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Abstract

We explore the extent to which high-
resource manual annotations such as tree-
banks are necessary for the task of se-
mantic role labeling (SRL). We examine
how performance changes without syntac-
tic supervision, comparing both joint and
pipelined methods to induce latent syn-
tax. This work highlights a new applica-
tion of unsupervised grammar induction
and demonstrates several approaches to
SRL in the absence of supervised syntax.
Our best models obtain competitive results
in the high-resource setting and state-of-
the-art results in the low resource setting,
reaching 72.48% F1 averaged across lan-
guages. We release our code for this work
along with a larger toolkit for specifying
arbitrary graphical structure.1

1 Introduction

The goal of semantic role labeling (SRL) is to
identify predicates and arguments and label their
semantic contribution in a sentence. Such labeling
defines who did what to whom, when, where and
how. For example, in the sentence “The kids ran
the marathon”, ran assigns a role to kids to denote
that they are the runners; and a role to marathon to
denote that it is the race course.

Models for SRL have increasingly come to rely
on an array of NLP tools (e.g., parsers, lem-
matizers) in order to obtain state-of-the-art re-
sults (Björkelund et al., 2009; Zhao et al., 2009).
Each tool is typically trained on hand-annotated
data, thus placing SRL at the end of a very high-
resource NLP pipeline. However, richly annotated
data such as that provided in parsing treebanks is
expensive to produce, and may be tied to specific
domains (e.g., newswire). Many languages do

1http://www.cs.jhu.edu/˜mrg/software/

not have such supervised resources (low-resource
languages), which makes exploring SRL cross-
linguistically difficult.

The problem of SRL for low-resource lan-
guages is an important one to solve, as solutions
pave the way for a wide range of applications: Ac-
curate identification of the semantic roles of enti-
ties is a critical step for any application sensitive to
semantics, from information retrieval to machine
translation to question answering.

In this work, we explore models that minimize
the need for high-resource supervision. We ex-
amine approaches in a joint setting where we
marginalize over latent syntax to find the optimal
semantic role assignment; and a pipeline setting
where we first induce an unsupervised grammar.
We find that the joint approach is a viable alterna-
tive for making reasonable semantic role predic-
tions, outperforming the pipeline models. These
models can be effectively trained with access to
only SRL annotations, and mark a state-of-the-art
contribution for low-resource SRL.

To better understand the effect of the low-
resource grammars and features used in these
models, we further include comparisons with (1)
models that use higher-resource versions of the
same features; (2) state-of-the-art high resource
models; and (3) previous work on low-resource
grammar induction. In sum, this paper makes
several experimental and modeling contributions,
summarized below.

Experimental contributions:

• Comparison of pipeline and joint models for
SRL.

• Subtractive experiments that consider the re-
moval of supervised data.

• Analysis of the induced grammars in un-
supervised, distantly-supervised, and joint
training settings.
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Modeling contributions:
• Simpler joint CRF for syntactic and semantic

dependency parsing than previously reported.
• New application of unsupervised grammar

induction: low-resource SRL.
• Constrained grammar induction using SRL

for distant-supervision.
• Use of Brown clusters in place of POS tags

for low-resource SRL.

The pipeline models are introduced in § 3.1 and
jointly-trained models for syntactic and semantic
dependencies (similar in form to Naradowsky et
al. (2012)) are introduced in § 3.2. In the pipeline
models, we develop a novel approach to unsu-
pervised grammar induction and explore perfor-
mance using SRL as distant supervision. The joint
models use a non-loopy conditional random field
(CRF) with a global factor constraining latent syn-
tactic edge variables to form a tree. Efficient exact
marginal inference is possible by embedding a dy-
namic programming algorithm within belief prop-
agation as in Smith and Eisner (2008).

Even at the expense of no dependency path fea-
tures, the joint models best pipeline-trained mod-
els for state-of-the-art performance in the low-
resource setting (§ 4.4). When the models have ac-
cess to observed syntactic trees, they achieve near
state-of-the-art accuracy in the high-resource set-
ting on some languages (§ 4.3).

Examining the learning curve of the joint and
pipeline models in two languages demonstrates
that a small number of labeled SRL examples may
be essential for good end-task performance, but
that the choice of a good model for grammar in-
duction has an even greater impact.

2 Related Work

Our work builds upon research in both seman-
tic role labeling and unsupervised grammar in-
duction (Klein and Manning, 2004; Spitkovsky
et al., 2010a). Previous related approaches to se-
mantic role labeling include joint classification of
semantic arguments (Toutanova et al., 2005; Jo-
hansson and Nugues, 2008), latent syntax induc-
tion (Boxwell et al., 2011; Naradowsky et al.,
2012), and feature engineering for SRL (Zhao et
al., 2009; Björkelund et al., 2009).

