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Abstract

We present a novel approach for automatic
report generation from time-series data, in
the context of student feedback genera-
tion. Our proposed methodology treats
content selection as a multi-label (ML)
classification problem, which takes as in-
put time-series data and outputs a set of
templates, while capturing the dependen-
cies between selected templates. We show
that this method generates output closer to
the feedback that lecturers actually gener-
ated, achieving 3.5% higher accuracy and
15% higher F-score than multiple simple
classifiers that keep a history of selected
templates. Furthermore, we compare a
ML classifier with a Reinforcement Learn-
ing (RL) approach in simulation and using
ratings from real student users. We show
that the different methods have different
benefits, with ML being more accurate for
predicting what was seen in the training
data, whereas RL is more exploratory and
slightly preferred by the students.

1 Introduction

Summarisation of time-series data refers to the
task of automatically generating text from vari-
ables whose values change over time. We con-
sider the task of automatically generating feed-
back summaries for students describing their per-
formance during the lab of a Computer Science
module over the semester. Students’ learning can
be influenced by many variables, such as difficulty
of the material (Person et al., 1995), other dead-
lines (Craig et al., 2004), attendance in lectures
(Ames, 1992), etc. These variables have two im-
portant qualities. Firstly, they change over time,
and secondly they can be dependent on or inde-
pendent of each other. Therefore, when generating

feedback, we need to take into account all vari-
ables simultaneously in order to capture potential
dependencies and provide more effective and use-
ful feedback that is relevant to the students.

In this work, we concentrate on content selec-
tion which is the task of choosing what to say,
i.e. what information is to be included in a report
(Reiter and Dale, 2000). Content selection deci-
sions based on trends in time-series data determine
the selection of the useful and important variables,
which we refer to here as factors, that should be
conveyed in a summary. The decisions of factor
selection can be influenced by other factors that
their values are correlated with; can be based on
the appearance or absence of other factors in the
summary; and can be based on the factors’ be-
haviour over time. Moreover, some factors may
have to be discussed together in order to achieve
some communicative goal, for instance, a teacher
might want to refer to student’s marks as a moti-
vation for increasing the number of hours studied.

We frame content selection as a simple classifi-
cation task: given a set of time-series data, decide
for each template whether it should be included
in a summary or not. In this paper, with the term
‘template’ we refer to a quadruple consisting of an
id, a factor (bottom left of Table 1), a reference
type (trend, weeks, average, other) and surface
text. However, simple classification assumes that
the templates are independent of each other, thus
the decision for each template is taken in isolation
from the others, which is not appropriate for our
domain. In order to capture the dependencies in
the context, multiple simple classifiers can make
the decisions for each template iteratively. After
each iteration, the feature space grows by 1 fea-
ture, in order to include the history of the previous
template decisions. Here, we propose an alterna-
tive method that tackles the challenge of interde-
pendent data by using multi-label (ML) classifica-
tion, which is efficient in taking data dependencies
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Raw Data
factors week 2 week 3 ... week 10
marks 5 4 ... 5
hours studied 1 2 ... 3
... ... ... ... ...

Trends from Data
factors trend
(1) marks (M) trend other
(2) hours studied (HS) trend increasing
(3) understandability (Und) trend decreasing
(4) difficulty (Diff) trend decreasing
(5) deadlines (DL) trend increasing
(6) health issues (HI) trend other
(7) personal issues (PI) trend decreasing
(8) lectures attended (LA) trend other
(9) revision (R) trend decreasing

Summary

Your overall performance was excellent
during the semester. Keep up the good
work and maybe try some more challeng-
ing exercises. Your attendance was vary-
ing over the semester. Have a think about
how to use time in lectures to improve your
understanding of the material. You spent 2
hours studying the lecture material on
average. You should dedicate more time
to study. You seem to find the material
easier to understand compared to the
beginning of the semester. Keep up the
good work! You revised part of the learn-
ing material. Have a think whether revis-
ing has improved your performance.

