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Abstract

This paper explores a simple and effec-
tive unified framework for incorporating
soft linguistic reordering constraints into a
hierarchical phrase-based translation sys-
tem: 1) a syntactic reordering model
that explores reorderings for context free
grammar rules; and 2) a semantic re-
ordering model that focuses on the re-
ordering of predicate-argument structures.
We develop novel features based on both
models and use them as soft constraints
to guide the translation process. Ex-
periments on Chinese-English translation
show that the reordering approach can sig-
nificantly improve a state-of-the-art hier-
archical phrase-based translation system.
However, the gain achieved by the seman-
tic reordering model is limited in the pres-
ence of the syntactic reordering model,
and we therefore provide a detailed analy-
sis of the behavior differences between the
two.

1 Introduction

Reordering models in statistical machine transla-
tion (SMT) model the word order difference when
translating from one language to another. The
popular distortion or lexicalized reordering mod-
els in phrase-based SMT make good local pre-
dictions by focusing on reordering on word level,
while the synchronous context free grammars in
hierarchical phrase-based (HPB) translation mod-
els are capable of handling non-local reordering
on the translation phrase level. However, reorder-
ing, especially without any help of external knowl-
edge, remains a great challenge because an ac-
curate reordering is usually beyond these word
level or translation phrase level reordering mod-
els’ ability. In addition, often these translation

models fail to respect linguistically-motivated syn-
tax and semantics. As a result, they tend to pro-
duce translations containing both syntactic and se-
mantic reordering confusions. In this paper our
goal is to take advantage of syntactic and seman-
tic parsing to improve translation quality. Rather
than introducing reordering models on either the
word level or the translation phrase level, we pro-
pose a unified approach to modeling reordering on
the linguistic unit level, e.g., syntactic constituents
and semantic roles. The reordering unit falls into
multiple granularities, from single words to more
complex constituents and semantic roles, and of-
ten crosses translation phrases. To show the ef-
fectiveness of our reordering models, we integrate
both syntactic constituent reordering models and
semantic role reordering models into a state-of-
the-art HPB system (Chiang, 2007; Dyer et al.,
2010). We further contrast it with a stronger base-
line, already including fine-grained soft syntac-
tic constraint features (Marton and Resnik, 2008;
Chiang et al., 2008). The general ideas, however,
are applicable to other translation models, e.g.,
phrase-based model, as well.

Our syntactic constituent reordering model con-
siders context free grammar (CFG) rules in the
source language and predicts the reordering of
their elements on the target side, using word align-
ment information. Due to the fact that a con-
stituent, especially a long one, usually maps into
multiple discontinuous blocks in the target lan-
guage, there is more than one way to describe the
monotonicity or swapping patterns; we therefore
design two reordering models: one is based on the
leftmost aligned target word and the other based
on the rightmost target word.

While recently there has also been some encour-
aging work on incorporating semantic structure
(or, more specifically, predicate-argument struc-
ture: PAS) reordering in SMT, it is still an open
question whether semantic structure reordering
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strongly overlaps with syntactic structure reorder-
ing, since the semantic structure is closely tied to
syntax. To this end, we employ the same reorder-
ing framework as syntactic constituent reordering
and focus on semantic roles in a PAS. We then an-
alyze the differences between the syntactic and se-
mantic features.

The contributions of this paper include the fol-
lowing:

• We introduce novel soft reordering con-
straints, using syntactic constituents or se-
mantic roles, composed over word alignment
information in translation rules used during
decoding time;

• We introduce a unified framework to incor-
porate syntactic and semantic reordering con-
straints;

• We provide a detailed analysis providing in-
sight into why the semantic reordering model
is significantly less effective when syntactic
reordering features are also present.

The rest of the paper is organized as follows.
Section 2 provides an overview of HPB transla-
tion model. Section 3 describes the details of our
unified reordering models. Section 4 gives our ex-
perimental results and Section 5 discusses the be-
havior difference between syntactic constituent re-
ordering and semantic role reordering. Section 6
reviews related work and, finally Section 7 con-
cludes the paper.

2 HPB Translation Model: an Overview

In HPB models (Chiang, 2007), synchronous rules
take the formX → 〈γ, α,∼〉, whereX is the non-
terminal symbol, γ and α are strings of lexical
items and non-terminals in the source and target
side, respectively, and ∼ indicates the one-to-one
correspondence between non-terminals in γ and α.
Each such rule is associated with a set of transla-
tion model features {φi}, such as phrase transla-
tion probability p (α | γ) and its inverse p (γ | α),
the lexical translation probability plex (α | γ) and
its inverse plex (γ | α), and a rule penalty that af-
fects preference for longer or shorter derivations.
Two other widely used features are a target lan-
guage model feature and a target word penalty.