Toutanova et al. (2005) introduced one of
the first joint approaches for SRL and demon-
strated that a model that scores the full predicate-
argument structure of a parse tree could lead to

significant error reduction over independent clas-
sifiers for each predicate-argument relation.

Johansson and Nugues (2008) and Lluı́s et al.
(2013) extend this idea by coupling predictions of
a dependency parser with predictions from a se-
mantic role labeler. In the model from Johans-
son and Nugues (2008), the outputs from an SRL
pipeline are reranked based on the full predicate-
argument structure that they form. The candidate
set of syntactic-semantic structures is reranked us-
ing the probability of the syntactic tree and seman-
tic structure. Lluı́s et al. (2013) use a joint arc-
factored model that predicts full syntactic paths
along with predicate-argument structures via dual
decomposition.

Boxwell et al. (2011) and Naradowsky et al.
(2012) observe that syntax may be treated as la-
tent when a treebank is not available. Boxwell
et al. (2011) describe a method for training a se-
mantic role labeler by extracting features from a
packed CCG parse chart, where the parse weights
are given by a simple ruleset. Naradowsky et
al. (2012) marginalize over latent syntactic depen-
dency parses.

Both Boxwell et al. (2011) and Naradowsky
et al. (2012) suggest methods for SRL without
supervised syntax, however, their features come
largely from supervised resources. Even in their
lowest resource setting, Boxwell et al. (2011) re-
quire an oracle CCG tag dictionary extracted from
a treebank. Naradowsky et al. (2012) limit their
exploration to a small set of basic features, and
included high-resource supervision in the form
of lemmas, POS tags, and morphology available
from the CoNLL 2009 data.

There has not yet been a comparison of tech-
niques for SRL that do not rely on a syntactic
treebank, and no exploration of probabilistic mod-
els for unsupervised grammar induction within an
SRL pipeline that we have been able to find.

Related work for the unsupervised learning of
dependency structures separately from semantic
roles primarily comes from Klein and Manning
(2004), who introduced the Dependency Model
with Valence (DMV). This is a robust generative
model that uses a head-outward process over word
classes, where heads generate arguments.

Spitkovsky et al. (2010a) show that Viterbi
(hard) EM training of the DMV with simple uni-
form initialization of the model parameters yields
higher accuracy models than standard soft-EM
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Figure 1: Pipeline approach to SRL. In this sim-
ple pipeline, the first stage syntactically parses the
corpus, and the second stage predicts semantic
predicate-argument structure for each sentence us-
ing the labels of the first stage as features. In our
low-resource pipelines, we assume that the syntac-
tic parser is given no labeled parses—however, it
may optionally utilize the semantic parses as dis-
tant supervision. Our experiments also consider
‘longer’ pipelines that include earlier stages: a
morphological analyzer, POS tagger, lemmatizer.

training. In Viterbi EM, the E-step finds the max-
imum likelihood corpus parse given the current
model parameters. The M-step then finds the
maximum likelihood parameters given the corpus
parse. We utilize this approach to produce unsu-
pervised syntactic features for the SRL task.

Grammar induction work has further demon-
strated that distant supervision in the form of
ACE-style relations (Naseem and Barzilay, 2011)
or HTML markup (Spitkovsky et al., 2010b)
can lead to considerable gains. Recent work in
fully unsupervised dependency parsing has sup-
planted these methods with even higher accuracies
(Spitkovsky et al., 2013) by arranging optimiz-
ers into networks that suggest informed restarts
based on previously identified local optima. We do
not reimplement these approaches within the SRL
pipeline here, but provide comparison of these
methods against our grammar induction approach
in isolation in § 4.5.

In both pipeline and joint models, we use fea-
tures adapted from state-of-the-art approaches to
SRL. This includes Zhao et al. (2009) features,
who use feature templates from combinations
of word properties, syntactic positions including
head and children, and semantic properties; and
features from Björkelund et al. (2009), who utilize
features on syntactic siblings and the dependency
path concatenated with the direction of each edge.
Features are described further in § 3.3.

3 Approaches

We consider an array of models, varying:
1. Pipeline vs. joint training (Figures 1 and 2)

2. Types of supervision
3. The objective function at the level of syntax

3.1 Unsupervised Syntax in the Pipeline
Typical SRL systems are trained following a
pipeline where the first component is trained on
supervised data, and each subsequent component
is trained using the 1-best output of the previous
components. A typical pipeline consists of a POS
tagger, dependency parser, and semantic role la-
beler. In this section, we introduce pipelines that
remove the need for a supervised tagger and parser
by training in an unsupervised and distantly super-
vised fashion.

