}, the logarithm of the likelihood 2006; Mann and McCallum, 2007).

(a.k.a. the log-likelihood) is given by: But how can we define the transferring distri-
bution for the parallel examplege! € P}? We
LX) = Zlogp)\(yihzi) (6) define the transferring distribution by defining the
i transferring weightutilizing the English parsing
modelp, ., (y|x) via parallel data with word align-

Maximum likelihood training chooses parameters
such that the log-likelihood.()\) is maximized.
However, in our scenario we have no labeled
) pu—

ents:

. li
wg(e®, x7), if et 20 s
wr(€el,.. i), otherwise

training data for target languages but we have w(e', @}

some parallel and unlabeled data plus an En- (®)
glish dependency parser. For the purpose of . . .

. . , . wherewg(-, -) is the weight function of the En-
transferring cross-lingual information from the

. . ¢ :
Crgis parer i sl e, we exlore et DTS Mot () a5 e
m_odel training m_ethod proposed by Sr.nlth. andgefinition of the transferring weight, we can see
Eisner (.2007)' which presented a genera!lzatlon 0that if an edge’ of the target language sentence
K function (Abney, 2004), and related it to an- ot i1s aligned to an edge® of the English sen-
other semi-supervised learning technique, entropYel

regularization (Jiao et al., 2006; Mann and Mc- thgcsoﬁéswgntc;ﬁ]mf\?vreithﬁt \évfef;t O:neﬁgflztr?-
Callum, 2007). The objectivéd function to be P 9 9 ge

. . ;
minimized is actually theexpectednegative log- .g“Sh parsing modepy (y|x). If the edgee
likelihood: is not aligned to any edges of the English sen-

tencez, we reduce the edgé to the delexical-

K = — Z Zﬁ(yilm log pa(y;|;) ized form and calculate the transferring weight in

iy the English parsing model. There are two advan-

= Z D(pillpa,i) + H (i) (7) “The delexicalized form of an edge is an edge for which

; only delexicalized features are considered.
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tages for this definition of the transferring weight. objective function and the gradient of the objec-
First, by transferring the weight function to the tive function.

corresponding weight in the well-developed En- The firstitem (p) of the K function in equa-
glish parsing model, we can project syntactic in-tion (11) can be rewritten in the following form:
formation across language boundaries. Second

McDonald et al. (2011) demonstrates that parserskp - Z [Zﬁ(yi‘wi) Z log w(e, z;)
with only delexicalized features produce consid- wEl i oY
erably high parsing performance. By reducing — log Z(;)] (12)

can still use those delexicalized features, such agf i, can be written as:

part-of-speech tags, for those unaligned edges, and
can address problem that automatically generated 8—/\P = Z
word alignments include errors. J z;€P

From the definition of transferring weight in ~
- Y | Sitwla) Y sl

op(y;|x;) log px(y;|z:)
N

equation (8), the transferring distribution can be

defined in the following way: i €P - i eCy;
~ R - S e 3 siea|03)
p(ylz) = 7@ [ =) ) vi e€yi
oy According to equation (9)p(y|x) can also be
where . factored into the multiplication of the weight of
Z(x) =[] (10) each edge, so botk» and its gradient can be
y ecy calculated by running th@(n?) inside-outside al-

Due to the normalizing factaZ (), the transfer- gorithm (Baker, 1979; Paskin, 2001) for projec-
ring distribution is a valid one. tive parsing. For non-projective parsing, the anal-
ogy to the inside algorithm is th@(n3) matrix-

We introduce a multipliery as a trade-off be- ¢ loorithm based Kirchhoff's Matrix-T
tween the two contributions (parallel and unsuper-reeagorl M based on Kirchnolt's Viatrix-free

vised) of the objective functior, and the final Theqrem, Wh'(.:h is dominated asympt_otlca_lly by a
objective functionk” has the following form: matrix determinant (Koo et al., 2007; Smith and

