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Abstract

We present a structured learning approach
to inducing hypernym taxonomies using a
probabilistic graphical model formulation.
Our model incorporates heterogeneous re-
lational evidence about both hypernymy
and siblinghood, captured by semantic
features based on patterns and statistics
from Web n-grams and Wikipedia ab-
stracts. For efficient inference over tax-
onomy structures, we use loopy belief
propagation along with a directed span-
ning tree algorithm for the core hyper-
nymy factor. To train the system, we ex-
tract sub-structures of WordNet and dis-
criminatively learn to reproduce them, us-
ing adaptive subgradient stochastic opti-
mization. On the task of reproducing
sub-hierarchies of WordNet, our approach
achieves a 51% error reduction over a
chance baseline, including a 15% error re-
duction due to the non-hypernym-factored
sibling features. On a comparison setup,
we find up to 29% relative error reduction
over previous work on ancestor F1.

1 Introduction

Many tasks in natural language understanding,
such as question answering, information extrac-
tion, and textual entailment, benefit from lexical
semantic information in the form of types and hy-
pernyms. A recent example is IBM’s Jeopardy!
system Watson (Ferrucci et al., 2010), which used
type information to restrict the set of answer can-
didates. Information of this sort is present in term
taxonomies (e.g., Figure 1), ontologies, and the-
sauri. However, currently available taxonomies
such as WordNet are incomplete in coverage (Pen-
nacchiotti and Pantel, 2006; Hovy et al., 2009),
unavailable in many domains and languages, and
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Figure 1: An excerpt of WordNet’s vertebrates taxonomy.

time-intensive to create or extend manually. There
has thus been considerable interest in building lex-
ical taxonomies automatically.

In this work, we focus on the task of taking col-
lections of terms as input and predicting a com-
plete taxonomy structure over them as output. Our
model takes a loglinear form and is represented
using a factor graph that includes both 1st-order
scoring factors on directed hypernymy edges (a
parent and child in the taxonomy) and 2nd-order
scoring factors on sibling edge pairs (pairs of hy-
pernym edges with a shared parent), as well as in-
corporating a global (directed spanning tree) struc-
tural constraint. Inference for both learning and
decoding uses structured loopy belief propagation
(BP), incorporating standard spanning tree algo-
rithms (Chu and Liu, 1965; Edmonds, 1967; Tutte,
1984). The belief propagation approach allows us
to efficiently and effectively incorporate hetero-
geneous relational evidence via hypernymy and
siblinghood (e.g., coordination) cues, which we
capture by semantic features based on simple sur-
face patterns and statistics from Web n-grams and
Wikipedia abstracts. We train our model to max-
imize the likelihood of existing example ontolo-
gies using stochastic optimization, automatically
learning the most useful relational patterns for full
taxonomy induction.

As an example of the relational patterns that our

1041

Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, pages 1041-1051,
Baltimore, Maryland, USA, June 23-25 2014. (©2014 Association for Computational Linguistics



system learns, suppose we are interested in build-
ing a taxonomy for types of mammals (see Fig-
ure 1). Frequent attestation of hypernymy patterns
like rat is a rodent in large corpora is a strong sig-
nal of the link rodent — rat. Moreover, sibling
or coordination cues like either rats or squirrels
suggest that rat is a sibling of squirrel and adds
evidence for the links rodent — rat and rodent
— squirrel. Our supervised model captures ex-
actly these types of intuitions by automatically dis-
covering such heterogeneous relational patterns as
features (and learning their weights) on edges and
on sibling edge pairs, respectively.

There have been several previous studies on
taxonomy induction. e.g., the incremental tax-
onomy induction system of Snow et al. (2006),
the longest path approach of Kozareva and Hovy
(2010), and the maximum spanning tree (MST)
approach of Navigli et al. (2011) (see Section 4 for
a more detailed overview). The main contribution
of this work is that we present the first discrimina-
tively trained, structured probabilistic model over
the full space of taxonomy trees, using a struc-
tured inference procedure through both the learn-
ing and decoding phases. Our model is also the
first to directly learn relational patterns as part of
the process of training an end-to-end taxonomic
induction system, rather than using patterns that
were hand-selected or learned via pairwise clas-
sifiers on manually annotated co-occurrence pat-
terns. Finally, it is the first end-to-end (i.e., non-
incremental) system to include sibling (e.g., coor-
dination) patterns at all.

