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Abstract

Learning phonetic categories is one of the
first steps to learning a language, yet is hard
to do using only distributional phonetic in-
formation. Semantics could potentially be
useful, since words with different mean-
ings have distinct phonetics, but it is un-
clear how many word meanings are known
to infants learning phonetic categories. We
show that attending to a weaker source of
semantics, in the form of a distribution over
topics in the current context, can lead to
improvements in phonetic category learn-
ing. In our model, an extension of a pre-
vious model of joint word-form and pho-
netic category inference, the probability of
word-forms is topic-dependent, enabling
the model to find significantly better pho-
netic vowel categories and word-forms than
a model with no semantic knowledge.

1 Introduction

Infants begin learning the phonetic categories of
their native language in their first year (Kuhl et al.,
1992; Polka and Werker, 1994; Werker and Tees,
1984). In theory, semantic information could offer
a valuable cue for phoneme induction1 by helping
infants distinguish between minimal pairs, as lin-
guists do (Trubetzkoy, 1939). However, due to a
widespread assumption that infants do not know the
meanings of many words at the age when they are
learning phonetic categories (see Swingley, 2009
for a review), most recent models of early phonetic
category acquisition have explored the phonetic
learning problem in the absence of semantic infor-
mation (de Boer and Kuhl, 2003; Dillon et al., 2013;

1The models in this paper do not distinguish between pho-
netic and phonemic categories, since they do not capture
phonological processes (and there are also none present in
our synthetic data). We thus use the terms interchangeably.

Feldman et al., 2013a; McMurray et al., 2009; Val-
labha et al., 2007).

Models without any semantic information are
likely to underestimate infants’ ability to learn pho-
netic categories. Infants learn language in the wild,
and quickly attune to the fact that words have (pos-
sibly unknown) meanings. The extent of infants’
semantic knowledge is not yet known, but existing
evidence shows that six-month-olds can associate
some words with their referents (Bergelson and
Swingley, 2012; Tincoff and Jusczyk, 1999, 2012),
leverage non-acoustic contexts such as objects or ar-
ticulations to distinguish similar sounds (Teinonen
et al., 2008; Yeung and Werker, 2009), and map
meaning (in the form of objects or images) to new
word-forms in some laboratory settings (Friedrich
and Friederici, 2011; Gogate and Bahrick, 2001;
Shukla et al., 2011). These findings indicate that
young infants are sensitive to co-occurrences be-
tween linguistic stimuli and at least some aspects
of the world.

In this paper we explore the potential contribu-
tion of semantic information to phonetic learning
by formalizing a model in which learners attend to
the word-level context in which phones appear (as
in the lexical-phonetic learning model of Feldman
et al., 2013a) and also to the situations in which
word-forms are used. The modeled situations con-
sist of combinations of categories of salient ac-
tivities or objects, similar to the activity contexts
explored by Roy et al. (2012), e.g.,‘getting dressed’
or ‘eating breakfast’. We assume that child learn-
ers are able to infer a representation of the situ-
ational context from their non-linguistic environ-
ment. However, in our simulations we approximate
the environmental information by running a topic
model (Blei et al., 2003) over a corpus of child-
directed speech to infer a topic distribution for each
situation. These topic distributions are then used as
input to our model to represent situational contexts.

The situational information in our model is simi-
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lar to that assumed by theories of cross-situational
word learning (Frank et al., 2009; Smith and Yu,
2008; Yu and Smith, 2007), but our model does not
require learners to map individual words to their ref-
erents. Even in the absence of word-meaning map-
pings, situational information is potentially useful
because similar-sounding words uttered in similar
situations are more likely to be tokens of the same
lexeme (containing the same phones) than similar-
sounding words uttered in different situations.

In simulations of vowel learning, inspired by
Vallabha et al. (2007) and Feldman et al. (2013a),
we show a clear improvement over previous mod-
els in both phonetic and lexical (word-form) cate-
gorization when situational context is used as an
additional source of information. This improve-
ment is especially noticeable when the word-level
context is providing less information, arguably the
more realistic setting. These results demonstrate
that relying on situational co-occurrence can im-
prove phonetic learning, even if learners do not yet
know the meanings of individual words.