Brown Clusters We use fully unsupervised
Brown clusters (Brown et al., 1992) in place of
POS tags. Brown clusters have been used to good
effect for various NLP tasks such as named entity
recognition (Miller et al., 2004) and dependency
parsing (Koo et al., 2008; Spitkovsky et al., 2011).

The clusters are formed by a greedy hierachi-
cal clustering algorithm that finds an assignment
of words to classes by maximizing the likelihood
of the training data under a latent-class bigram
model. Each word type is assigned to a fine-
grained cluster at a leaf of the hierarchy of clusters.
Each cluster can be uniquely identified by the path
from the root cluster to that leaf. Representing this
path as a bit-string (with 1 indicating a left and 0
indicating a right child) allows a simple coarsen-
ing of the clusters by truncating the bit-strings. We
train 1000 Brown clusters for each of the CoNLL-
2009 languages on Wikipedia text.2

Unsupervised Grammar Induction Our first
method for grammar induction is fully unsuper-
vised Viterbi EM training of the Dependency
Model with Valence (DMV) (Klein and Manning,
2004), with uniform initialization of the model pa-
rameters. We define the DMV such that it gener-
ates sequences of word classes: either POS tags
or Brown clusters as in Spitkovsky et al. (2011).
The DMV is a simple generative model for pro-
jective dependency trees. Children are generated
recursively for each node. Conditioned on the par-
ent class, the direction (right or left), and the cur-
rent valence (first child or not), a coin is flipped to
decide whether to generate another child; the dis-
tribution over child classes is conditioned on only
the parent class and direction.

2The Wikipedia text was tokenized for Polyglot (Al-Rfou’
et al., 2013): http://bit.ly/embeddings
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Constrained Grammar Induction Our second
method, which we will refer to as DMV+C, in-
duces grammar in a distantly supervised fashion
by using a constrained parser in the E-step of
Viterbi EM. Since the parser is part of a pipeline,
we constrain it to respect the downstream SRL an-
notations during training. At test time, the parser
is unconstrained.

Dependency-based semantic role labeling can
be described as a simple structured prediction
problem: the predicted structure is a labeled di-
rected graph, where nodes correspond to words
in the sentence. Each directed edge indicates that
there is a predicate-argument relationship between
the two words; the parent is the predicate and the
child the argument. The label on the edge indi-
cates the type of semantic relationship. Unlike
syntactic dependency parsing, the graph is not re-
quired to be a tree, nor even a connected graph.
Self-loops and crossing arcs are permitted.

The constrained syntactic DMV parser treats
the semantic graph as observed, and constrains the
syntactic parent to be chosen from one of the se-
mantic parents, if there are any. In some cases,
imposing this constraint would not permit any pro-
jective dependency parses—in this case, we ignore
the semantic constraint for that sentence. We parse
with the CKY algorithm (Younger, 1967; Aho and
Ullman, 1972) by utilizing a PCFG corresponding
to the DMV (Cohn et al., 2010). Each chart cell al-
lows only non-terminals compatible with the con-
strained sets. This can be viewed as a variation of
Pereira and Schabes (1992).

Semantic Dependency Model As described
above, semantic role labeling can be cast as a
structured prediction problem where the structure
is a labeled semantic dependency graph. We de-
fine a conditional random field (CRF) (Lafferty et
al., 2001) for this task. Because each word in a
sentence may be in a semantic relationship with
any other word (including itself), a sentence of
length n has n2 possible edges. We define a single
L+1-ary variable for each edge, whose value can
be any of L semantic labels or a special label indi-
cating there is no predicate-argument relationship
between the two words. In this way, we jointly
perform identification (determining whether a se-
mantic relationship exists) and classification (de-
termining the semantic label). This use of an L+1-
ary variable is in contrast to the model of Narad-
owsky et al. (2012), which used a more complex
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Figure 2: Factor graph for the joint syntac-
tic/semantic dependency parsing model.

set of binary variables and required a constraint
factor permitting AT-MOST-ONE. We include one
unary factor for each variable.

We optionally include additional variables that
perform word sense disambiguation for each pred-
icate. Each has a unary factor and is completely
disconnected from the semantic edge (similar to
Naradowsky et al. (2012)). These variables range
over all the predicate senses observed in the train-
ing data for the lemma of that predicate.

3.2 Joint Syntactic and Semantic Parsing
Model

In Section 3.1, we introduced pipeline-trained
models for SRL, which used grammar induction
to predict unlabeled syntactic parses. In this sec-
tion, we define a simple model for joint syntactic
and semantic dependency parsing.