Table 1: The table on the top left shows an example of the time-series raw data for feedback generation.
The table on the bottom left shows an example of described trends. The box on the right presents a target
summary (target summaries have been constructed by teaching staff).

into account and generating a set of labels (in our
case templates) simultaneously (Tsoumakas et al.,
2010). ML classification requires no history, i.e.
does not keep track of previous decisions, and thus
has a smaller feature space.

Our contributions to the field are as follows: we
present a novel and efficient method for tackling
the challenge of content selection using a ML clas-
sification approach; we applied this method to the
domain of feedback summarisation; we present a
comparison with an optimisation technique (Rein-
forcement Learning), and we discuss the similari-
ties and differences between the two methods.

In the next section, we refer to the related work
on Natural Language Generation from time-series
data and on Content Selection. In Section 4.2, we
describe our approach and we carry out a compar-
ison with simple classification methods. In Sec-
tion 5, we present the evaluation setup and in Sec-
tion 6 we discuss the results, obtained in simula-
tion and with real students. Finally, in Section 8,
directions for future work are discussed.

2 Related Work

Natural Language Generation from time-series
data has been investigated for various tasks such
as weather forecast generation (Belz and Kow,
2010; Angeli et al., 2010; Sripada et al., 2004),
report generation from clinical data (Hunter et al.,

2011; Gatt et al., 2009), narrative to assist children
with communication needs (Black et al., 2010) and
audiovisual debrief generation from sensor data
from Autonomous Underwater Vehicles missions
(Johnson and Lane, 2011).

The important tasks of time-series data sum-
marisation systems are content selection (what to
say), surface realisation (how to say it) and infor-
mation presentation (Document Planning, Order-
ing, etc.). In this work, we concentrate on content
selection. Previous methods for content selection
include Reinforcement Learning (Rieser et al.,
2010); multi-objective optimisation (Gkatzia et
al., 2014); Gricean Maxims (Sripada et al., 2003);
Integer Linear Programming (Lampouras and An-
droutsopoulos, 2013); collective content selection
(Barzilay and Lapata, 2004); interest scores as-
signed to content (Androutsopoulos et al., 2013); a
combination of statistical and template-based ap-
proaches to NLG (Kondadadi et al., 2013); statis-
tical acquisition of rules (Duboue and McKeown,
2003) and the Hidden Markov model approach for
Content Selection and ordering (Barzilay and Lee,
2004).

Collective content selection (Barzilay and La-
pata, 2004) is similar to our proposed method in
that it is a classification task that predicts the tem-
plates from the same instance simultaneously. The
difference between the two methods lies in that the
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collective content selection requires the considera-
tion of an individual preference score (which is de-
fined as the preference of the entity to be selected
or omitted, and it is based on the values of entity
attributes and is computed using a boosting algo-
rithm) and the identification of links between the
entities with similar labels. In contrast, ML clas-
sification does not need the computation of links
between the data and the templates. ML classi-
fication can also apply to other problems whose
features are correlated, such as text classification
(Madjarov et al., 2012), when an aligned dataset is
provided.

ML classification algorithms have been divided
into three categories: algorithm adaptation meth-
ods, problem transformation and ensemble meth-
ods (Tsoumakas and Katakis, 2007; Madjarov
et al., 2012). Algorithm adaptation approaches
(Tsoumakas et al., 2010) extend simple classifi-
cation methods to handle ML data. For exam-
ple, the k-nearest neighbour algorithm is extended
to ML-kNN by Zhang and Zhou (2007). ML-
kNN identifies for each new instance its k nearest
neighbours in the training set and then it predicts
the label set by utilising the maximum a posteri-
ori principle according to statistical information
derived from the label sets of the k neighbours.
Problem transformation approaches (Tsoumakas
and Katakis, 2007) transform the ML classifica-
tion task into one or more simple classification
tasks. Ensemble methods (Tsoumakas et al., 2010)
are algorithms that use ensembles to perform ML
learning and they are based on problem transfor-
mation or algorithm adaptation methods. In this
paper, we applied RAkEL (Random k-labelsets)
(Tsoumakas et al., 2010): an ensemble problem
transformation method, which constructs an en-
semble of simple-label classifiers, where each one
deals with a random subset of the labels.