2 Background and overview of models

Infants attend to distributional characteristics of
their input (Maye et al., 2002, 2008), leading to
the hypothesis that phonetic categories could be
acquired on the basis of bottom-up distributional
learning alone (de Boer and Kuhl, 2003; Vallabha
et al., 2007; McMurray et al., 2009). However, this
would require sound categories to be well sepa-
rated, which often is not the case—for example,
see Figure 1, which shows the English vowel space
that is the focus of this paper.

Recent work has investigated whether infants
could overcome such distributional ambiguity by
incorporating top-down information, in particular,
the fact that phones appear within words. At six
months, infants begin to recognize word-forms
such as their name and other frequently occurring
words (Mandel et al., 1995; Jusczyk and Hohne,
1997), without necessarily linking a meaning to
these forms. This “protolexicon” can help differen-
tiate phonetic categories by adding word contexts
in which certain sound categories appear (Swingley,
2009; Feldman et al., 2013b). To explore this idea
further, Feldman et al. (2013a) implemented the
Lexical-Distributional (LD) model, which jointly
learns a set of phonetic vowel categories and a set
of word-forms containing those categories. Simula-
tions showed that the use of lexical context greatly
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Figure 1: The English vowel space (generated from
Hillenbrand et al. (1995), see Section 6.2), plotted
using the first two formants.

improved phonetic learning.
Our own Topic-Lexical-Distributional (TLD)

model extends the LD model to include an addi-
tional type of context: the situations in which words
appear. To motivate this extension and clarify the
differences between the models, we now provide
a high-level overview of both models; details are
given in Sections 3 and 4.

2.1 Overview of LD model

Both the LD and TLD models are computational-
level models of phonetic (specifically, vowel) cat-
egorization where phones (vowels) are presented
to the model in the context of words.2 The task is
to infer a set of phonetic categories and a set of
lexical items on the basis of the data observed for
each word token xi. In the original LD model, the
observations for token xi are its frame fi, which
consists of a list of consonants and slots for vowels,
and the list of vowel tokenswi. (The TLD model
includes additional observations, described below.)
A single vowel token, wij , is a two dimensional
vector representing the first two formants (peaks
in the frequency spectrum, ordered from lowest to
highest). For example, a token of the word kitty
would have the frame fi = k t , containing two
consonant phones, /k/ and /t/, with two vowel phone
slots in between, and two vowel formant vectors,

2For a related model that also tackles the word segmenta-
tion problem, see Elsner et al. (2013). In a model of phono-
logical learning, Fourtassi and Dupoux (submitted) show that
semantic context information similar to that used here remains
useful despite segmentation errors.
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wi0 = [464, 2294] and wi1 = [412, 2760].3

Given the data, the model must assign each
vowel token to a vowel category, wij = c. Both
the LD and the TLD models do this using inter-
mediate lexemes, `, which contain vowel category
assignments, v`j = c, as well as a frame f`. If a
word token is assigned to a lexeme, xi = `, the
vowels within the word are assigned to that lex-
eme’s vowel categories, wij = v`j = c.4 The word
and lexeme frames must match, fi = f`.

Lexical information helps with phonetic catego-
rization because it can disambiguate highly over-
lapping categories, such as the ae and eh categories
in Figure 1. A purely distributional learner who ob-
serves a cluster of data points in the ae-eh region is
likely to assume all these points belong to a single
category because the distributions of the categories
are so similar. However, a learner who attends to
lexical context will notice a difference: contexts
that only occur with ae will be observed in one part
of the ae-eh region, while contexts that only oc-
cur with eh will be observed in a different (though
partially overlapping) space. The learner then has
evidence of two different categories occurring in
different sets of lexemes.