Given a derivation d, its translation log-
probability is estimated as:

logP (d) ∝
∑

i

λiφi (d) (1)
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Figure 1: Example of predicate-argument struc-
ture.

where λi is the corresponding weight of feature φi.
See (Chiang, 2007) for more details.

3 Unified Linguistic Reordering Models

As mentioned earlier, the linguistic reordering unit
is the syntactic constituent for syntactic reorder-
ing, and the semantic role for semantic reordering.
The syntactic reordering model takes a CFG rule
(e.g., VP → VP PP PP) and models the reorder-
ing of the constituents on the left hand side by ex-
amining their translation or visit order according
to the target language. For the semantic reorder-
ing model, it takes a PAS and models its reorder-
ing on the target side. Figure 1 shows an example
of a PAS where the predicate (Pre) has two core
arguments (A0 and A1) and one adjunct (TMP).
Note that we refer all core arguments, adjuncts,
and predicates as semantic roles; thus we say the
PAS in Figure 1 has 4 roles. According to the an-
notation principles in (Chinese) PropBank (Palmer
et al., 2005; Xue and Palmer, 2009), all the roles
in a PAS map to a corresponding constituent in the
parse tree, and these constituents (e.g., NPs and
VBD in Figure 1) do not overlap with each other.

Next, we use a CFG rule to describe our syn-
tactic reordering model. Treating the two forms
of reorderings in a unified way, the semantic re-
ordering model is obtainable by regarding a PAS
as a CFG rule and considering a semantic role as a
constituent.

Because the translation of a source constituent
might result in multiple discontinuous blocks,
there can be several ways to describe or group
the reordering patterns. Therefore, we design
two general constituent reordering sub-models.
One is based on the leftmost aligned word (left-
most reordering model) and the other is based on
the rightmost aligned word (rightmost reordering
model), as follows. Figure 2 shows the model-
ing steps for the leftmost reordering model. Fig-
ure 2(a) is an example of a CFG rule in the source
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Figure 2: Modeling process illustration for leftmost reordering model.

parse tree and its word alignment links to the target
language. Note that constituent XP4, which covers
word f8, has no alignment. Then for each XPi, we
find the leftmost target word which is aligned to a
source word covered by XPi. Figure 2(b) shows
that the leftmost target words for XP1, XP2, and
XP3 are e2, e5, and e3, respectively, while XP4

has no aligned target word. Then we get visit
order V = {vi} for {XPi} in the transformation
from Figure 2(b) to Figure 2(c), with the follow-
ing strategies for special cases:

• if the first constituent XP1 is unaligned, we
add a NULL word at the beginning of the tar-
get side and link XP1 to the NULL word;

• if a constituent XPi (i > 1) is unaligned, we
add a link to the target word which is aligned
to XPi−1, e.g., XP4 will be linked to e3; and

• if k constituents XPm1 . . .XPmk
(m1 <

. . . < mk) are linked to the same target word,
then vmi = vmi+1 − 1, e.g., since XP3 and
XP4 are both linked to e3, then v3 = v4 − 1.

Finally Figure 2(d) converts the visit order V =
{v1, . . . vn} into a sequence of leftmost reordering
types LRT = {lrt1, . . . , lrtn−1}. For every two
adjacent constituents XPi and XPi+1 with corre-
sponding visit order vi and vi+1, their reordering
could be one of the following:

• Monotone (M) if vi+1 = vi + 1;

• Discontinuous Monotone (DM) if vi+1 > vi + 1;

• Swap (S) if vi+1 = vi − 1;

• Discontinuous Swap (DS) if vi+1 < vi − 1.

Up to this point, we have generated a se-
quence of leftmost reordering types LRT =
{lrt1, . . . , lrtn−1} for a given CFG rule cfg:
XP → XP1 . . .XPn. The leftmost reordering
model takes the following form:

scorelrt (cfg) = Pl (lrt1, . . . , lrtn−1 | ψ (cfg))
(2)

where ψ (cfg) indicates the surrounding context of
the CFG. By assuming that any two reordering
types in LRT = {lrt1, . . . , lrtn−1} are indepen-
dent of each other, we reformulate Eq. 2 into:

scorelrt (cfg) =
n−1∏
i=1

Pl (lrti | ψ (cfg)) (3)

Similarly, the sequence of rightmost reordering
types RRT can be decided for a CFG rule XP →
XP1 . . .XPn.