Smith, 2007). The gradient of a determinant may
o S| . be computed by matrix inversion, so evaluating the
" Z Zp(yz\l'z) tog pa(uif:) gradient again has the sar6gn?®) complexity as
evaluating the function.
T Z H(ps) The second itemKy;) of the K’ function in
wi€l equation (11) is the Shannon entropy of the pos-
= Kp+oKy (11) terior distribution over parsing trees, and can be

Kp and Ky are the contributions of the parallel Written into the following form:

T, €EP Y;

and unsupervised data, respectively. One may reg,, — _ Z [ZPA(ZHQ%) Z log w(e, ;)
. . . (2 Y
gardy as a Lagrange multiplier that is used to el i ccy,
constrain the parser’s uncertainty H to be low, as — log Z(:v)] (14)
7

presented in several studies on entropy regulariza-
tion (Brand, 1998; Grandvalet and Bengio, 2004;and the gradient ok is in the following:

Jiao et al., 2006). 0Ky _ = Opalwifes) logp(ai)
2.3 Algorithms and Complexity for Model OA;j zieU OA;j

Traini

raining _ = =" paly,la) log pa(y,la:) F (y,, )
To train our parsing model, we need to find out the »
parameters\ that minimize the objective function
K’ in equation (11). This optimization problem + (Zp*(yi‘wi)l()gp*(yi‘wi)>
is typically solved using quasi-Newton numeri- yi
cal methods such as L-BFGS (Nash and Nocedal, ( Y , )

: PAY; T4 Y L (15)

1991), which requires efficient calculation of the yz Al 5 )
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#sents/#tokens # sents

trainin dev test 500 1000 2000 5000 10000 20000
9 Version 1.0 da | 12,568 25225 49,880 126,623 254,565 509,480
ersion 1. de | 13,548 26,663 53,170 133,596 265589 527,407

de 2,200/30,460 800/12,215 1,000/16,339 el | 14,198 28,302 56,744 143,753 286,126 572,777
es 3,345/94,232 370/10,191 300/8,295 es | 15147 29,214 57,526 144,621 290,517 579,164

fr | 15046 29,982 60,569 153,874 306,332 609,541
fr 3,312/74,979 366/8,071 300/6,950 it | 15151 29,786 57,696 145717 288,337 573,557
ko 5,308/62,378 588/6,545 298/2,917 ko | 3814 7,679 15337 38535 77,388 155051
sV 4,447/66,631 493/9,312 1,219/20,376 nl | 13,234 26,777 54,570 137,277 274,692 551,463
Version 2.0 pt | 14,346 28,109 55998 143221 285590 571,109
de [ 14 118/26.4906 800/12.215  1.000/16 339 sv | 12,242 24,897 50,047 123,069 246,619 490,086
es | 14,138/37,5180 1,569/40,950 300/8,295 .
fr | 14511/35 1233 1.611/38 328 300/6.950 1able 2: The number of tokens in parallel data
it | 6,389/14,9145 400/9,541 400/9,187  used in our experiments. For all these corpora, the
ko 5437/60,621 603/6,438 299/2,631 ; ;
pt 9,600/23,9012 1,200/29,873 1,198/29,438 other Ianguage IS EngIISh'
sV 4,447/66,631 493/9,312 1,219/20,376

Table 1: Data statistics of two versions of Google3 Data and Tools

Universal Treebanks for the target languages. In this section, we illustrate the data sets used in

our experiments and the tools for data preparation.
Similar with the calculation o p, Ky can also
be computed by running the inside-outside algo3.1 Choosing Target Languages
rithm (Baker, 1979; Paskin, 2001) for projective gyr experiments rely on two kinds of data sets:
parsing.  For the gradient ok, both the two () Monolingual Treebanks with consistent anno-
multipliers of the second item in equation (15) canation schema — English treebank is used to train
be computed using the same inside-outside alggne English parsing model, and the Treebanks for
rithm. For the firstitem in equation (15), &Mn°)  target languages are used to evaluate the parsing