Simulations with the LD model show that using
lexical information to constrain phonetic learning
can greatly improve categorization accuracy (Feld-
man et al., 2013a), but it can also introduce errors.
When two word tokens contain the same consonant
frame but different vowels (i.e., minimal pairs),
the model is more likely to categorize those two
vowels together. Thus, the model has trouble distin-
guishing minimal pairs. Although young children
also have trouble with minimal pairs (Stager and
Werker, 1997; Thiessen, 2007), the LD model may
overestimate the degree of the problem. We hypoth-
esize that if a learner is able to associate words with
the contexts of their use (as children likely are), this
could provide a weak source of information for dis-
ambiguating minimal pairs even without knowing
their exact meanings. That is, if the learner hears
kV1t and kV2t in different situational contexts, they
are likely to be different lexical items (and V1 and
V2 different phones), despite the lexical similarity
between them.

3In simulations we also experiment with frames in which
consonants are not represented perfectly.

4The notation is overloaded: wij refers both to the vowel
formants and the vowel category assignments, and xi refers
to both the token identity and its assignment to a lexeme.

2.2 Overview of TLD model

To demonstrate the benefit of situational informa-
tion, we develop the Topic-Lexical-Distributional
(TLD) model, which extends the LD model by as-
suming that words appear in situations analogous
to documents in a topic model. Each situation h
is associated with a mixture of topics θh, which is
assumed to be observed. Thus, for the ith token in
situation h, denoted xhi, the observed data will be
its frame fhi, vowels whi, and topic vector θh.

From an acquisition perspective, the observed
topic distribution represents the child’s knowledge
of the context of the interaction: she can distin-
guish bathtime from dinnertime, and is able to rec-
ognize that some topics appear in certain contexts
(e.g. animals on walks, vegetables at dinnertime)
and not in others (few vegetables appear at bath-
time). We assume that the child would learn these
topics from observing the world around her and
the co-occurrences of entities and activities in the
world. Within any given situation, there might be
a mixture of different (actual or possible) topics
that are salient to the child. We assume further that
as the child learns the language, she will begin to
associate specific words with each topic as well.

Thus, in the TLD model, the words used in a sit-
uation are topic-dependent, implying meaning, but
without pinpointing specific referents. Although the
model observes the distribution of topics in each
situation (corresponding to the child observing her
non-linguistic environment), it must learn to asso-
ciate each (phonetically and lexically ambiguous)
word token with a particular topic from that distri-
bution. The occurrence of similar-sounding words
in different situations with mostly non-overlapping
topics will provide evidence that those words be-
long to different topics and that they are therefore
different lexemes. Conversely, potential minimal
pairs that occur in situations with similar topic dis-
tributions are more likely to belong to the same
topic and thus the same lexeme.

Although we assume that children infer topic
distributions from the non-linguistic environment,
we will use transcripts from CHILDES to create the
word/phone learning input for our model. These
transcripts are not annotated with environmental
context, but Roy et al. (2012) found that topics
learned from similar transcript data using a topic
model were strongly correlated with immediate ac-
tivities and contexts. We therefore obtain the topic
distributions used as input to the TLD model by
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training an LDA topic model (Blei et al., 2003)
on a superset of the child-directed transcript data
we use for lexical-phonetic learning, dividing the
transcripts into small sections (the ‘documents’ in
LDA) that serve as our distinct situations h. As
noted above, the learned document-topic distribu-
tions θ are treated as observed variables in the
TLD model to represent the situational context. The
topic-word distributions learned by LDA are dis-
carded, since these are based on the (correct and
unambiguous) words in the transcript, whereas the
TLD model is presented with phonetically ambigu-
ous versions of these word tokens and must learn to
disambiguate them and associate them with topics.

3 Lexical-Distributional Model

In this section we describe more formally the gen-
erative process for the LD model (Feldman et al.,
2013a), a joint Bayesian model over phonetic cat-
egories and a lexicon, before describing the TLD
extension in the following section.

The set of phonetic categories and the lexicon are
both modeled using non-parametric Dirichlet Pro-
cess priors, which return a potentially infinite num-
ber of categories or lexemes. A DP is parametrized
as DP (α,H), where α is a real-valued hyperpa-
rameter andH is a base distribution.H may be con-
tinuous, as when it generates phonetic categories
in formant space, or discrete, as when it generates
lexemes as a list of phonetic categories.