Accordingly, for a PAS pas: PAS → R1 . . .Rn,
we can obtain its sequences of leftmost and right-
most reordering types by using the same way de-
scribed above.

3.1 Probability Estimation
In order to predict either the leftmost or right-
most reordering type for two adjacent constituents,
we use a maximum entropy classifier to esti-
mate the probability of the reordering type rt ∈
{M,DM,S,DS} as follows:

P (rt | ψ (cfg)) =
exp (

∑
k θkfk (rt, ψ (cfg)))∑

rt′ exp (
∑

k θkfi (rt′, ψ (cfg)))
(4)

where fk are binary features, θk are the weights of
these features. Most of our features fk are syntax-
based. For XPi and XPi+1 in cfg, the features
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#Index Feature
cf1 L(XPi) & L(XPi+1) & L(XP)

cf2 for each XPj (j < i)
L(XPi) & L(XPi+1) & L(XP) & L(XPj)

cf3 for each XPj (j > i+ 1)
L(XPi) & L(XPi+1) & L(XP) & L(XPj)

cf4 L(XPi) & L(XPi+1) & P(XPi)
cf5 L(XPi) & L(XPi+1) &H(XPi)
cf6 L(XPi) & L(XPi+1) & P(XPi+1)
cf7 L(XPi) & L(XPi+1) &H(XPi+1)
cf8 L(XPi) & L(XPi+1) & S(XPi)
cf9 L(XPi) & L(XPi+1) & S(XPi+1)

cf10 L(XPi) & L(XP)
cf11 L(XPi+1) & L(XP)

Table 1: Features adopted in the syntactic leftmost
and rightmost reordering models. L (XP) returns
the syntactic category of XP, e.g., NP, VP, PP etc.;
H (XP) returns the head word of XP; P (XP) re-
turns the POS tagger of the head word; S (XP)
returns the translation status of XP on the target
language: un. if it is untranslated; cont. if it is
a continuous block; and discont. if it maps into
multiple discontinuous blocks.

are aimed to examine which of them should be
translated first. Therefore, most features share two
common components: the syntactic categories of
XPi and XPi+1. Table 1 shows the features used in
syntactic leftmost and rightmost reordering mod-
els. Note that we use the same features for both.

Although the semantic reordering model is
structured in precisely the same way, we use dif-
ferent feature sets to predict the reordering be-
tween two semantic roles. Given the two adjacent
roles Ri and Ri+1 in a PAS pas, Table 2 shows the
features that are used in the semantic leftmost and
rightmost reordering models.

3.2 Integrating into the HPB Model

For models with syntactic reordering, we add two
new features (i.e., one for the leftmost reorder-
ing model and the other for the rightmost reorder-
ing model) into the log-linear translation model in
Eq. 1. Unlike the conventional phrase and lexi-
cal translation features, whose values are phrase
pair-determined and thus can be calculated offline,
the value of the reordering features can only be
obtained during decoding time, and requires word
alignment information as well. Before we present
the algorithm integrating the reordering models,
we define the following functions by assuming
XPi and XPi+1 are the constituent pair of interest
in CFG rule cfg, H is the translation hypothesis
and a is its word alignment:

#Index Feature

rf1 R(Ri) &R(Ri+1) & P(pas)
R(Ri) &R(Ri+1)

rf2
for each Rj (j < i)
R(Ri) &R(Ri+1) &R(Rj) & P(pas)
R(Ri) &R(Ri+1) &R(Rj)

rf3
for each Rj (j > i+ 1)
R(Ri) &R(Ri+1) &R(Rj) & P(pas)
R(Ri) &R(Ri+1) &R(Rj)

rf4 R(Ri) &R(Ri+1) & P(Ri)
rf5 R(Ri) &R(Ri+1) &H(Ri)
rf6 R(Ri) &R(Ri+1) & L(Ri)
rf7 R(Ri) &R(Ri+1) & P(Ri+1)
rf8 R(Ri) &R(Ri+1) &H(Ri+1)
rf9 R(Ri) &R(Ri+1) & L(Ri+1)
rf10 R(Ri) &R(Ri+1) & S(Ri)
rf11 R(Ri) &R(Ri+1) & S(Ri+1)

rf12 R(Ri) & P(pas)
R(Ri)

rf13 R(Ri+1) & P(pas)
R(Ri+1)

Table 2: Features adopted in the semantic leftmost
and rightmost reordering models. P (pas) returns
the predicate content of pas;R (R) returns the role
type of R, e.g., Pred, A0, TMP, etc. For features
rf1, rf2, rf3, rf12 and rf13, we include another ver-
sion which excludes the predicate content P(pas)
for reasons of sparsity.