We test our approach in two ways. First, on
the task of recreating fragments of WordNet, we
achieve a 51% error reduction on ancestor-based
F1 over a chance baseline, including a 15% error
reduction due to the non-hypernym-factored sib-
ling features. Second, we also compare to the re-
sults of Kozareva and Hovy (2010) by predicting
the large animal subtree of WordNet. Here, we
get up to 29% relative error reduction on ancestor-
based F1. We note that our approach falls at a
different point in the space of performance trade-
offs from past work — by producing complete,
highly articulated trees, we naturally see a more
even balance between precision and recall, while
past work generally focused on precision.! To

'While different applications will value precision and
recall differently, and past work was often intentionally
precision-focused, it is certainly the case that an ideal solu-
tion would maximize both.

avoid presumption of a single optimal tradeoff, we
also present results for precision-based decoding,
where we trade off recall for precision.

2 Structured Taxonomy Induction

Given an input term set * = {x1,x9,...,2Zn},
we wish to compute the conditional distribution
over taxonomy trees y. This distribution P(y|x)
is represented using the graphical model formu-
lation shown in Figure 2. A taxonomy tree y is
composed of a set of indicator random variables
y;j (circles in Figure 2), where y;; = ON means
that x; is the parent of x; in the taxonomy tree
(i.e. there exists a directed edge from z; to ;).
One such variable exists for each pair (7, j) with
0<i<n,1<j<mn,andi# ;>

In a factor graph formulation, a set of factors
(squares and rectangles in Figure 2) determines the
probability of each possible variable assignment.
Each factor F' has an associated scoring function
¢r, with the probability of a total assignment de-
termined by the product of all these scores:

P(yle) o [ [ or(y) (1)
F

2.1 Factor Types

In the models we present here, there are three
types of factors: EDGE factors that score individ-
ual edges in the taxonomy tree, SIBLING factors
that score pairs of edges with a shared parent, and
a global TREE factor that imposes the structural
constraint that y form a legal taxonomy tree.

EDGE Factors. For each edge variable y;; in
the model, there is a corresponding factor FEj;
(small blue squares in Figure 2) that depends only
on y;;. We score each edge by extracting a set
of features f(x;,x;) and weighting them by the
(learned) weight vector w. So, the factor scoring
function is:

exp(w - f(x;, x;))
exp(0) =1

b, (Yij) = vi = O%
Yij = OFF

SIBLING Factors. Our second model also in-
cludes factors that permit 2nd-order features look-
ing at terms that are siblings in the taxonomy tree.
For each triple (i, j, k) with ¢ # j, i # k, and
§ < k., we have a factor Sijk (green rectangles in

2We assume a special dummy root symbol zo.

3The ordering of the siblings z; and x; doesn’t mat-
ter here, so having separate factors for (3, j, k) and (4, k, 7)
would be redundant.
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(a) Edge Features Only

(b) Full Model

Figure 2: Factor graph representation of our model, both without (a) and with (b) SIBLING factors.

Figure 2b) that depends on y;; and ¥, and thus
can be used to encode features that should be ac-
tive whenever x; and x;, share the same parent, z;.
The scoring function is similar to the one above:

exp(w - £(zi, x5, xk))

¢5ijk (yij7 yik) = {1

Yij = Yik = ON
otherwise

TREE Factor. Of course, not all variable as-
signments y form legal taxonomy trees (i.e., di-
rected spanning trees). For example, the assign-
ment V4, j, ;; = ON might get a high score, but
would not be a valid output of the model. Thus,
we need to impose a structural constraint to ensure
that such illegal variable assignments are assigned
0 probability by the model. We encode this in our
factor graph setting using a single global factor T°
(shown as a large red square in Figure 2) with the
following scoring function:

1 1y forms a legal taxonomy tree

or(y) = {

0 otherwise

Model. For a given global assignment vy, let

fly)= > flanz)+ > fl@iz),m)
1,3 0,5,k

Yij=ON Yij =Yik=ON

Note that by substituting our model’s factor scor-

ing functions into Equation 1, we get:

exp(w - f(y))
0

y is a tree
P(ylz) o« :
otherwise

Thus, our model has the form of a standard loglin-

ear model with feature function f.