This model extends the CRF model in Section
3.1 to include the projective syntactic dependency
parse for a sentence. This is done by includ-
ing an additional n2 binary variables that indicate
whether or not a directed syntactic dependency
edge exists between a pair of words in the sen-
tence. Unlike the semantic dependencies, these
syntactic variables must be coupled so that they
produce a projective dependency parse; this re-
quires an additional global constraint factor to en-
sure that this is the case (Smith and Eisner, 2008).
The constraint factor touches all n2 syntactic-edge
variables, and multiplies in 1.0 if they form a pro-
jective dependency parse, and 0.0 otherwise. We
couple each syntactic edge variable to its semantic
edge variable with a binary factor. Figure 2 shows
the factor graph for this joint model.

Note that our factor graph does not contain any
loops, thereby permitting efficient exact marginal
inference just as in Naradowsky et al. (2012). We
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Property Possible values
1 word form all word forms
2 lower case word form all lower-case forms
3 5-char word form prefixes all 5-char form prefixes
4 capitalization True, False
5 top-800 word form top-800 word forms
6 brown cluster 000, 1100, 010110001, ...
7 brown cluster, length 5 length 5 prefixes of brown clusters
8 lemma all word lemmas
9 POS tag NNP, CD, JJ, DT, ...
10 morphological features Gender, Case, Number, ...

(different across languages)
11 dependency label SBJ, NMOD, LOC, ...
12 edge direction Up, Down

Table 1: Word and edge properties in templates.

i, i-1, i+1 noFarChildren(wi) linePath(wp, wc)
parent(wi) rightNearSib(wi) depPath(wp, wc)
allChildren(wi) leftNearSib(wi) depPath(wp, wlca)
rightNearChild(wi) firstVSupp(wi) depPath(wc, wlca)
rightFarChild(wi) lastVSupp(wi) depPath(wlca, wroot)
leftNearChild(wi) firstNSupp(wi)
leftFarChild(wi) lastNSupp(wi)

Table 2: Word positions used in templates. Based
on current word position (i), positions related to
current word wi, possible parent, child (wp, wc),
lowest common ancestor between parent/child
(wlca), and syntactic root (wroot).

train our CRF models by maximizing conditional
log-likelihood using stochastic gradient descent
with an adaptive learning rate (AdaGrad) (Duchi
et al., 2011) over mini-batches.

The unary and binary factors are defined with
exponential family potentials. In the next section,
we consider binary features of the observations
(the sentence and labels from previous pipeline
stages) which are conjoined with the state of the
variables in the factor.

3.3 Features for CRF Models

Our feature design stems from two key ideas.
First, for SRL, it has been observed that fea-
ture bigrams (the concatenation of simple fea-
tures such as a predicate’s POS tag and an ar-
gument’s word) are important for state-of-the-art
(Zhao et al., 2009; Björkelund et al., 2009). Sec-
ond, for syntactic dependency parsing, combining
Brown cluster features with word forms or POS
tags yields high accuracy even with little training
data (Koo et al., 2008).

We create binary indicator features for each
model using feature templates. Our feature tem-
plate definitions build from those used by the top
performing systems in the CoNLL-2009 Shared
Task, Zhao et al. (2009) and Björkelund et al.
(2009) and from features in syntactic dependency
parsing (McDonald et al., 2005; Koo et al., 2008).

Template Possible values
relative position before, after, on
distance, continuity Z+

binned distance > 2, 5, 10, 20, 30, or 40
geneological relationship parent, child, ancestor, descendant
path-grams the NN went

Table 3: Additional standalone templates.

Template Creation Feature templates are de-
fined over triples of 〈property, positions, order〉.
Properties, listed in Table 1, are extracted from
word positions within the sentence, shown in Ta-
ble 2. Single positions for a word wi include
its syntactic parent, its leftmost farthest child
(leftFarChild), its rightmost nearest sibling (rightNearSib),
etc. Following Zhao et al. (2009), we include the
notion of verb and noun supports and sections of
the dependency path. Also following Zhao et al.
(2009), properties from a set of positions can be
put together in three possible orders: as the given
sequence, as a sorted list of unique strings, and re-
moving all duplicated neighbored strings. We con-
sider both template unigrams and bigrams, com-
bining two templates in sequence.

Additional templates we include are the relative
position (Björkelund et al., 2009), geneological re-
lationship, distance (Zhao et al., 2009), and binned
distance (Koo et al., 2008) between two words in
the path. From Lluı́s et al. (2013), we use 1, 2, 3-
gram path features of words/POS tags (path-grams),
and the number of non-consecutive token pairs in
a predicate-argument path (continuity).