A draw from a DP, G ∼ DP (α,H), returns
a distribution over a set of draws from H , i.e., a
discrete distribution over a set of categories or lex-
emes generated by H . In the mixture model setting,
the category assignments are then generated from
G, with the datapoints themselves generated by the
corresponding components fromH . IfH is infinite,
the support of the DP is likewise infinite. During
inference, we marginalize over G.

3.1 Phonetic Categories: IGMM

Following previous models of vowel learning (de
Boer and Kuhl, 2003; Vallabha et al., 2007; Mc-
Murray et al., 2009; Dillon et al., 2013) we assume
that vowel tokens are drawn from a Gaussian mix-
ture model. The Infinite Gaussian Mixture Model
(IGMM) (Rasmussen, 2000) includes a DP prior,
as described above, in which the base distribution
HC generates multivariate Gaussians drawn from

a Normal Inverse-Wishart prior.5 Each observation,
a formant vector wij , is drawn from the Gaussian
corresponding to its category assignment cij :

µc,Σc ∼ HC = NIW(µ0,Σ0, ν0) (1)

GC ∼ DP (αc, HC) (2)

cij ∼ GC (3)

wij |cij = c ∼ N(µc,Σc) (4)

The above model generates a category assignment
cij for each vowel token wij . This is the baseline
IGMM model, which clusters vowel tokens using
bottom-up distributional information only; the LD
model adds top-down information by assigning cat-
egories in the lexicon, rather than on the token
level.

3.2 Lexicon
In the LD model, vowel phones appear within
words drawn from the lexicon. Each such lexeme
is represented as a frame plus a list of vowel cate-
gories v`. Lexeme assignments for each token are
drawn from a DP with a lexicon-generating base
distribution HL. The category for each vowel to-
ken in the word is determined by the lexeme; the
formant values are drawn from the corresponding
Gaussian as in the IGMM:

GL ∼ DP (αl, HL) (5)

xi = ` ∼ GL (6)

wij |v`j = c ∼ N(µc,Σc) (7)

HL generates lexemes by first drawing the num-
ber of phones from a geometric distribution and the
number of consonant phones from a binomial dis-
tribution. The consonants are then generated from a
DP with a uniform base distribution (but note they
are fixed at inference time, i.e., are observed cate-
gorically), while the vowel phones v` are generated
by the IGMM DP above, v`j ∼ GC .

Note that two draws from HL may result in iden-
tical lexemes; these are nonetheless considered to
be separate (homophone) lexemes.

4 Topic-Lexical-Distributional Model

The TLD model retains the IGMM vowel phone
component, but extends the lexicon of the LD
model by adding topic-specific lexicons, which cap-
ture the notion that lexeme probabilities are topic-
dependent. Specifically, the TLD model replaces

5This compound distribution is equivalent to
Σc ∼ IW(Σ0, ν0), µc|Σc ∼ N(µ0,

Σc
ν0

)
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the Dirichlet Process lexicon with a Hierarchical
Dirichlet Process (HDP; Teh (2006)). In the HDP
lexicon, a top-level global lexicon is generated as
in the LD model. Topic-specific lexicons are then
drawn from the global lexicon, containing a subset
of the global lexicon (but since the size of the global
lexicon is unbounded, so are the topic-specific lex-
icons). These topic-specific lexicons are used to
generate the tokens in a similar manner to the LD
model. There are a fixed number of lower level
topic-lexicons; these are matched to the number
of topics in the LDA model used to infer the topic
distributions (see Section 6.4).

More formally, the global lexicon is generated
as a top-level DP: GL ∼ DP (αl, HL) (see Sec-
tion 3.2; remember HL includes draws from the
IGMM over vowel categories). GL is in turn used
as the base distribution in the topic-level DPs,
Gk ∼ DP (αk, GL). In the Chinese Restaurant
Franchise metaphor often used to describe HDPs,
GL is a global menu of dishes (lexemes). The topic-
specific lexicons are restaurants, each with its own
distribution over dishes; this distribution is defined
by seating customers (word tokens) at tables, each
of which serves a single dish from the menu: all
tokens x at the same table t are assigned to the
same lexeme `t. Inference (Section 5) is defined
in terms of tables rather than lexemes; if multiple
tables draw the same dish from GL, tokens at these
tables share a lexeme.