• F1 (w1, w2, XP): returns true if constituent XP is
within the span from word w1 to w2; otherwise returns
false.

• F2 (H, cfg, XPi, XPi+1) returns true if the reordering
of the pair 〈XPi, XPi+1〉 in rule cfg has not been calcu-
lated yet; otherwise returns false.

• F3 (H, a, XPi, XPi+1) returns the leftmost and right-
most reordering types for the constituent pair 〈XPi,
XPi+1〉, given alignment a, according to Section 3.

• F4 (rt, cfg, XPi, XPi+1) returns the probability of
leftmost reordering type rt for the constituent pair
〈XPi, XPi+1〉 in rule cfg.

• F5 (rt, cfg, XPi, XPi+1) returns the probability of

rightmost reordering type rt for the constituent pair

〈XPi, XPi+1〉 in rule cfg.

Algorithm 1 integrates the syntactic leftmost
and rightmost reordering models into a CKY-style
decoder whenever a new hypothesis is generated.
Given a hypothesis H with its alignment a, it tra-
verses all CFG rules in the parse tree and sees if
two adjacent constituents are conditioned to trig-
ger the reordering models (lines 2-4). For each
pair of constituents, it first extracts its leftmost and
rightmost reordering types (line 6) and then gets
their respective probabilities returned by the max-
imum entropy classifiers defined in Section 3.1
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Algorithm 1: Integrating the syntactic reordering models
into a CKY-style decoder

Input: Sentence f in the source language
Parse tree t of f
All CFG rules {cfg} in t
Hypothesis H spanning from word w1 to w2

Alignment a of H
Output: Log-Probabilities of the syntactic leftmost

and rightmost reordering models
1. set l prob = rprob = 0.0
2. foreach cfg in {cfg}
3. foreach pair XPi and XPi+1 in cfg
4. if F1 (w1, w2, XPi) = false or

F1 (w1, w2, XPi+1) = false or
F2 (H, cfg, XPi, XPi+1) = false

5. continue
6. (l type, r type) = F3 (H, a, XPi, XPi+1)
7. l prob += logF4 (l type, cfg,XPi,XPi+1)
8. r prob += logF5 (r type, cfg,XPi,XPi+1)
9. return (l prob, r prob)

(lines 7-8). Then the algorithm returns two log-
probabilities of the syntactic reordering models.
Note that Function F1 returns true if hypothesis
H fully covers, or fully contains, constituentXPi,
regardless of the reordering type of XPi. Do not
confuse any parsing tag XPi with the nameless
variables Xi in Hiero or cdec rules.

For the semantic reordering models, we also
add two new features into the log-linear transla-
tion model. To get the two semantic reordering
model feature values, we simply use Algorithm 1
and its associated functions from F1 to F5 replac-
ing a CFG rule cfg with a PAS pas, and a con-
stituent XPi with a semantic role Ri. Algorithm 1
therefore permits a unified treatment of syntactic
and PAS-based reordering, even though it is ex-
pressed in terms of syntactic reordering here for
ease of presentation.

4 Experiments

We have presented our unified approach to in-
corporating syntactic and semantic soft reorder-
ing constraints in an HPB system. In this section,
we test its effectiveness in Chinese-English trans-
lation.

4.1 Experimental Settings
For training we use 1.6M sentence pairs of the
non-UN and non-HK Hansards portions of NIST
MT training corpora, segmented with the Stan-
ford segmenter (Tseng et al., 2005). The En-
glish data is lowercased, tokenized and aligned
with GIZA++ (Och and Ney, 2000) to obtain bidi-
rectional alignments, which are symmetrized us-

ing the grow-diag-final-and method (Koehn et al.,
2003). We train a 4-gram LM on the English
side of the corpus with 600M additional words
from non-NYT and non-LAT, randomly selected
portions of the Gigaword v4 corpus, using modi-
fied Kneser-Ney smoothing (Chen and Goodman,
1996). We use the HPB decoder cdec (Dyer et
al., 2010), with Mr. Mira (Eidelman et al., 2013),
which is a k-best variant of MIRA (Chiang et al.,
2008), to tune the parameters of the system.

We use NIST MT 06 dataset (1664 sentence
pairs) for tuning, and NIST MT 03, 05, and 08
datasets (919, 1082, and 1357 sentence pairs, re-
spectively) for evaluation.1 We use BLEU (Pap-
ineni et al., 2002) for both tuning and evaluation.