3.4 Feature Selection
Constructing all feature template unigrams and bi-
grams would yield an unwieldy number of fea-
tures. We therefore determine the top N template
bigrams for a dataset and factor a according to an
information gain measure (Martins et al., 2011):

IGa,m =
∑

f∈Tm

∑
xa

p(f, xa) log2

p(f, xa)
p(f)p(xa)

where Tm is the mth feature template, f is a par-
ticular instantiation of that template, and xa is an
assignment to the variables in factor a. The proba-
bilities are empirical estimates computed from the
training data. This is simply the mutual informa-
tion of the feature template instantiation with the
variable assignment.

This filtering approach was treated as a sim-
ple baseline in Martins et al. (2011) to contrast
with increasingly popular gradient based regular-
ization approaches. Unlike the gradient based ap-
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proaches, this filtering approach easily scales to
many features since we can decompose the mem-
ory usage over feature templates.

As an additional speedup, we reduce the dimen-
sionality of our feature space to 1 million for each
clique using a common trick referred to as fea-
ture hashing (Weinberger et al., 2009): we map
each feature instantiation to an integer using a hash
function3 modulo the desired dimentionality.

4 Experiments

We are interested in the effects of varied super-
vision using pipeline and joint training for SRL.
To compare to prior work (i.e., submissions to the
CoNLL-2009 Shared Task), we also consider the
joint task of semantic role labeling and predicate
sense disambiguation. Our experiments are sub-
tractive, beginning with all supervision available
and then successively removing (a) dependency
syntax, (b) morphological features, (c) POS tags,
and (d) lemmas. Dependency syntax is the most
expensive and difficult to obtain of these various
forms of supervision. We explore the importance
of both the labels and structure, and what quantity
of supervision is useful.

4.1 Data
The CoNLL-2009 Shared Task (Hajič et al., 2009)
dataset contains POS tags, lemmas, morpholog-
ical features, syntactic dependencies, predicate
senses, and semantic roles annotations for 7 lan-
guages: Catalan, Chinese, Czech, English, Ger-
man, Japanese,4 Spanish. The CoNLL-2005 and
-2008 Shared Task datasets provide English SRL
annotation, and for cross dataset comparability we
consider only verbal predicates (more details in
§ 4.4). To compare with prior approaches that use
semantic supervision for grammar induction, we
utilize Section 23 of the WSJ portion of the Penn
Treebank (Marcus et al., 1993).

4.2 Feature Template Sets
Our primary feature set IGC consists of 127 tem-
plate unigrams that emphasize coarse properties
(i.e., properties 7, 9, and 11 in Table 1). We also
explore the 31 template unigrams5 IGB described

3To reduce hash collisions, We use MurmurHash v3
https://code.google.com/p/smhasher.

4We do not report results on Japanese as that data was
only made freely available to researchers that competed in
CoNLL 2009.

5Because we do not include a binary factor between pred-
icate sense and semantic role, we do not include sense as a

by Björkelund et al. (2009). Each of IGC and IGB

also include 32 template bigrams selected by in-
formation gain on 1000 sentences—we select a
different set of template bigrams for each dataset.

We compare against the language-specific fea-
ture sets detailed in the literature on high-resource
top-performing SRL systems: From Björkelund et
al. (2009), these are feature sets for German, En-
glish, Spanish and Chinese, obtained by weeks of
forward selection (Bde,en,es,zh); and from Zhao et
al. (2009), these are features for Catalan Zca.6

4.3 High-resource SRL

We first compare our models trained as a pipeline,
using all available supervision (syntax, morphol-
ogy, POS tags, lemmas) from the CoNLL-2009
data. Table 4(a) shows the results of our model
with gold syntax and a richer feature set than
that of Naradowsky et al. (2012), which only
looked at whether a syntactic dependency edge
was present. This highlights an important advan-
tage of the pipeline trained model: the features can
consider any part of the syntax (e.g., arbitrary sub-
trees), whereas the joint model is limited to those
features over which it can efficiently marginalize
(e.g., short dependency paths). This holds true
even in the pipeline setting where no syntactic su-
pervision is available.