In the TLD model, tokens appear within situa-
tions, each of which has a distribution over topics
θh. Each token xhi has a co-indexed topic assign-
ment variable, zhi, drawn from θh, designating the
topic-lexicon from which the table for xhi is to be
drawn. The formant values for whij are drawn in
the same way as in the LD model, given the lexeme
assignment at xhi. This results in the following
model, shown in Figure 2:

GL ∼ DP (αl, HL) (8)

Gk ∼ DP (αk, GL) (9)

zhi ∼Mult(θh) (10)

xhi = t|zhi = k ∼ Gk (11)

whij |xhi = t, v`tj = c ∼ N(µc,Σc) (12)

5 Inference: Gibbs Sampling

We use Gibbs sampling to infer three sets of vari-
ables in the TLD model: assignments to vowel cat-
egories in the lexemes, assignments of tokens to

µ0, κ0,Σ0, ν0

HC

GC

αc

µc,Σc
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λ

HL

GL

αl

Gk

αk

K

zhi

xhi

fhi whij

|whi|
|xh|

D

θh

Figure 2: TLD model, depicting, from left to right,
the IGMM component, the LD lexicon compo-
nent, the topic-specific lexicons, and finally the
token xhi, appearing in document h, with observed
vowel formants whij and frame fhi. The lexeme
assignment xhi and the topic assignment zhi are
inferred, the latter using the observed document-
topic distribution θh. Note that fi is deterministic
given the lexeme assignment. Squared nodes depict
hyperparameters. λ is the set of hyperparameters
used by HL when generating lexical items (see
Section 3.2).

topics, and assignments of tokens to tables (from
which the assignment to lexemes can be read off).

5.1 Sampling lexeme vowel categories
Each vowel in the lexicon must be assigned to a
category in the IGMM. The posterior probability of
a category assignment is composed of the DP prior
over categories and the likelihood of the observed
vowels belonging to that category. We use w`j to
denote the set of vowel formants at position j in
words that have been assigned to lexeme `. Then,

P (v`j = c|w,x, `\`)
∝ P (v`j = c|`\`)p(w`j |v`j = c,w\`j) (13)

The first (DP prior) factor is defined as:

P (v`j = c|v\`j) =

{
ncP

c nc+αc
if c exists

αcP
c nc+αc

if c new

(14)

where nc is the number of other vowels in the lex-
icon, v\lj , assigned to category c. Note that there
is always positive probability of creating a new
category.

The likelihood of the vowels is calculated by
marginalizing over all possible means and vari-
ances of the Gaussian category parameters, given
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the NIW prior. For a single point (if |w`j | = 1),
this predictive posterior is in the form of a Student-t
distribution; for the more general case see Feldman
et al. (2013a), Eq. B3.

5.2 Sampling table & topic assignments
We jointly sample x and z, the variables assigning
tokens to tables and topics. Resampling the table
assignment includes the possibility of changing to
a table with a different lexeme or drawing a new
table with a previously seen or novel lexeme. The
joint conditional probability of a table and topic
assignment, given all other current token assign-
ments, is:

P (xhi = t, zhi = k|whi, θh, t
\hi, `,w\hi)

= P (k|θh)P (t|k, `t, t\hi)∏
c∈C

p(whi·|v`t· = c,w\hi) (15)

The first factor, the prior probability of topic k
in document h, is given by θhk obtained from the
LDA. The second factor is the prior probability of
assigning word xi to table t with lexeme ` given
topic k. It is given by the HDP, and depends on
whether the table t exists in the HDP topic-lexicon
for k and, likewise, whether any table in the topic-
lexicon has the lexeme `:

P (t|k, `, t\hi) ∝


nkt

nk+αk
if t in k

αk
nk+αk

m`
m+αl

if t new, ` known
αk

nk+αk
α`

m+αl
if t and ` new

(16)

Here nkt is the number of other tokens at table t,
nk are the total number of tokens in topic k, m`

is the number of tables across all topics with the
lexeme `, and m is the total number of tables.