To obtain syntactic parse trees and semantic
roles on the tuning and test datasets, we first
parse the source sentences with the Berkeley
Parser (Petrov and Klein, 2007), trained on the
Chinese Treebank 7.0 (Xue et al., 2005). We
then pass the parses to a Chinese semantic role
labeler (Li et al., 2010), trained on the Chinese
PropBank 3.0 (Xue and Palmer, 2009), to anno-
tate semantic roles for all verbal predicates (part-
of-speech tag VV, VE, or VC).

Our basic baseline system employs 19 basic
features: a language model feature, 7 transla-
tion model features, word penalty, unknown word
penalty, the glue rule, date, number and 6 pass-
through features. Our stronger baseline employs,
in addition, the fine-grained syntactic soft con-
straint features of Marton and Resnik (2008), here-
after MR08. The syntactic soft constraint features
include both MR08 exact-matching and cross-
boundary constraints (denoted XP= and XP+).
Since the syntactic parses of the tuning and test
data contain 29 types of constituent labels and 35
types of POS tags, we have 29 types of XP+ fea-
tures and 64 types of XP= features.

4.2 Model Training

To train the syntactic and semantic reordering
models, we use a gold alignment dataset.2 It con-
tains 7,870 sentences with 191,364 Chinese words
and 261,399 English words. We first run syn-

1http://www.itl.nist.gov/iad/mig//tests/mt
2This dataset includes LDC2006E86, and newswire

parts of LDC2012T16, LDC2012T20, LDC2012T24, and
LDC2013T05. Indeed, the reordering models can also be
trained on the MT training data with its automatic alignment.
However, our preliminary experiments showed that the re-
ordering models trained on gold alignment yielded higher im-
provement.
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Reordering
Type

Syntactic Semantic
l-m r-m l-m r-m

M 73.5 80.6 63.8 67.9
DM 3.9 3.3 14.0 12.0
S 19.5 13.2 13.1 10.7
DS 3.2 3.0 9.1 9.5
#instance 199,234 66,757

Table 3: Reordering type distribution over the re-
ordering model’s training data. Hereafter, l-m and
r-m are for leftmost and rightmost, respectively.

tactic parsing and semantic role labeling on the
Chinese sentences, then train the models by us-
ing MaxEnt toolkit with L1 regularizer (Tsuruoka
et al., 2009).3 Table 3 shows the reordering type
distribution over the training data. Interestingly,
about 17% of the syntactic instances and 16% of
the semantic instances differ in their leftmost and
rightmost reordering types, indicating that the left-
most/rightmost distinction is informative. We also
see that the number of semantic instances is about
1/3 of that of syntactic instances, but the entropy
of the semantic reordering classes is higher, indi-
cating the reordering of semantic roles is harder
than that of syntactic constituents.

A deeper examination of the reordering model’s
training data reveals that some constituent pairs
and semantic role pairs have a preference for a
specific reordering type (monotone or swap). In
order to understand how well the MR08 system
respects their reordering preference, we use the
gold alignment dataset LDC2006E86, in which
the source sentences are from the Chinese Tree-
bank, and thus both the gold parse trees and gold
predicate-argument structures are available. Ta-
ble 4 presents examples comparing the reordering
distribution between gold alignment and the out-
put of the MR08 system. For example, the first
row shows that based on the gold alignment, for
〈PP,VP〉, 16% are in monotone and 76% are in
swap reordering. However, our MR08 system out-
puts 46% of them in monotone and and 50% in
swap reordering. Hence, the reordering accuracy
for 〈PP,VP〉 is 54%. Table 4 also shows that the
semantic reordering between core arguments and
predicates (e.g., 〈Pred,A1〉, 〈A0,Pred〉) has a less
ambiguous pattern than that between adjuncts and
other roles (e.g., 〈LOC,Pred〉, 〈A0,TMP〉), indicat-
ing the higher reordering flexibility of adjuncts.

3http://www.logos.ic.i.u-tokyo.ac.jp/∼tsuruoka/maxent/

Const. Pair Gold MR08 output
M S M S acc.

PP VP 16 76 46 50 54
NP LC 26 74 58 42 50
DNP NP 24 72 78 19 39
CP NP 26 67 84 10 33
NP DEG 39 61 31 69 66

... ... ...
all 81 13 79 14 80

Role Pair Gold MR08 output
M S M S acc.

Pred A1 84 6 82 9 72
A0 Pred 82 11 79 8 75
LOC Pred 17 30 36 25 49
A0 TMP 35 25 61 6 45
TMP Pred 30 22 49 19 43

... ... ...
all 63 13 73 9 64

Table 4: Examples of the reordering distribution
(%) of gold alignment and the MR08 system out-
put. For simplicity, we only focus on (M)onotone
and (S)wap based on leftmost reordering.