Table 4(b) contrasts our high-resource results
for the task of SRL and sense disambiguation
with the top systems in the CoNLL-2009 Shared
Task, giving further insight into the performance
of the simple information gain feature selection
technique. With supervised syntax, our sim-
ple information gain feature selection technique
(§ 3.4) performs admirably. However, the orig-
inal unigram Björkelund features (Bde,en,es,zh),
which were tuned for a high-resource model, ob-
tain higher F1 than our information gain set us-
ing the same features in unigram and bigram tem-
plates (IGB). This suggests that further work on
feature selection may improve the results. We
find that IGB obtain higher F1 than the original
Björkelund feature sets (Bde,en,es,zh) in the low-
resource pipeline setting with constrained gram-
mar induction (DMV+C).

feature for argument prediction.
6This covers all CoNLL languages but Czech, where fea-

ture sets were not made publicly available in either work. In
Czech, we disallowed template bigrams involving path-grams.
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(a)

(b)

(c)

SRL Approach Feature Set Dep. Parser Avg. ca cs de en es zh
Pipeline IGC Gold 84.98 84.97 87.65 79.14 86.54 84.22 87.35
Pipeline IGB Gold 84.74 85.15 86.64 79.50 85.77 84.40 86.95
Naradowsky et al. (2012) Gold 72.73 69.59 74.84 66.49 78.55 68.93 77.97
Björkelund et al. (2009) Supervised 81.55 80.01 85.41 79.71 85.63 79.91 78.60
Zhao et al. (2009) Supervised 80.85 80.32 85.19 75.99 85.44 80.46 77.72
Pipeline IGC Supervised 78.03 76.24 83.34 74.19 81.96 76.12 76.35
Pipeline Zca Supervised *77.62 77.62 — — — — —
Pipeline Bde,en,es,zh Supervised *76.49 — — 72.17 81.15 76.65 75.99
Pipeline IGB Supervised 75.68 74.59 81.61 69.08 78.86 74.51 75.44
Joint IGC Marginalized 72.48 71.35 81.03 65.15 76.16 71.03 70.14
Joint IGB Marginalized 72.40 71.55 80.04 64.80 75.57 71.21 71.21
Naradowsky et al. (2012) Marginalized 71.27 67.99 73.16 67.26 76.12 66.74 76.32
Pipeline IGC DMV+C (bc) 70.08 68.21 79.63 62.25 73.81 68.73 67.86
Pipeline Zca DMV+C (bc) *69.67 69.67 — — — — —
Pipeline IGC DMV (bc) 69.26 68.04 79.58 58.47 74.78 68.36 66.35
Pipeline IGB DMV (bc) 66.81 63.31 77.38 59.91 72.02 65.96 62.28
Pipeline IGB DMV+C (bc) 65.61 61.89 77.48 58.97 69.11 63.31 62.92
Pipeline Bde,en,es,zh DMV+C (bc) *63.06 — — 57.75 68.32 63.70 62.45

Table 4: Test F1 for SRL and sense disambiguation on CoNLL’09 in high-resource and low-resource
settings: we study (a) gold syntax, (b) supervised syntax, and (c) unsupervised syntax. Results are
ranked by F1 with bold numbers indicating the best F1 for a language and level of supervision.
*Indicates partial averages for the language-specific feature sets (Zca and Bde,en,es,zh), for which we show results only on the
languages for which the sets were publicly available.

train test 2008
heads

2005
spans

2005
spans

(oracle
tree)

X� PRY’08

20
05

sp
an

s 84.32 79.44
� B’11 (tdc) — 71.5
� B’11 (td) — 65.0
X� JN’08

20
08

he
ad

s 85.93 79.90
� Joint, IGC 72.9 35.0 72.0
� Joint, IGB 67.3 37.8 67.1

Table 5: F1 for SRL approaches (without sense
disambiguation) in matched and mismatched
train/test settings for CoNLL 2005 span and 2008
head supervision. We contrast low-resource (�)
and high-resource settings (X�), where latter uses a
treebank. See § 4.4 for caveats to this comparison.

4.4 Low-Resource SRL

CoNLL-2009 Table 4(c) includes results for our
low-resource approaches and Naradowsky et al.
(2012) on predicting semantic roles as well as
sense. In the low-resource setting of the CoNLL-
2009 Shared task without syntactic supervision,
our joint model (Joint) with marginalized syntax
obtains state-of-the-art results with features IGC

described in § 4.2. This model outperforms prior
work (Naradowsky et al., 2012) and our pipeline
model (Pipeline) with contrained (DMV+C) and
unconstrained grammar induction (DMV) trained
on brown clusters (bc).

In the low-resource setting, training and decod-
ing times for the pipeline and joint methods are
similar as computation time tends to be dominated
by feature extraction.

These results begin to answer a key research
question in this work: The joint models outper-
form the pipeline models in the low-resource set-
ting. This holds even when using the same feature
selection process. Further, the best-performing
low-resource features found in this work are those
based on coarse feature templates and selected
by information gain. Templates for these fea-
tures generalize well to the high-resource setting.
However, analysis of the induced grammars in
the pipeline setting suggests that the book is not
closed on the issue. We return to this in § 4.5.