dynamic programming algorithm that is closely performance of our approach. (i) Large amounts

and McCallum, 2007) for the entropy regularized|ect target languages based on the availability of
CRF (Jiao et al., 2006) can be used for projectivgnese resources. The monolingual treebanks in our
parsing. For non-projective parsing, however, thesyperiments are from the Google Universal De-
runtime rises ta(n?). In this paper, we focus on pendency Treebanks (McDonald et al., 2013), for
projective parsing. the reason that the treebanks of different languages
in Google Universal Dependency Treebanks have
consistent syntactic representations.
To summarize the description in the previous sec- The parallel data come from the Europarl cor-
tions, our approach is performed in the following pus version 7 (Koehn, 2005) and Kaist Corhus
steps: Taking the intersection of languages in the two
kinds of resources yields the following seven lan-

1. Train an English parsing modeh,, (y|#), guages: French, German, Italian, Korean, Por-
which is used to estimate the transferring disygyese, Spanish and Swedish.

tribution p(y|x).

2.4 Summary of Our Approach

The treebanks from CoNLL shared-tasks on
dependency parsing (Buchholz and Marsi, 2006;
Nivre et al., 2007) appear to be another reasonable
choice. However, previous studies (McDonald et
al., 2011; McDonald et al., 2013) have demon-
strated that a homogeneous representation is criti-
cal for multilingual language technologies that re-
quire consistent cross-lingual analysis for down-
stream components, and the heterogenous repre-
sentations used in CoNLL shared-tasks treebanks
weaken any conclusion that can be drawn.

2. Prepare parallel text by running word align-
ment method to obtain word alignmeritand
prepare the unlabeled data.

3. Train a parsing model for the target lan-
guage by minimizing the objectiv&” func-
tion which is the combination of expected
negative log-likelihood on parallel and unla-
beled data.

3The word alignment methods do not require additional ~ “htt p: // semant i cweb. kai st . ac. kr/ hone/
resources besides parallel text. i ndex. php/ Cor pus10
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DTP DTP; PTPf -U +U OR DTPf PTP} -U +U OR

de 5850 58.46 69.21 73.72 74.01| 78.64 de 58.56 69.77| 73.92 74.30| 81.65
es 68.07 68.72 72.57 75.32 75.60| 82.56 es 68.72 73.22| 75.21 75.53| 83.92
fr 70.14 71.13 74.60 76.65 76.93| 83.69 fr 7113 74.75| 76.14 76.53| 83.51
ko 42.37 43.57 53.72 59.72 59.94| 89.85 it 70.74 76.08| 77.55 77.74| 85.47
SV 70.56 70.59 75.87 78.91 79.27| 85.59 ko 38.55 43.34| 59.71 59.89| 90.42
Ave | 61.93 6249 69.19 72.86 73.15| 84.67 pt 69.82 74.59| 76.30 76.65| 85.67
sv 70.59 75.87| 78.91 79.27| 85.59

Ave | 64.02 69.66| 73.96 74.27| 85.18

Table 3: UAS for two versions of our approach, to-
gether with baseline and oracle systems on Googl€able 4: UAS for two versions of our approach, to-
Universal Treebanks version 1.0. “Ave” is the gether with baseline and oracle systems on Google
macro-average across the five languages. Universal Treebanks version 2.0. “Ave” is the
macro-average across the seven languages.