2.2 Inference via Belief Propagation

With the model defined, there are two main in-
ference tasks we wish to accomplish: computing
expected feature counts and selecting a particular
taxonomy tree for a given set of input terms (de-
coding). As an initial step to each of these pro-
cedures, we wish to compute the marginal prob-
abilities of particular edges (and pairs of edges)
being on. In a factor graph, the natural infer-
ence procedure for computing marginals is belief
propagation. Note that finding taxonomy trees is
a structurally identical problem to directed span-
ning trees (and thereby non-projective dependency
parsing), for which belief propagation has previ-
ously been worked out in depth (Smith and Eisner,
2008). Therefore, we will only briefly sketch the
procedure here.

Belief propagation is a general-purpose infer-
ence method that computes marginals via directed
messages passed from variables to adjacent fac-
tors (and vice versa) in the factor graph. These
messages take the form of (possibly unnormal-
ized) distributions over values of the variable. The
two types of messages (variable to factor or fac-
tor to variable) have mutually recursive defini-
tions. The message from a factor F' to an adjacent
variable V' involves a sum over all possible val-
ues of every other variable that F' touches. While
the EDGE and SIBLING factors are simple enough
to compute this sum by brute force, performing
the sum naively for computing messages from the
TREE factor would take exponential time. How-
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ever, due to the structure of that particular factor,
all of its outgoing messages can be computed si-
multaneously in O(n?) time via an efficient adap-
tation of Kirchhoff’s Matrix Tree Theorem (MTT)
(Tutte, 1984) which computes partition functions
and marginals for directed spanning trees.

Once message passing is completed, marginal
beliefs are computed by merely multiplying to-
gether all the messages received by a particular
variable or factor.

2.2.1 Loopy Belief Propagation

Looking closely at Figure 2a, one can observe
that the factor graph for the first version of our
model, containing only EDGE and TREE factors,
is acyclic. In this special case, belief propagation
is exact: after one round of message passing, the
beliefs computed (as discussed in Section 2.2) will
be the true marginal probabilities under the cur-
rent model. However, in the full model, shown
in Figure 2b, the SIBLING factors introduce cy-
cles into the factor graph, and now the messages
being passed around often depend on each other
and so they will change as they are recomputed.
The process of iteratively recomputing messages
based on earlier messages is known as loopy belief
propagation. This procedure only finds approx-
imate marginal beliefs, and is not actually guar-
anteed to converge, but in practice can be quite
effective for finding workable marginals in mod-
els for which exact inference is intractable, as is
the case here. All else equal, the more rounds
of message passing that are performed, the closer
the computed marginal beliefs will be to the true
marginals, though in practice, there are usually di-
minishing returns after the first few iterations. In
our experiments, we used a fairly conservative up-
per bound of 20 iterations, but in most cases, the
messages converged much earlier than that.

2.3 Training

We used gradient-based maximum likelihood
training to learn the model parameters w. Since
our model has a loglinear form, the derivative
of w with respect to the likelihood objective is
computed by just taking the gold feature vec-
tor and subtracting the vector of expected feature
counts. For computing expected counts, we run
belief propagation until completion and then, for
each factor in the model, we simply read off the
marginal probability of that factor being active (as
computed in Section 2.2), and accumulate a par-

tial count for each feature that is fired by that fac-
tor. This method of computing the gradient can be
incorporated into any gradient-based optimizer in
order to learn the weights w. In our experiments
we used AdaGrad (Duchi et al., 2011), an adaptive
subgradient variant of standard stochastic gradient
ascent for online learning.

2.4 Decoding

Finally, once the model parameters have been
learned, we want to use the model to find taxon-
omy trees for particular sets of input terms. Note
that if we limit our scores to be edge-factored,
then finding the highest scoring taxonomy tree
becomes an instance of the MST problem (also
known as the maximum arborescence problem
for the directed case), which can be solved effi-
ciently in O(n?) quadratic time (Tarjan, 1977) us-
ing the greedy, recursive Chu-Liu-Edmonds algo-
rithm (Chu and Liu, 1965; Edmonds, 1967).4
Since the MST problem can be solved effi-
ciently, the main challenge becomes finding a way
to ensure that our scores are edge-factored. In the
first version of our model, we could simply set the
score of each edge to be w-f(z;, x;), and the MST
recovered in this way would indeed be the high-
est scoring tree: arg maxyP(y\:c). However, this
straightforward approach doesn’t apply to the full
model which also uses sibling features. Hence, at
decoding time, we instead start out by once more
using belief propagation to find marginal beliefs,

and then set the score of each edge to be its belief
dd Ty byij (o) 5
odds ratio: W

3 Features

While spanning trees are familiar from non-
projective dependency parsing, features based on
the linear order of the words or on lexical identi-

“See Georgiadis (2003) for a detailed algorithmic proof,

and McDonald et al. (2005) for an illustrative example. Also,
we constrain the Chu-Liu-Edmonds MST algorithm to out-
put only single-root MSTs, where the (dummy) root has ex-
actly one child (Koo et al., 2007), because multi-root span-
ning ‘forests’ are not applicable to our task.
Also, note that we currently assume one node per term. We
are following the task description from previous work where
the goal is to create a taxonomy for a specific domain (e.g.,
animals). Within a specific domain, terms typically just have
a single sense. However, our algorithms could certainly be
adapted to the case of multiple term senses (by treating the
different senses as unique nodes in the tree) in future work.