The third factor, the likelihood of the vowel for-
mantswhi in the categories given by the lexeme vl,
is of the same form as the likelihood of vowel cate-
gories when resampling lexeme vowel assignments.
However, here it is calculated over the set of vow-
els in the token assigned to each vowel category
(i.e., the vowels at indices where v`t· = c). For a
new lexeme, we approximate the likelihood using
100 samples drawn from the prior, each weighted
by α/100 (Neal, 2000).

5.3 Hyperparameters
The three hyperparameters governing the HDP over
the lexicon, αl and αk, and the DP over vowel cate-
gories, αc, are estimated using a slice sampler. The

remaining hyperparameters for the vowel category
and lexeme priors are set to the same values used
by Feldman et al. (2013a).

6 Experiments

6.1 Corpus

We test our model on situated child directed speech,
taken from the C1 section of the Brent corpus in
CHILDES (Brent and Siskind, 2001; MacWhinney,
2000). This corpus consists of transcripts of speech
directed at infants between the ages of 9 and 15
months, captured in a naturalistic setting as par-
ent and child went about their day. This ensures
variability of situations.

Utterances with unintelligible words or quotes
are removed. We restrict the corpus to content
words by retaining only words tagged as adj,
n, part and v (adjectives, nouns, particles, and
verbs). This is in line with evidence that infants
distinguish content and function words on the basis
of acoustic signals (Shi and Werker, 2003). Vowel
categorization improves when attending only to
more prosodically and phonologically salient to-
kens (Adriaans and Swingley, 2012), which gen-
erally appear within content, not function words.
The final corpus consists of 13138 tokens and 1497
word types.

6.2 Hillenbrand Vowels

The transcripts do not include phonetic information,
so, following Feldman et al. (2013a), we synthe-
size the formant values using data from Hillenbrand
et al. (1995). This dataset consists of a set of 1669
manually gathered formant values from 139 Amer-
ican English speakers (men, women and children)
for 12 vowels. For each vowel category, we con-
struct a Gaussian from the mean and covariance of
the datapoints belonging to that category, using the
first and second formant values measured at steady
state. We also construct a second dataset using only
datapoints from adult female speakers.

Each word in the dataset is converted to a phone-
mic representation using the CMU pronunciation
dictionary, which returns a sequence of Arpabet
phoneme symbols. If there are multiple possible
pronunciations, the first one is used. Each vowel
phoneme in the word is then replaced by formant
values drawn from the corresponding Hillenbrand
Gaussian for that vowel.
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6.3 Merging Consonant Categories

The Arpabet encoding used in the phonemic rep-
resentation includes 24 consonants. We construct
datasets both using the full set of consonants—the
‘C24’ dataset—and with less fine-grained conso-
nant categories. Distinguishing all consonant cate-
gories assumes perfect learning of consonants prior
to vowel categorization and is thus somewhat unre-
alistic (Polka and Werker, 1994), but provides an
upper limit on the information that word-contexts
can give.

In the ‘C15’ dataset, the voicing distinction is
collapsed, leaving 15 consonant categories. The
collapsed categories are B/P, G/K, D/T, CH/JH,
V/F, TH/DH, S/Z, SH/ZH, R/L while HH, M, NG,
N, W, Y remain separate phonemes. This dataset
mirrors the finding in Mani and Plunkett (2010) that
12 month old infants are not sensitive to voicing
mispronunciations.

The ‘C6’ dataset distinguishes between only
6 coarse consonant phonemes, corresponding to
stops (B,P,G,K,D,T), affricates (CH,JH), fricatives
(V, F, TH, DH, S, Z, SH, ZH, HH), nasals (M,
NG, N), liquids (R, L), and semivowels/glides (W,
Y). This dataset makes minimal assumptions about
the category categories that infants could use in this
learning setting.

Decreasing the number of consonants increases
the ambiguity in the corpus: bat not only shares
a frame (b t) with boat and bite, but also, in the
C15 dataset, with put, pad and bad (b/p d/t), and
in the C6 dataset, with dog and kite, among many
others (STOP STOP). Table 1 shows the percent-
age of types and tokens that are ambiguous in each
dataset, that is, words in frames that match multiple
wordtypes. Note that we always evaluate against
the gold word identities, even when these are not
distinguished in the model’s input. These datasets
are intended to evaluate the degree of reliance on
consonant information in the LD and TLD models,
and to what extent the topics in the TLD model can
replace this information.