Finally, our domain for feedback generation is
motivated by previous studies (Law et al., 2005;
van den Meulen et al., 2010) who show that text
summaries are more effective in decision making
than graphs therefore it is advantageous to provide
a summary over showing users the raw data graph-
ically. In addition, feedback summarisation from
time-series data can be applied to the field of In-
telligent Tutoring Systems (Gross et al., 2012).

3 Data

The dataset consists of 37 instances referring to
the activities of 26 students. For a few students
there is more than 1 instance. An example of one
such instance is presented in Table 1. Each in-
stance includes time-series information about the
student’s learning habits and the selected tem-
plates that lecturers used to provide feedback to
this student. The time-series information includes
for each week of the semester: (1) the marks
achieved at the lab; (2) the hours that the stu-
dent spent studying; (3) the understandability of
the material; (4) the difficulty of the lab exercises
as assessed by the student; (5) the number of other
deadlines that the student had that week; (6) health
issues; (7) personal issues; (8) the number of lec-
tures attended; and (9) the amount of revision that
the student had performed. The templates describe
these factors in four different ways:

1. <trend>: referring to the trend of a fac-
tor over the semester (e.g. “Your performance
was increasing...”),

2. <weeks>: explicitly describing the factor
value at specific weeks (e.g. “In weeks 2, 3
and 9...”),

3. <average>: considering the average of a
factor value (e.g. “You dedicated 1.5 hours
studying on average...”), and

4. <other>: mentioning other relevant infor-
mation (e.g. “Revising material will improve
your performance”).

For the corpus creation, 11 lecturers selected the
content to be conveyed in a summary, given the
set of raw data (Gkatzia et al., 2013). As a result,
for the same student there are various summaries
provided by the different experts. This character-
istic of the dataset, that each instance is associated
with more than one solution, additionally moti-
vates the use of multi-label classification, which
is concerned with learning from examples, where
each example is associated with multiple labels.

Our analysis of the dataset showed that there
are significant correlations between the factors, for
example, the number of lectures attended (LA)
correlates with the student’s understanding of the
material (Und), see Table 2. As we will discuss
further in Section 5.1, content decisions are in-
fluenced by the previously generated content, for
example, if the lecturer has previously mentioned
health issues, mentioning hours studied has a high
probability of also being mentioned.
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Factor (1) M (2) HS (3) Und (4) Diff (5) DL (6) HI (7) PI (8) LA (9) R
(1) M 1* 0.52* 0.44* -0.53* -0.31 -0.30 -0.36* 0.44* 0.16
(2) HS 0.52* 1* 0.23 -0.09 -0.11 0.11 -0.29 0.32 0.47*
(3) Und 0.44* 0.23 1* -0.54* 0.03 -0.26 0.12 0.60* 0.32
(4) Diff -0.53* -0.09 -0.54* 1* 0.16 -0.06 0.03 -0.19 0.14
(5) DL -0.31 -0.11 0.03 0.16 1* 0.26 0.24 -0.44* 0.14
(6) HI -0.30 -0.11 -0.26 -0.06 0.26 1* 0.27 -0.50* 0.15
(7) PI -0.36* -0.29 0.12 0.03 0.24 0.27 1* -0.46* 0.34*
(8) LA 0.44* 0.32 0.60* -0.19 -0.44* -0.50* -0.46* 1* -0.12
(9) R 0.16 0.47* 0.03 0.14 0.14 0.15 0.34* -0.12 1*

Table 2: The table presents the Pearson’s correlation coefficients of the factors (* means p<0.05).