For comparison with previous studies, never-

theless, we also. run experiments on _CoNLL treeyjde the POS tags for these data. In our experi-
banks (see Section 4.4 for more details). We evalments, we train a Stanford POS Tagger (Toutanova
uate our approach on three target languages frog al., 2003) for each language. The labeled train-
CoNLL shared task treebanks, which do not aping data for each POS tagger are extracted from
pear in Google Universal Treebanks. The threghe training portion of each Treebanks. The aver-
languages are Danish, Dutch and Greek. So totallyge tagging accuracy is around 95%.
we have ten target languages. The parallel data for Undoubtedly, we are primarily interested in ap-
these three languages are also from the Europagiying our approach to build statistical parsers
corpus version 7. for resource-poor target languages without any
3.2 Word Alignments knowledge. For the purpose of eva!uatlon of our
_ approach and comparison with previous work, we
In our approach, word alignments for the paral-neeq tg exploit the gold POS tags to train the POS
Ie_I text are required. We perform wgrd a"gnmemstaggers. As part-of-speech tags are also a form
with the open source GIZA++ toolRit The paral- ¢ gy ntactic analysis, this assumption weakens the
lel corpus was preprocessed in standard ways, Sgppjicability of our approach. Fortunately, some
lecting sentences with the length m_the range fromrecently proposed POS taggers, such as the POS
3 0 100. Then we run GIZA++ with the default (5qger of Das and Petrov (2011), rely only on la-
setting to generate word alignments in both direCyg|eq training data for English and the same kind
tions. We then make the intersection of the wordy¢ o aie| text in our approach. In practice we can
ahgnm_ents of two directions to generate one-to-,qe this kind of POS taggers to predict POS tags,
one alignments. whose tagging accuracy is around 85%.

3.3 Part-of-Speech Tagging 4 Experiments

Several features in our parsing model involve part-

of-speech (POS) tags of the input sentences. Thia this section, we will describe the details of our
set of POS tags needs to be consistent across laexperiments and compare our results with previ-
guages and treebanks. For this reason we usmis methods.

the universal POS tag set of Petrov et al. (2011).

This set consists of the following 12 coarse-4.1 Data Sets

grained tags: NOUN (nouns), VERB (verbs), ADJ s presented in Section 3.1, we evaluate our pars-
(adjectives), ADV (adverbs), PRON (pronouns),ing approach on both version 1.0 and version
DET (determiners), ADP (prepositions or postpo-2 o of Google Univereal Treebanks for seven lan-
sitions), NUM (numerals), CONJ (conjunctions), guage&. We use the standard splits of the treebank
PRT (particles), PUNC (punctuation marks) andfor each language as specified in the release of the
X (a catch-all for other categories such as abbreviyatd. Table 1 presents the statistics of the two ver-

ations or foreign words). _sions of Google Universal Treebanks. We strip all
POS tags are not available for parallel data in

the Europarl and Kaist corpus, so we need to pro- ®Japanese and Indonesia are excluded as no practicable
parallel data are available.