6.4 Topics

The input to the TLD model includes a distribution
over topics for each situation, which we infer in
advance from the full Brent corpus (not only the
C1 subset) using LDA. Each transcript in the Brent
corpus captures about 75 minutes of parent-child
interaction, and thus multiple situations will be
included in each file. The transcripts do not delimit

Dataset C24 C15 C6

Input Types 1487 1426 1203
Frames 1259 1078 702
Ambig Types % 27.2 42.0 80.4
Ambig Tokens % 41.3 56.9 77.2

Table 1: Corpus statistics showing the increasing
amount of ambiguity as consonant categories are
merged. Input types are the number of word types
with distinct input representations (as opposed to
gold orthographic word types, of which there are
1497). Ambiguous types and tokens are those with
frames that match multiple (orthographic) word
types.

situations, so we do this somewhat arbitrarily by
splitting each transcript after 50 CDS utterances,
resulting in 203 situations for the Brent C1 dataset.
As well as function words, we also remove the
five most frequent content words (be, go, get, want,
come). On average, situations are only 59 words
long, reflecting the relative lack of content words
in CDS utterances.

We infer 50 topics for this set of situations using
the mallet toolkit (McCallum, 2002). Hyperpa-
rameters are inferred, which leads to a dominant
topic that includes mainly light verbs (have, let,
see, do). The other topics are less frequent but cap-
ture stronger semantic meaning (e.g. yummy, peach,
cookie, daddy, bib in one topic, shoe, let, put, hat,
pants in another). The word-topic assignments are
used to calculate unsmoothed situation-topic distri-
butions θ used by the TLD model.

6.5 Evaluation
We evaluate against adult categories, i.e., the ‘gold-
standard’, since all learners of a language even-
tually converge on similar categories. (Since our
model is not a model of the learning process, we
do not compare the infant learning process to the
learning algorithm.) We evaluate both the inferred
phonetic categories and words using the clustering
evaluation measure V-Measure (VM; Rosenberg
and Hirschberg, 2007).6 VM is the harmonic mean
of two components, similar to F-score, where the
components (VC and VH) are measures of cross
entropy between the gold and model categorization.

6Other clustering measures, such as 1-1 matching and
pairwise precision and recall (accuracy and completeness)
showed the same trends, but VM has been demonstrated to
be the most stable measure when comparing solutions with
varying numbers of clusters (Christodoulopoulos et al., 2010).
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Figure 3: Vowel evaluation. ‘all’ refers to datasets
with vowels synthesized from all speakers, ‘w’ to
datasets with vowels synthesized from adult female
speakers’ vowels. The bars show a 95% Confidence
Interval based on 5 runs. IGMM-all results in a VM
score of 53.9 (CI=0.5); IGMM-w has a VM score
of 65.0 (CI=0.2), not shown.

For vowels, VM measures how well the inferred
phonetic categorizations match the gold categories;
for lexemes, it measures whether tokens have been
assigned to the same lexemes both by the model
and the gold standard. Words are evaluated against
gold orthography, so homophones, e.g. hole and
whole, are distinct gold words.

6.6 Results

We compare all three models—TLD, LD, and
IGMM—on the vowel categorization task, and
TLD and LD on the lexical categorization task
(since IGMM does not infer a lexicon). The datasets
correspond to two sets of conditions: firstly, either
using vowel categories synthesized from all speak-
ers or only adult female speakers, and secondly,
varying the coarseness of the observed consonant
categories. Each condition (model, vowel speak-
ers, consonant set) is run five times, using 1500
iterations of Gibbs sampling with hyperparameter
sampling. Overall, we find that TLD outperforms
the other models in both tasks, across all condi-
tions.