4 Methodology

In this section, the content selection task and the
suggested multi-label classification approach are
presented. The development and evaluation of the
time-series generation system follows the follow-
ing pipeline (Gkatzia et al., 2013):

1. Time-Series data collection from students
2. Template construction by Learning and

Teaching (L&T) expert
3. Feedback summaries constructed by lectur-

ers; random summaries rated by lecturers
4. Development of time-series generation sys-

tems (Section 4.2, Section 5.3): ML system,
RL system, Rule-based and Random system

5. Evaluation: (Section 5)
- Offline evaluation (Accuracy and Reward)
- Online evaluation (Subjective Ratings)

4.1 The Content Selection Task
Our learning task is formed as follows: given a
set of 9 time-series factors, select the content that
is most appropriate to be included in a summary.
Content is regarded as labels (each template rep-
resents a label) and thus the task can be thought of
as a classification problem. As mentioned, there
are 4 ways to refer to a factor: (1) describing the
trend, (2) describing what happened in every time
stamp, (3) mentioning the average and (4) making
another general statement. Overall, for all factors
there are 29 different templates1. An example of
the input data is shown in Table 1. There are two
decisions that need to be made: (1) whether to talk
about a factor and (2) in which way to refer to it.
Instead of dealing with this task in a hierarchical
way, where the algorithm will first learn whether
to talk about a factor and then to decide how to

1There are fewer than 36 templates, because for some fac-
tors there are less than 4 possible ways of referring to them.

refer to it, we transformed the task in order to re-
duce the learning steps. Therefore, classification
can reduce the decision workload by deciding ei-
ther in which way to talk about it, or not to talk
about a factor at all.

4.2 The Multi-label Classification Approach
Traditional single-label classification is the task of
identifying which label one new observation is as-
sociated with, by choosing from a set of labels L
(Tsoumakas et al., 2010). Multi-label classifica-
tion is the task of associating an observation with
a set of labels Y ⊆ L (Tsoumakas et al., 2010).

One set of factor values can result in various
sets of templates as interpreted by the different
experts. A ML classifier is able to make deci-
sions for all templates simultaneously and cap-
ture these differences. The RAndom k-labELsets
(RAkEL) (Tsoumakas et al., 2010) was applied
in order to perform ML classification. RAkEL is
based on Label Powerset (LP), a problem transfor-
mation method (Tsoumakas et al., 2010). LP ben-
efits from taking into consideration label correla-
tions, but does not perform well when trained with
few examples as in our case (Tsoumakas et al.,
2010). RAkEL overcomes this limitation by con-
structing a set of LP classifiers, which are trained
with different random subsets of the set of labels
(Tsoumakas et al., 2010).

The LP method transforms the ML task, into
one single-label multi-class classification task,
where the possible set of predicted variables for
the transformed class is the powerset of labels
present in the original dataset. For instance, the set
of labels L = {temp0, temp1, ...temp28} could be
transformed to {temp0,1,2, temp28,3,17,...}. This
algorithm does not perform well when consider-
ing a large number of labels, due to the fact that
the label space grows exponentially (Tsoumakas
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Classifier Accuracy Precision Recall F score
(10-fold)

Decision Tree (no history) *75.95% 67.56 75.96 67.87
Decision Tree (with predicted history) **73.43% 65.49 72.05 70.95
Decision Tree (with real history) **78.09% 74.51 78.11 75.54
Majority-class (single label) **72.02% 61.73 77.37 68.21
RAkEL (multi-label) (no history) 76.95% 85.08 85.94 85.50

Table 3: Average, precision, recall and F-score of the different classification methods (T-test, * denotes
significance with p<0.05 and ** significance with p<0.01, when comparing each result to RAkEL).

et al., 2010). RAkEL tackles this problem by con-
structing an ensemble of LP classifiers and train-
ing each one on a different random subset of the
set of labels (Tsoumakas et al., 2010).

4.2.1 The Production Phase of RAkEL
The algorithm was implemented using the MU-
LAN Open Source Java library (Tsoumakas et
al., 2011), which is based on WEKA (Witten and
Frank, 2005). The algorithm works in two phases:

1. the production of an ensemble of LP algo-
rithms, and

2. the combination of the LP algorithms.
RAkEL takes as input the following parameters:
(1) the numbers of iterations m (which is devel-
oper specified and denotes the number of models
that the algorithm will produce), (2) the size of la-
belset k (which is also developer specified), (3) the
set of labels L, and (4) the training set D. During
the initial phase it outputs an ensemble of LP clas-
sifiers and the corresponding k-labelsets. A pseu-
docode for the production phase is shown below:

Algorithm 1 RAkEL production phase

1 : I n p u t : i t e r a t i o n s m, k l a b e l s e t s ,
l a b e l s L , t r a i n i n g d a t a D

2 : f o r i =0 t o m
3 : S e l e c t random k− l a b e l s e t from L
4 : T r a i n an LP on D
5 : Add LP t o ensemble
6 : end f o r

7 : Outpu t : t h e ensemble o f LPs
wi th c o r r e s p o n d i n g k− l a b e l s e t s

4.2.2 The Combination Phase
During the combination phase, the algorithm takes
as input the results of the production phase, i.e.
the ensemble of LPs with the corresponding k-
labelsets, the set of labels L, and the new instance
x and it outputs the result vector of predicted la-
bels for instance x. During run time, RAkEL es-

timates the average decision for each label in L
and if the average is greater than a threshold t (de-
termined by the developer) it includes the label in
the predicted labelset. We used the standard pa-
rameter values of t, k and m (t = 0.5, k = 3 and
m equals to 58 (2*29 templates)). In future, we
could perform parameter optimisation by using a
technique similar to (Gabsdil and Lemon, 2004).

5 Evaluation

Firstly, we performed a preliminary evaluation on
classification methods, comparing our proposed
ML classification with multiple iterated classifica-
tion approaches. The summaries generated by the
ML classification system are then compared with
the output of a RL system and two baseline sys-
tems in simulation and with real students.

5.1 Comparison with Simple Classification
We compared the RAkEL algorithm with single-
label (SL) classification. Different SL classifiers
were trained using WEKA: JRip, Decision Trees,
Naive Bayes, k-nearest neighbour, logistic regres-
sion, multi-layer perceptron and support vector
machines. It was found out that Decision Trees
achieved on average 3% higher accuracy. We,
therefore, went on to use Decision Trees that use
generation history in three ways.

Firstly, for Decision Tree (no history), 29
decision-tree classifiers were trained, one for each
template. The input of these classifiers were the
9 factors and each classifier was trained in order
to decide whether to include a specific template or
not. This method did not take into account other
selected templates – it was only based on the time-
series data.

Secondly, for Decision Tree (with predicted
history), 29 classifiers were also trained, but this
time the input included the previous decisions
made by the previous classifiers (i.e. the history)
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as well as the set of time-series data in order to
emulate the dependencies in the dataset. For in-
stance, classifier n was trained using the data from
the 9 factors and the template decisions for tem-
plates 0 to n− 1.

Thirdly, for Decision Tree (with real his-
tory), the real, expert values were used rather
than the predicted ones in the history. The
above-mentioned classifiers are compared with,
the Majority-class (single label) baseline, which
labels each instance with the most frequent tem-
plate.

The accuracy, the weighted precision, the
weighted recall, and the weighted F-score of the
classifiers are shown in Table 3. It was found that
in 10-fold cross validation RAkEL performs sig-
nificantly better in all these automatic measures
(accuracy = 76.95%, F-score = 85.50%). Remark-
ably, ML achieves more than 10% higher F-score
than the other methods (Table 3). The average
accuracy of the single-label classifiers is 75.95%
(10-fold validation), compared to 73.43% of clas-
sification with history. The reduced accuracy of
the classification with predicted history is due to
the error in the predicted values. In this method,
at every step, the predicted outcome was used in-
cluding the incorrect decisions that the classifier
made. The upper-bound accuracy is 78.09% cal-
culated by using the expert previous decisions and
not the potentially erroneous predicted decisions.
This result is indicative of the significance of the
relations between the factors showing that the pre-
dicted decisions are dependent due to existing cor-
relations as discussed in Section 1, therefore the
system should not take these decisions indepen-
dently. ML classification performs better because
it does take into account these correlations and de-
pendencies in the data.

5.2 The Reinforcement Learning System
Reinforcement Learning (RL) is a machine learn-
ing technique that defines how an agent learns to
take optimal actions so as to maximise a cumu-
lative reward (Sutton and Barto, 1998). Content
selection is seen as a Markov Decision problem
and the goal of the agent is to learn to take the se-
quence of actions that leads to optimal content se-
lection. The Temporal Difference learning method
was used to train an agent for content selection.