4.3 Translation Experiment Results

Our first group of experiments investigates
whether the syntactic reordering models are able
to improve translation quality in terms of BLEU.
To this end, we respectively add our syntactic re-
ordering models into both the baseline and MR08
systems. The effect is shown in the rows of “+ syn-
reorder” in Table 5. From the table, we have the
following two observations.

• Although the HPB model is capable of
handling non-local phrase reordering using
synchronous context free grammars, both
our syntactic leftmost reordering model and
rightmost model are still able to achieve im-
provement over both the baseline and MR08.
This suggests that our syntactic reordering
features interact well with the MR08 syntac-
tic soft constraints: the XP+ and XP= fea-
tures focus on a single constituent each, while
our reordering features focus on a pair of con-
stituents each.

• There is no clear indication of whether the
leftmost reordering model works better than
the other. In addition, integrating both the
leftmost and rightmost reordering models has
limited improvement over a single reordering
model.

Our second group of experiments is to vali-
date the semantic reordering models. Results are
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System Tuning Test
MT06 MT03 MT05 MT08 Avg.

Baseline 34.1 36.1 32.3 27.4 31.9
+
syn-
reorder

l-m 35.2 36.9‡ 33.6‡ 28.4‡ 33.0
r-m 35.2 37.2‡ 33.7‡ 28.6‡ 33.2
both 35.6 37.1‡ 33.6‡ 28.8‡ 33.1

+
sem-
reorder

l-m 34.4 36.7‡ 33.0‡ 27.8† 32.5
r-m 34.5 36.7‡ 33.1‡ 27.8‡ 32.5
both 34.5 37.0‡ 33.6‡ 27.7† 32.8

+syn+sem 35.5 37.3‡ 33.7‡ 29.0‡ 33.3
MR08 35.6 37.4 34.2 28.7 33.4

+
syn-
reorder

l-m 36.0 38.2‡ 35.0‡ 29.2‡ 34.1
r-m 36.0 38.1‡ 34.8‡ 29.2‡ 34.0
both 35.9 38.2‡ 35.3‡ 29.5‡ 34.3

+
sem-
reorder

l-m 35.8 37.6† 34.7‡ 28.7 33.7
r-m 35.8 37.4 34.5† 28.8 33.6
both 35.8 37.6† 34.7‡ 28.8 33.7

+syn+sem 36.1 38.4‡ 35.2‡ 29.5‡ 34.4

Table 5: System performance in BLEU scores.
‡/†: significant over baseline or MR08 at 0.01
/ 0.05, respectively, as tested by bootstrap re-
sampling (Koehn, 2004)

shown in the rows of “+ sem-reorder” in Table 5.
Here we observe:

• The semantic reordering models also achieve
significant gain of 0.8 BLEU on average over
the baseline system, demonstrating the ef-
fectiveness of PAS-based reordering. How-
ever, the gain diminishes to 0.3 BLEU on the
MR08 system.

• The syntactic reordering models outperform
the semantic reordering models on both the
baseline and MR08 systems.

Finally, we integrate both the syntactic and se-
mantic reordering models into the final system.
The two models collectively achieve a gain of up
to 1.4 BLEU over the baseline and 1.0 BLEU over
MR08 on average, which is shown in the rows of
“+syn+sem” in Table 5.

5 Discussion

The trend of the results, summarized as perfor-
mance gain over the baseline and MR08 systems
averaged over all test sets, is presented in Table 6.
The syntactic reordering models outperform the
semantic reordering models, and the gain achieved
by the semantic reordering models is limited in the
presence of the MR08 syntactic features. In this
section, we look at MR08 system and the systems
improving it to explore the behavior differences
between the two reordering models.

Coverage analysis: Our statistics show that
syntactic reordering features (either leftmost or

System Baseline MR08
+syn-reorder 1.2 0.9
+sem-reorder 0.8 0.3

+ both 1.4 1.0

Table 6: Performance gain in BLEU over baseline
and MR08 systems averaged over all test sets.

rightmost) are called 24 times per sentence on av-
erage. This is compared to only 9 times per sen-
tence for semantic reordering features. This is not
surprising since the semantic reordering features
are exclusively attached to predicates, and the span
set of the semantic roles is a strict subset of the
span set of the syntactic constituents; only 22% of
syntactic constituents are semantic roles. On aver-
age, a sentences has 4 PASs and each PAS contains
3 semantic roles. Of all the semantic role pairs,
44% are in the same CFG rules, indicating that this
part of semantic reordering has overlap with syn-
tactic reordering. Therefore, the PAS model has
fewer opportunities to influence reordering.