CoNLL-2008, -2005 To finish out comparisons
with state-of-the-art SRL, we contrast our ap-
proach with that of Boxwell et al. (2011), who
evaluate on SRL in isolation (without sense disam-
biguation, as in CoNLL-2009). They report results
on Prop-CCGbank (Boxwell and White, 2008),
which uses the same training/testing splits as the
CoNLL-2005 Shared Task. Their results are there-
fore loosely7 comparable to results on the CoNLL-
2005 dataset, which we can compare here.

There is an additional complication in com-
paring SRL approaches directly: The CoNLL-
2005 dataset defines arguments as spans instead of

7The comparison is imperfect for two reasons: first, the
CCGBank contains only 99.44% of the original PTB sen-
tences (Hockenmaier and Steedman, 2007); second, because
PropBank was annotated over CFGs, after converting to CCG
only 99.977% of the argument spans were exact matches
(Boxwell and White, 2008). However, this comparison was
adopted by Boxwell et al. (2011), so we use it here.
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heads, which runs counter to our head-based syn-
tactic representation. This creates a mismatched
train/test scenario: we must train our model to pre-
dict argument heads, but then test on our models
ability to predict argument spans.8 We therefore
train our models on the CoNLL-2008 argument
heads,9 and post-process and convert from heads
to spans using the conversion algorithm available
from Johansson and Nugues (2008).10 The heads
are either from an MBR tree or an oracle tree. This
gives Boxwell et al. (2011) the advantage, since
our syntactic dependency parses are optimized to
pick out semantic argument heads, not spans.

Table 5 presents our results. Boxwell et al.
(2011) (B’11) uses additional supervision in the
form of a CCG tag dictionary derived from su-
pervised data with (tdc) and without (tc) a cut-
off. Our model does very poorly on the ’05 span-
based evaluation because the constituent bracket-
ing of the marginalized trees are inaccurate. This
is elucidated by instead evaluating on the ora-
cle spans, where our F1 scores are higher than
Boxwell et al. (2011). We also contrast with rela-
vant high-resource methods with span/head con-
versions from Johansson and Nugues (2008): Pun-
yakanok et al. (2008) (PRY’08) and Johansson and
Nugues (2008) (JN’08).

Subtractive Study In our subsequent experi-
ments, we study the effectiveness of our models
as the available supervision is decreased. We in-
crementally remove dependency syntax, morpho-
logical features, POS tags, then lemmas. For these
experiments, we utilize the coarse-grained feature
set (IGC), which includes Brown clusters.

Across languages, we find the largest drop in
F1 when we remove POS tags; and we find a
gain in F1 when we remove lemmas. This indi-
cates that lemmas, which are a high-resource an-
notation, may not provide a significant benefit for
this task. The effect of removing morphological
features is different across languages, with little
change in performance for Catalan and Spanish,

8We were unable to obtain the system output of Boxwell
et al. (2011) in order to convert their spans to dependencies
and evaluate the other mismatched train/test setting.

9CoNLL-2005, -2008, and -2009 were derived from Prop-
Bank and share the same source text; -2008 and -2009 use
argument heads.

10Specifically, we use their Algorithm 2, which produces
the span dominated by each argument, with special handling
of the case when the argument head dominates that of the
predicate. Also following Johansson and Nugues (2008), we
recover the ’05 sentences missing from the ’08 evaluation set.

Rem #FT ca de es

– 127+32 74.46 72.62 74.23
Dep 40+32 67.43 64.24 67.18
Mor 30+32 67.84 59.78 66.94
POS 23+32 64.40 54.68 62.71
Lem 21+32 64.85 54.89 63.80

Table 6: Subtractive experiments. Each row con-
tains the F1 for SRL only (without sense disam-
biguation) where the supervision type of that row
and all above it have been removed. Removed su-
pervision types (Rem) are: syntactic dependencies
(Dep), morphology (Mor), POS tags (POS), and
lemmas (Lem). #FT indicates the number of fea-
ture templates used (unigrams+bigrams).
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Figure 3: Learning curve for semantic dependency
supervision in Catalan and German. F1 of SRL
only (without sense disambiguation) shown as the
number of training sentences is increased.

but a drop in performance for German. This may
reflect a difference between the languages, or may
reflect the difference between the annotation of the
languages: both the Catalan and Spanish data orig-
inated from the Ancora project,11 while the Ger-
man data came from another source.

Figure 3 contains the learning curve for SRL su-
pervision in our lowest resource setting for two
example languages, Catalan and German. This
shows how F1 of SRL changes as we adjust
the number of training examples. We find that
the joint training approach to grammar induction
yields consistently higher SRL performance than
its distantly supervised counterpart.