Shtt ps:// code. googl e. cont p/ gi za- pp/ "htt ps:// code. googl e. cond p/ uni - dep-t b/
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Google Universal Treebanks V1.0
de es fr ko Y
#sents | PTP} -U +U PTP} -U +U PTP} -U +U PTP} -U +U PTP} -U +U
500 63.23 70.79 7093 70.09 72.32 72.64| 72.24 74.64 7490 47.71 56.87 57.22| 71.70 75.88 76.13
1000 65.61 71.71 71.86| 70.90 73.44 73.67| 7295 75.07 75.35 47.83 57.65 58.15 72.38 76.55 77.03
2000 66.52 7233 72.48| 72.01 7357 73.81] 73.69 7588 76.22| 48.37 58.19 58.44| 73.65 77.86 78.12
5000 67.79 73.06 73.31 7234 7430 7479 7431 76.02 76.29| 53.02 5857 59.04| 74.88 78.48 78.70
10000 | 68.44 7359 73.92| 72.48 74.86 75.26| 74.43 76.14 76.34| 53.61 59.17 59.55| 75.34 78.78  79.08
20000 | 69.21 73.72 74.01] 7257 7532 75.60] 74.60 76.55 76.93| 53.72 59.72 59.94| 75.87 7891 79.27
Google Universal Treebanks V2.0
de es fr ko it
#sents | PTPf -U +U PTP} -U +U PTP} -U +U PTP} -U +U PTP} -U +U
500 60.10 71.07 71.39] 69.52 2.97 73.28] 71.10 7457 7470 40.09 56.60 57.10] 72.80 75.67 75.94
1000 61.76 72.15 72.39| 70.78 73.48 73.79| 72.14 75.13 75.43| 40.44 5755 57.93| 7355 76.43 76.67
2000 65.35 7273 73.04| 71.75 7410 7435 73.21 7578 76.06| 40.87 58.11 58.43| 7444 76.99 77.39
5000 67.86 73.32 73.62| 72.43 7455 74.83| 7414 7583 76.02| 40.90 5848 5896 75.07 77.10 77.34
10000 | 68.70 73.71 74.02| 72.85 7480 74.95 7453 7597 76.17| 41.29 59.13 59.44| 75.65 77.50 77.71
20000 | 69.77 73.92 74.30| 73.22 7521 75.53| 7475 76.14 76.53| 43.34 59.71 59.89| 76.08 77.55 77.74
pt
#sents [ PTP} -U +U
500 7134 7441 7468
1000 7191 7448 75.08
2000 7293 7510 75.32
5000 73.78 7588 75.98
10000 | 74.40 75.99 76.15
20000 | 7459 76.30 76.65

Table 5: Parsing results of our approach with different amiai parallel data on Google Universal
Treebanks version 1.0 and 2.0. We omit the results of Swddistneebanks version 2.0 since the data
for Swedish from version 2.0 are exactly the same with thosa frersion 1.0.

the dependency annotations off the training porPTP The projected transfer parser (PTP) de-
tion of each treebank, and use that as the unla- scribed in McDonald et al. (2011). The
beled data for that target language. We train our  results of the projected transfer parser re-
parsing model with different numbers of parallel implemented by us is marked as “PTP
sentences to analyze the influence of the amount of .
parallel data on the parsing performance ofourap'—U: Ol_” approach training on only parallel data
proach. The parallel data sets contain 500, 1000, without unlabeled data for the target lan-
2000, 5000, 10000 and 20000 parallel sentences, guage_:. The parallel data set for each language
respectively. We randomly extract parallel sen- contains 20,000 sentences.

tences from each corpora, and smaller data sets aig). Our approach training on both parallel and
subsets of larger ones. Table 2 shows the number | niabeled data. The parallel data sets are the

of tokens in the parallel data used in the experi-  gnes contains 20,000 sentences.
ments.

OR: the supervised first-order projective depen-
4.2 System performance and comparison dency parsing model (McDonald et al.,
on Google Universal Treebanks 2005a), trained on the original treebanks with
For the comparison of parsing performance, we  maximum likelihood estimation (equation 6).
run experiments on the following systems: One may regard this system as an oracle of

. transfer parsing.
DTP: The direct transfer parser (DTP) proposed P g

by McDonald et al. (2011), who train a delex-  Parsing accuracy is measured with unlabeled at-
icalized parser on English labeled trainingtachment score (UAS): the percentage of words
data with no lexical features, then apply thiswith the correct head.

parser to parse target languages directly. It Table 3 and Table 4 shows the parsing results of
is based on the transition-based dependencyur approach, together with the results of the base-
parsing paradigm (Nivre, 2008). We di- line systems and the oracle, on version 1.0 and ver-
rectly cite the results reported in McDon- sion 2.0 of Google Universal Treebanks, respec-
ald et al. (2013). In addition to their orig- tively. Our approaches significantly outperform all
inal results, we also report results by re-the baseline systems across all the seven target lan-
implementing the direct transfer parser basedjuages. For the results on Google Universal Tree-
on the first-order projective dependency parsbanks version 1.0, the improvement on average
ing model (McDonald et al., 2005a) (DTP  over the projected transfer paper (BTB 3.96%
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0 0 . DMV | DTP DTPf PTP PTR | -U | OR
and up to 6.22% for Korean and 4.80% for Ger = a3i T iEo dss 285 oo i ET
man. For the other three languages, the improve-ge 180 | 472 460 509 52.4| 57.3| 87.0
ments are remarkable, too — 2.33% for French, € gg-g gg-g gi-i ggg ggg gg-;‘ 2;-2
3.03% for Spanish and 3.40% for Swedish. By ;° | 431 | 277 200 cos 634| 640 | 839
adding entropy regularization from unlabeled data, nl 385 | 60.8 60.7 67.8 66.5 68.2| 78.2