Actions and States: The state consists of the
time-series data and the selected templates. In or-

der to explore the state space the agent selects a
factor (e.g. marks, deadlines etc.) and then decides
whether to talk about it or not.

Reward Function: The reward function reflects
the lecturers’ preferences on summaries and is
derived through linear regression analysis of a
dataset containing lecturer constructed summaries
and ratings of randomly generated summaries.
Specifically, it is the following cumulative multi-
variate function:

Reward = a +
n∑

i=1

bi ∗ xi + c ∗ length

where X = {x1, x2, ..., xn} describes the com-
binations of the data trends observed in the time-
series data and a particular template. a, b and c are
the regression coefficients, and their values vary
from -99 to 221. The value of xi is given by the
function:

xi =


1, the combination of a factor trend

and a template type is included
in a summary

0, if not.

The RL system differs from the classification
system in the way it performs content selection.
In the training phase, the agent selects a factor and
then decides whether to talk about it or not. If the
agent decides to refer to a factor, the template is
selected in a deterministic way, i.e. from the avail-
able templates it selects the template that results in
higher expected cumulative future reward.

5.3 The Baseline Systems
We compared the ML system and the RL system
with two baselines described below by measuring
the accuracy of their outputs, the reward achieved
by the reward function used for the RL system,
and finally we also performed evaluation with stu-
dent users. In order to reduce the confounding
variables, we kept the ordering of content in all
systems the same, by adopting the ordering of the
rule-based system. The baselines are as follows:

1. Rule-based System: generates summaries
based on Content Selection rules derived by work-
ing with a L&T expert and a student (Gkatzia et
al., 2013).

2. Random System: initially, selects a factor
randomly and then selects a template randomly,
until it makes decisions for all factors.
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Time-Series Accuracy Reward Rating Mode (mean) Data Source
Summarisation Systems
Multi-label Classification 85% 65.4 7 (6.24) Lecturers’ constructed summaries
Reinforcement Learning **66% 243.82 8 (6.54) Lecturers’ ratings & summaries
Rule-based **65% 107.77 7, 8 (5.86) L&T expert
Random **45.2% 43.29 *2 (*4.37) Random

Table 4: Accuracy, average rewards (based on lecturers’ preferences) and averages of the means of the
student ratings. Accuracy significance (Z-test) with RAkEL at p<0.05 is indicated as * and at p<0.01
as **. Student ratings significance (Mann Whitney U test) with RAkEL at p<0.05 is indicated as *.

6 Results

Each of the four systems described above gener-
ated 26 feedback summaries corresponding to the
26 student profiles. These summaries were evalu-
ated in simulation and with real student users.

6.1 Results in Simulation
Table 4 presents the accuracy, reward, and mode
of student rating of each algorithm when used to
generate the 26 summaries. Accuracy was esti-
mated as the proportion of the correctly classified
templates to the population of templates. In or-
der to have a more objective view on the results,
the score achieved by each algorithm using the
reward function was also calculated. ML clas-
sification achieved significantly higher accuracy,
which was expected as it is a supervised learning
method. The rule-based system and the RL sys-
tem have lower accuracy compared to the ML sys-
tem. There is evidently a mismatch between the
rules and the test-set; the content selection rules
are based on heuristics provided by a L&T Expert
rather than by the same pool of lecturers that cre-
ated the test-set. On the contrary, the RL is trained
to optimise the selected content and not to repli-
cate the existing lecturer summaries, hence there
is a difference in accuracy.