Vowel categorization results are shown in Fig-
ure 3. IGMM performs substantially worse than
both TLD and LD, with scores more than 30 points
lower than the best results for these models, clearly
showing the value of the protolexicon and repli-

500100015002000250030003500
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Figure 4: Vowels found by the TLD model; su-
pervowels are indicated in red. The gold-standard
vowels are shown in gold in the background but are
mostly overlapped by the inferred categories.

cating the results found by Feldman et al. (2013a)
on this dataset. Furthermore, TLD consistently out-
performs the LD model, finding better phonetic
categories, both for vowels generated from the com-
bined categories of all speakers (‘all’) and vowels
generated from adult female speakers only (‘w’),
although the latter are clearly much easier for both
models to learn. Both models perform less well
when the consonant frames provide less informa-
tion, but the TLD model performance degrades less
than the LD performance.

Both the TLD and the LD models find ‘super-
vowel’ categories, which cover multiple vowel cat-
egories and are used to merge minimal pairs into a
single lexical item. Figure 4 shows example vowel
categories inferred by the TLD model, including
two supervowels. The TLD supervowels are used
much less frequently than the supervowels found
by the LD model, containing, on average, only two-
thirds as many tokens.

Figure 5 shows that TLD also outperforms LD
on the lexeme/word categorization task. Again per-
formance decreases as the consonant categories
become coarser, but the additional semantic infor-
mation in the TLD model compensates for the lack
of consonant information. In the individual com-
ponents of VM, TLD and LD have similar VC
(“recall”), but TLD has higher VH (“precision”),
demonstrating that the semantic information given
by the topics can separate potentially ambiguous
words, as hypothesized.

Overall, the contextual semantic information
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Figure 5: Lexeme evaluation. ‘all’ refers to datasets
with vowels synthesized from all speakers, ‘w’ to
datasets with vowels synthesized from adult female
speakers’ vowels.

added in the TLD model leads to both better pho-
netic categorization and to a better protolexicon,
especially when the input is noisier, using degraded
consonants. Since infants are not likely to have per-
fect knowledge of phonetic categories at this stage,
semantic information is a potentially rich source
of information that could be drawn upon to offset
noise from other domains. The form of the seman-
tic information added in the TLD model is itself
quite weak, so the improvements shown here are in
line with what infant learners could achieve.

7 Conclusion

Language acquisition is a complex task, in which
many heterogeneous sources of information may
be useful. In this paper, we investigated whether
contextual semantic information could be of help
when learning phonetic categories. We found that
this contextual information can improve phonetic
learning performance considerably, especially in
situations where there is a high degree of pho-
netic ambiguity in the word-forms that learners
hear. This suggests that previous models that have
ignored semantic information may have underesti-
mated the information that is available to infants.
Our model illustrates one way in which language
learners might harness the rich information that is
present in the world without first needing to acquire
a full inventory of word meanings.

The contextual semantic information that the

TLD model tracks is similar to that potentially
used in other linguistic learning tasks. Theories
of cross-situational word learning (Smith and Yu,
2008; Yu and Smith, 2007) assume that sensitivity
to situational co-occurrences between words and
non-linguistic contexts is a precursor to learning the
meanings of individual words. Under this view, con-
textual semantics is available to infants well before
they have acquired large numbers of semantic min-
imal pairs. However, recent experimental evidence
indicates that learners do not always retain detailed
information about the referents that are present in a
scene when they hear a word (Medina et al., 2011;
Trueswell et al., 2013). This evidence poses a di-
rect challenge to theories of cross-situational word
learning. Our account does not necessarily require
learners to track co-occurrences between words
and individual objects, but instead focuses on more
abstract information about salient events and topics
in the environment; it will be important to investi-
gate to what extent infants encode this information
and use it in phonetic learning.

Regardless of the specific way in which infants
encode semantic information, our method of adding
this information by using LDA topics from tran-
script data was shown to be effective. This method
is practical because it can approximate semantic
information without relying on extensive manual
annotation.

The LD model extended the phonetic catego-
rization task by adding word contexts; the TLD
model presented here goes even further, adding
larger situational contexts. Both forms of top-down
information help the low-level task of classifying
acoustic signals into phonetic categories, furthering
a holistic view of language learning with interac-
tion across multiple levels.
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