- - pt | 201 | 69.2 711 713 74.8| 75.1 | 87.2
our full model achieves average improvement of [ | 4,0 | c53 603 613 628 667 | 880
0.29% over the “-U” setting. Moreover, our ap- "Ave | 332 | 57.0 578 604 61.9] 63.6 | 84.7
proach considerably bridges the gap to fully super-
vised dependency parsers, whose average UAS ®able 6: Parsing results on treebanks from CoNLL
84.67%. For the results on treebanks version 2.Ghared tasks for eight target languages. The results
we can get similar observation and draw the samef unsupervised DMV model are from Table 1 of

conclusion. McDonald et al. (2011).

4.3 Effect of the Amount of Parallel Text

Table 5 illustrates the UAS of our approach trainedo those five baseline systems and the oracle (OR).
on different amounts of parallel data, togetherThe results of unsupervised DMV model (Klein
with the results of the projected transfer parseand Manning, 2004) are from Table 1 of McDon-
re-implemented by us (PTP We run two ver- ald et al. (2011). Our approach outperforms all
sions of our approach for each of the parallel datdhese baseline systems and achieves state-of-the-
sets, one with unlabeled data (+U) and the otheart performance on all the eight languages.

without them (-U). From table 5 we can get three |n order to compare with more previous meth-
observations. First, even the parsers trained witds, we also report parsing performance on sen-
only 500 parallel sentences achieve considerablyences of length 10 or less after punctuation
high parsing accuracies (average 70.10% for vethas been removed. Table 7 shows the results
sion 1.0 and 71.59% for version 2.0). This demon-of our system and the results of baseline sys-
strates that our approach does not rely on a largeems. “USR” is the weakly supervised system of
amount of parallel data. Second, when graduallyNaseem et al. (2010). “PGI” is the phylogenetic
increasing the amount of parallel data, the parsingrammar induction model of Berg-Kirkpatrick and
performance continues improving. Third, entropyKlein (2010). Both the results of the two systems
regularization with unlabeled data makes mod-are cited from Table 4 of McDonald et al. (2011).
est improvement on parsing performance over th@Ve also include the results of the unsupervised
parsers without unlabeled data. This proves the efdependency parsing model with non-parallel mul-
fectiveness of the entropy regularization from un-tlingual guidance (NMG) proposed by Cohen et
labeled data. al. (2011%, and “PR” which is the posterior reg-
ularization approach presented in Gillenwater et
al. (2010). All the results are shown in Table 7.

To make a thorough empirical comparison With £, Taple 7, we can see that among the eight
Previous studies, we also evaluate our Systen&:’lrget languages, our approach achieves best pars-
without unlabeled data (-U) on treebanks froming performance on six languages — Danish, Ger-
CoNLL shared task on dependency parsing (Buchq o Greek, Italian, Portuguese and Swedish. It
holz and Marsi, 2006; Nivre et al., 2007). To fa- g0 14 he noted that the “NMG” system utilizes
cilitate comparison, we use the same eight Indofnore than one helper languages. So it is not di-

European languages as target languages: Dani%ctly comparable to our work
Dutch, German, Greek, Italian, Portuguese, Span-

ish and Swedish, and same experimental setup as i
McDonald et al. (2011). We report both the results*>  EXtensions

of the direct transfer and projected transfer parserg, s section, we briefly outline a few extensions
directly cited from McDonald et al. (2011) (DTP {4 yr approach that we want to explore in future
and PTP) and re-implemented by us (OBRd ok

PTP}).