Accuracy measures how similar the generated
output is to the gold standard, whereas the reward
function calculates a score regarding how good
the output is, given an objective function. RL is
trained to optimise for this function, and therefore
it achieves higher reward, whereas ML is trained
to learn by examples, therefore it produces out-
put closer to the gold standard (lecturer’s produced
summaries). RL uses exploration and exploitation
to discover combinations of content that result in
higher reward. The reward represents predicted
ratings that lecturers would give to the summary.
The reward for the lecturers’ produced summaries

is 124.62 and for the ML method is 107.77. The
ML classification system performed worse than
this gold standard in terms of reward, which is ex-
pected given the error in predictions (supervised
methods learn to reproduce the gold standard).
Moreover, each decision is rewarded with a dif-
ferent value as some combinations of factors and
templates have greater or negative regression coef-
ficients. For instance, the combination of the fac-
tors “deadlines” and the template that corresponds
to <weeks> is rewarded with 57. On the other
hand, when mentioning the <average> difficulty
the summary is “punished” with -81 (see descrip-
tion of the reward function in Section 5.2). Conse-
quently, a single poor decision in the ML classifi-
cation can result in much less reward.

6.2 Subjective Results with Students
37 first year computer science students partici-
pated in the study. Each participant was shown
a graphical representation of the time-series data
of one student and four different summaries gen-
erated by the four systems (see Figure 1). The or-
der of the presented summaries was randomised.
They were asked to rate each feedback summary
on a 10-point rating scale in response to the fol-
lowing statement: “Imagine you are the following
student. How would you evaluate the following
feedback summaries from 1 to 10?”, where 10 cor-
responds to the most preferred summary and 1 to
the least preferred.

The difference in ratings between the ML clas-
sification system, the RL system and the Rule-
based system is not significant (see Mode (mean)
in Table 4, p>0.05). However, there is a trend to-
wards the RL system. The classification method
reduces the generation steps, by making the de-
cision of the factor selection and the template se-
lection jointly. Moreover, the training time for the
classification method is faster (a couple of seconds
compared to over an hour). Finally, the student
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Figure 1: The Figure show the evaluation setup. Students were presenting with the data in a graphical
way and then they were asked to evaluate each summary in a 10-point Rating scale. Summaries displayed
from left to right: ML system, RL, rule-based and random.

significantly prefer all the systems over the ran-
dom.

7 Summary

We have shown that ML classification for sum-
marisation of our time-series data has an accuracy
of 76.95% and that this approach significantly out-
performs other classification methods as it is able
to capture dependencies in the data when mak-
ing content selection decisions. ML classifica-
tion was also directly compared to a RL method.
It was found that although ML classification is
almost 20% more accurate than RL, both meth-
ods perform comparably when rated by humans.
This may be due to the fact that the RL optimi-
sation method is able to provide more varied re-
sponses over time rather than just emulating the
training data as with standard supervised learn-
ing approaches. Foster (2008) found similar re-
sults when performing a study on generation of
emphatic facial displays. A previous study by
Belz and Reiter (2006) has demonstrated that au-
tomatic metrics can correlate highly with human

ratings if the training dataset is of high quality.
In our study, the human ratings correlate well to
the average scores achieved by the reward func-
tion. However, the human ratings do not correlate
well to the accuracy scores. It is interesting that
the two methods that score differently on various
automatic metrics, such as accuracy, reward, pre-
cision, recall and F-score, are evaluated similarly
by users.

The comparison shows that each method can
serve different goals. Multi-label classification
generates output closer to gold standard whereas
RL can optimise the output according to a reward
function. ML classification could be used when
the goal of the generation is to replicate phenom-
ena seen in the dataset, because it achieves high
accuracy, precision and recall. However, opti-
misation methods can be more flexible, provide
more varied output and can be trained for different
goals, e.g. for capturing preferences of different
users.
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8 Future Work

For this initial experiment, we evaluated with stu-
dents and not with lecturers, since the students are
the recipients of feedback. In future, we plan to
evaluate with students’ own data under real cir-
cumstances as well as with ratings from lecturers.
Moreover, we plan to utilise the results from this
student evaluation in order to train an optimisation
algorithm to perform summarisation according to
students’ preferences. In this case, optimisation
would be the preferred method as it would not be
appropriate to collect gold standard data from stu-
dents. In fact, it would be of interest to investi-
gate multi-objective optimisation techniques that
can balance the needs of the lecturers to convey
important content to the satisfaction of students.
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