Reordering accuracy analysis: The reordering
type distribution on the reordering model training
data in Table 3 suggests that semantic reordering
is more difficult than syntactic reordering. To val-
idate this conjecture on our translation test data,
we compare the reordering performance among
the MR08 system, the improved systems and the
maximum entropy classifiers. For the test set, we
have four reference translations. We run GIZA++
on the data combination of our translation train-
ing data and test data to get the alignment for the
test data and each reference translation. Once we
have the (semi-)gold alignment, we compute the
gold reordering types between two adjacent syn-
tactic constituents or semantic roles. Then we
evaluate the automatic reordering outputs gener-
ated from both our translation systems and max-
imum entropy classifiers. Table 7 shows the ac-
curacy averaged over the four gold reordering sets
(the four reference translations). It shows that 1)
as expected, our classifiers do worse on the harder
semantic reordering prediction than syntactic re-
ordering prediction; 2) thanks to the high accu-
racy obtained by the maxent classifiers, integrat-
ing either the syntactic or the semantic reorder-
ing constraints results in better reordering perfor-
mance from both syntactic and semantic perspec-
tives; 3) in terms of the mutual impact, the syn-
tactic reordering models help improving seman-
tic reordering more than the semantic reordering
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System Syntactic Semantic
l-m r-m l-m r-m

MR08 75.0 78.0 66.3 68.5
+syn-reorder 78.4 80.9 69.0 70.2
+sem-reorder 76.0 78.8 70.7 72.7

+both 78.6 81.7 70.6 72.1
Maxent Classifier 80.7 85.6 70.9 73.5

Table 7: Reordering accuracy on four gold sets.

System Syntactic Semantic
l-m r-m l-m r-m

+syn-reorder 1.2 1.2 - -
+sem-reorder - - 0.7 0.9

+both 1.2 1.0 0.5 0.4

Table 8: Reordering feature weights.

models help improving syntactic reordering; and
4) the rightmost models have a learnability advan-
tage over the leftmost models, achieving higher
accuracy across the board.

Feature weight analysis: Table 8 shows the
syntactic and semantic reordering feature weights.
It shows that the semantic feature weights de-
crease in the presence of the syntactic features, in-
dicating that the decoder learns to trust semantic
features less in the presence of the more accurate
syntactic features. This is consistent with our ob-
servation that semantic reordering is harder than
syntactic reordering, as seen in Tables 3 and 7.

Potential improvement analysis: Table 7 also
shows that our current maximum entropy classi-
fiers have room for improvement, especially for
semantic reordering. In order to explore the error
propagation from the classifiers themselves and
explore the upper bound for improvement from the
reordering models, we perform an “oracle” study,
letting the classifiers be aware of the “gold” re-
ordering type between two syntactic constituents
or two semantic roles, and returning a higher prob-
ability for the gold reordering type and a smaller
one for the others (i.e., we set 0.9 for the gold

System MT 03 MT 05 MT 08 Avg.

Non-
Oracle

MR08 37.4 34.2 28.7 33.4
+syn-
reorder 38.2 35.3 29.5 34.3

+sem-
reorder 37.6 34.7 28.8 33.7

+ both 38.4 35.2 29.5 34.4

Oracle

+syn-
reorder 39.2 35.9 29.6 34.9

+sem-
reorder 37.9 34.8 28.9 33.9

+ both 39.1 36.0 29.8 35.0

Table 9: Performance (BLEU score) comparison
between non-oracle and oracle experiments.

reordering type, and let the other non-gold three
types share 0.1). Again, to get the gold reorder-
ing type, we run GIZA++ to get the alignment for
tuning/test source sentences and each of four ref-
erence translations. We report the averaged per-
formance by using the gold reordering type ex-
tracted from the four reference translations. Ta-
ble 9 compares the performance between the non-
oracle and oracle settings. We clearly see that us-
ing gold syntactic reordering types significantly
improves the performance (e.g., 34.9 vs. 33.4 on
average) and there is still some room for improve-
ment by building a better maximum entropy clas-
sifiers (e.g., 34.9 vs. 34.3). To our surprise, how-
ever, the improvement achieved by gold semantic
reordering types is still small (e.g., 33.9 vs. 33.4),
suggesting that the potential improvement of se-
mantic reordering models is much more limited.
And we again see that the improvement achieved
by semantic reordering models is limited in the
presence of the syntactic reordering models.