_Table 6 gives the results comparlng the_ model™ sgor each language, we use the best result of the four sys-
without unlabeled data (-U) presented in this worktems in Table 3 of Cohen et al. (2011)

4.4 Experiments on CoNLL Treebanks
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DTP DTP; PTP PTR |USRf PGI PR NMG| -U
da | 532 553 574 598 551 416 44.0 59.9 60.1

de | 659 579 670 635 600 — — — | 67.5
el 739 708 739 723 603 — — 73.0|743
es | 58.0 623 623 66.1 683 584 624 76.7 | 64.6
it 655 669 699 715 479 — — — | 73.6

nl 67.6 66.0 722 721 | 440 451 379 50.7] 70.5
pt 779 79.2 806 829 709 63.0 478 79.8 83.3
sv | 704 70.2 713 704 52.6 583 422 74.0]751
Ave | 66.6 66.1 694 698 574 — — — | 711

Table 7: UAS on sentences of length 10 or less without putictufrom CoNLL shared task treebanks.
“USR{” is the weakly supervised system of Naseem et al. (2010).IB®Ghe phylogenetic grammar
induction model of Berg-Kirkpatrick and Klein (2010). Bothe “USR{” and “PGI” systems are im-
plemented and reported by McDonald et al. (2011). “NMG” is tinsupervised dependency parsing
model with non-parallel multilingual guidance (Cohen et 2011). “PR” is the posterior regularization
approach presented in Gillenwater et al. (2010). Some mgSteesults for certain target languages are
not available as marked by —.

4.5.1 Non-Projective Parsing 45.3 IGT Data

As mentioned in section 2.3, the runtime to com-One possible direction to improve our approach
pute kK and its gradient i) (n?). One reasonable is to replace parallel text with Interlinear Glossed
speedup, as presented in Smith and Eisner (2007J€xt (IGT) (Lewis and Xia, 2010), which is a
is to replace Shannon entropy with Rényi en»[ropy_sem|-structured data type encoding more syntactic

not only can we obtain more accurate word align-

1 N ments, but also extract useful cross-lingual infor-
1 —o log (Zp(y) ) (16)  mation for the resource-poor language.
Yy

R, (p) =

5 Conclusion
With Rényi entropy, the computation & and

its gradient isO (n%), even for non-projective case. " thiS paper, we propose an unsupervised pro-

jective dependency parsing approach for resource-
poor languages, using existing resources from a
resource-rich source language. By presenting a
model training framework, our approach can uti-
Our learning framework can be extended tojize parallel text to estimate transferring distribu-
higher-order dependency parsing models. For exjon with the help of a well-developed resource-
ample, if we want to make our model Capable Ofrich |anguage dependency parser, and use unla-
UtlllZIng more contextual information, we can ex- beled data as entropy regularization. The exper-
tend our transferring weight to higher-order parts:imental results on three data sets across ten target
languages show that our approach achieves signif-

4.5.2 Higher-Order Models for Projective
Parsing

ot { o zs), it gt icant improvement over previous studies.
) 1 t H
WE (Pgetes @), Otherwise Acknowledgements

17)
wherep is a smallpart of treey that has limited This material is based upon work supported by
interactions. For projective parsing, several althe National Science Foundation under Grant No.
gorithms (McDonald and Pereira, 2006; CarrerasBCS-0748919. Any opinions, findings, and con-
2007; Koo and Collins, 2010; Ma and Zhao, 2012)clusions or recommendations expressed in this
have been proposed to solve the model trainingnaterial are those of the authors and do not nec-
problems (calculation of objective function and essarily reflect the views of the National Science
gradient) for different factorizations. Foundation.
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