4.5 Analysis of Grammar Induction
Table 7 shows grammar induction accuracy in
low-resource settings. We find that the gap be-
tween the supervised parser and the unsupervised
methods is quite large, despite the reasonable ac-
curacy both methods achieve for the SRL end task.

11http://clic.ub.edu/corpus/ancora
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Dependency
Parser

Avg. ca cs de en es zh

Supervised* 87.1 89.4 85.3 89.6 88.4 89.2 80.7
DMV (pos) 30.2 45.3 22.7 20.9 32.9 41.9 17.2
DMV (bc) 22.1 18.8 32.8 19.6 22.4 20.5 18.6
DMV+C (pos) 37.5 50.2 34.9 21.5 36.9 49.8 32.0
DMV+C (bc) 40.2 46.3 37.5 28.7 40.6 50.4 37.5
Marginal, IGC 43.8 50.3 45.8 27.2 44.2 46.3 48.5
Marginal, IGB 50.2 52.4 43.4 41.3 52.6 55.2 56.2

Table 7: Unlabeled directed dependency accuracy
on CoNLL’09 test set in low-resource settings.
DMV models are trained on either POS tags (pos)
or Brown clusters (bc). *Indicates the supervised parser
outputs provided by the CoNLL’09 Shared Task.

WSJ∞ Distant
Supervision

SAJM’10 44.8 none
SAJ’13 64.4 none
SJA’10 50.4 HTML
NB’11 59.4 ACE05
DMV (bc) 24.8 none
DMV+C (bc) 44.8 SRL
Marginalized, IGC 48.8 SRL
Marginalized, IGB 58.9 SRL

Table 8: Comparison of grammar induction ap-
proaches. We contrast the DMV trained with
Viterbi EM+uniform initialization (DMV), our
constrained DMV (DMV+C), and our model’s
MBR decoding of latent syntax (Marginalized)
with other recent work: Spitkovsky et al. (2010a)
(SAJM’10), Spitkovsky et al. (2010b) (SJA’10),
Naseem and Barzilay (2011) (NB’11), and the CS
model of Spitkovsky et al. (2013) (SAJ’13).

This suggests that refining the low-resource gram-
mar induction methods may lead to gains in SRL.

Interestingly, the marginalized grammars best
the DMV grammar induction method; however,
this difference is less pronounced when the DMV
is constrained using SRL labels as distant super-
vision. This could indicate that a better model for
grammar induction would result in better perfor-
mance for SRL. We therefore turn to an analysis of
other approaches to grammar induction in Table 8,
evaluated on the Penn Treebank. We contrast with
methods using distant supervision (Naseem and
Barzilay, 2011; Spitkovsky et al., 2010b) and fully
unsupervised dependency parsing (Spitkovsky et
al., 2013). Following prior work, we exclude
punctuation from evaluation and convert the con-
stituency trees to dependencies.12

The approach from Spitkovsky et al. (2013)

12Naseem and Barzilay (2011) and our results use the
Penn converter (Pierre and Heiki-Jaan, 2007). Spitkovsky et
al. (2010b; 2013) use Collins (1999) head percolation rules.

(SAJ’13) outperforms all other approaches, in-
cluding our marginalized settings. We therefore
may be able to achieve further gains in the pipeline
model by considering better models of latent syn-
tax, or better search techniques that break out
of local optima. Similarly, improving the non-
convex optimization of our latent-variable CRF
(Marginalized) may offer further gains.

5 Discussion and Future Work

We have compared various approaches for low-
resource semantic role labeling at the state-of-the-
art level. We find that we can outperform prior
work in the low-resource setting by coupling the
selection of feature templates based on informa-
tion gain with a joint model that marginalizes over
latent syntax.

We utilize unlabeled data in both generative and
discriminative models for dependency syntax and
in generative word clustering. Our discriminative
joint models treat latent syntax as a structured-
feature to be optimized for the end-task of SRL,
while our other grammar induction techniques op-
timize for unlabeled data likelihood—optionally
with distant supervision. We observe that careful
use of these unlabeled data resources can improve
performance on the end task.

Our subtractive experiments suggest that lemma
annotations, a high-resource annotation, may not
provide a large benefit for SRL. Our grammar in-
duction analysis indicates that relatively low accu-
racy can still result in reasonable SRL predictions;
still, the models do not outperform those that use
supervised syntax, and we aim to explore how well
the pipeline models in particular improve when we
apply higher accuracy unsupervised grammar in-
duction techniques.

We have utilized well studied datasets in order
to best understand the quality of our models rela-
tive to prior work. In future work, we hope to ex-
plore the effectiveness of our approaches on truly
low resource settings by using crowdsourcing to
develop semantic role datasets in other languages
and domains.
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