6 Related Work

Syntax-based reordering: Some previous work
pre-ordered words in the source sentences, so that
the word order of source and target sentences is
similar. The reordering rules were either manu-
ally designed (Collins et al., 2005; Wang et al.,
2007; Xu et al., 2009; Lee et al., 2010) or auto-
matically learned (Xia and McCord, 2004; Gen-
zel, 2010; Visweswariah et al., 2010; Khalilov
and Sima’an, 2011; Lerner and Petrov, 2013), us-
ing syntactic parses. Li et al. (2007) focused on
finding the n-best pre-ordered source sentences by
predicting the reordering of sibling constituents,
while Yang et al. (2012) obtained word order by
using a reranking approach to reposition nodes in
syntactic parse trees. Both are close to our work;
however, our model generates reordering features
that are integrated into the log-linear translation
model during decoding.

Another approach in previous work added soft
constraints as weighted features in the SMT de-
coder to reward good reorderings and penalize bad
ones. Marton and Resnik (2008) employed soft
syntactic constraints with weighted binary features
and no MaxEnt model. They did not explicitly
target reordering (beyond applying constraints on
HPB rules). Although employing linguistically
motivated labels in SCFG is capable of captur-
ing constituent reorderings (Chiang, 2010; Mylon-
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akis and Sima’an, 2011), the rules are sparser than
SCFG with nameless non-terminals (i.e., Xs) and
soft constraints. Ge (2010) presented a syntax-
driven maximum entropy reordering model that
predicted the source word translation order. Gao
et al. (2011) employed dependency trees to predict
the translation order of a word and its head word.
Huang et al. (2013) predicted the translation order
of two source words.4 Our work, which shares this
approach, differs from their work primarily in that
our syntactic reordering models are based on the
constituent level, rather than the word level.

Semantics-based reordering: Semantics-
based reordering has also seen an increase
in activity recently. In the pre-ordering ap-
proach, Wu et al. (2011) automatically learned
pre-ordering rules from PAS. In the soft con-
straint or reordering model approach, Liu and
Gildea (2010) modeled the reordering/deletion
of source-side semantic roles in a tree-to-string
translation model. Xiong et al. (2012) and Li et
al. (2013) predicted the translation order between
either two arguments or an argument and its
predicate. Instead of decomposing a PAS into
individual units, Zhai et al. (2013) constructed
a classifier for each source side PAS. Finally in
the post-processing approach category, Wu and
Fung (2009) performed semantic role labeling
on translation output and reordered arguments to
maximize the cross-lingual match of the semantic
frames between the source sentence and the target
translation. To our knowledge, their semantic
reordering models were PAS-specific. In contrast,
our model is universal and can be easily adopted
to model the reordering of other linguistic units
(e.g., syntactic constituents). Moreover, we
have studied the effectiveness of the semantic
reordering model in different scenarios.

Non-syntax-based reorderings in HPB: Re-
cently we have also seen work on lexicalized re-
ordering models without syntactic information in
HPB (Setiawan et al., 2009; Huck et al., 2013;
Nguyen and Vogel, 2013). The non-syntax-
based reordering approach models the reorder-
ing of translation words/phrases while the syntax-
based approach models the reordering of syn-
tactic constituents. Although there are overlaps
between translation phrases and syntactic con-
stituents, it is reasonable to think that the two re-

4Note that they obtained the translation order of source
word pairs by predicting the reordering of adjacent con-
stituents, which was quite close to our work.

ordering approaches can work together well and
even complement each other, as the linguistic pat-
terns they capture differ substantially. Setiawan
et al. (2013) modeled the orientation decisions
between anchors and two neighboring multi-unit
chunks which might cross phrase or rule bound-
aries. Last, we also note that recent work on non-
syntax-based reorderings in (flat) phrase-based
models (Cherry, 2013; Feng et al., 2013) can also
be potentially adopted to hpb models.

7 Conclusion and Future Work

In this paper, we have presented a unified reorder-
ing framework to incorporate soft linguistic con-
straints (of syntactic or semantic nature) into the
HPB translation model. The syntactic reordering
models take CFG rules and model their reordering
on the target side, while the semantic reordering
models work with PAS. Experiments on Chinese-
English translation show that the reordering ap-
proach can significantly improve a state-of-the-art
hierarchical phrase-based translation system. We
have also discussed the differences between the
two linguistic reordering models.

There are many directions in which this work
can be continued. First, the syntactic reordering
model can be extended to model reordering among
constituents that cross CFG rules. Second, al-
though we do not see obvious gain from the se-
mantic reordering model when the syntactic model
is adopted, it might be beneficial to further jointly
consider the two reordering models, focusing on
where each one does well. Third, to better exam-
ine the overlap or synergy between our approach
and the non-syntax-based reordering approach, we
will conduct direct comparisons and combinations
with the latter.
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