The MST that is found using these edge scores is actually
the minimum Bayes risk tree (Goodman, 1996) for an edge
accuracy loss function (Smith and Eisner, 2008).
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ties or syntactic word classes, which are primary
drivers for dependency parsing, are mostly unin-
formative for taxonomy induction. Instead, induc-
ing taxonomies requires world knowledge to cap-
ture the semantic relations between various unseen
terms. For this, we use semantic cues to hyper-
nymy and siblinghood via features on simple sur-
face patterns and statistics in large text corpora.
We fire features on both the edge and the sibling
factors. We first describe all the edge features
in detail (Section 3.1 and Section 3.2), and then
briefly describe the sibling features (Section 3.3),
which are quite similar to the edge ones.

For each edge factor E;;, which represents the
potential parent-child term pair (z;,z;), we add
the surface and semantic features discussed below.
Note that since edges are directed, we have sepa-
rate features for the factors F;; versus Ej;.

3.1 Surface Features

Capitalization: Checks which of z; and z; are
capitalized, with one feature for each value of the
tuple (isCap(x;), isCap(x;)). The intuition is that
leaves of a taxonomy are often proper names and
hence capitalized, e.g., (bison, American bison).
Therefore, the feature for (true, false) (i.e., parent
capitalized but not the child) gets a substantially
negative weight.

Ends with: Checks if z; ends with z;, or not. This
captures pairs such as (fish, bony fish) in our data.

Contains: Checks if z; contains x;, or not. This
captures pairs such as (bird, bird of prey).

Suffix match: Checks whether the k-length suf-
fixes of z; and x; match, or not, for k£ =
1,2,...,7.

LCS: We compute the longest common substring
of w; and z;, and create indicator features for
rounded-off and binned values of |LCS|/((|x;] +
j1)/2).

Length difference: We compute the signed length
difference between x; and x;, and create indica-
tor features for rounded-off and binned values of
(25| = lail)/((fei] + |a;])/2). Yang and Callan
(2009) use a similar feature.

3.2 Semantic Features
3.2.1 Web n-gram Features
Patterns and counts: Hypernymy for a term pair

(P=z;, C=x;) is often signaled by the presence
of surface patterns like C is a P, P such as C

in large text corpora, an observation going back
to Hearst (1992). For each potential parent-child
edge (P=xz;, C=x;), we mine the top k strings
(based on count) in which both z; and z; occur
(we use k=200). We collect patterns in both direc-
tions, which allows us to judge the correct direc-
tion of an edge (e.g., C is a P is a positive signal
for hypernymy whereas P is a C is a negative sig-
nal).® Next, for each pattern in this top- list, we
compute its normalized pattern count ¢, and fire
an indicator feature on the tuple (pattern,t), for
all thresholds ¢ (in a fixed set) s.t. ¢ > t. Our
supervised model then automatically learns which
patterns are good indicators of hypernymy.

Pattern order: We add features on the order (di-
rection) in which the pair (x;, z;) found a pattern
(in its top-k list) — indicator features for boolean
values of the four cases: P...C, C ... P, neither
direction, and both directions. Ritter et al. (2009)
used the ‘both’ case of this feature.

Individual counts: We also compute the indi-
vidual Web-scale term counts c;, and Cajs and
add a comparison feature (cg;, >cxj), plus features
on values of the signed count difference (|c,,| —
lcz; 1)/ ((lez;| + [cx;1)/2), after rounding off, and
binning at multiple granularities. The intuition is
that this feature could learn whether the relative
popularity of the terms signals their hypernymy di-
rection.

3.2.2 Wikipedia Abstract Features

The Web n-grams corpus has broad coverage but
is limited to up to 5-grams, so it may not contain
pattern-based evidence for various longer multi-
word terms and pairs. Therefore, we supplement
it with a full-sentence resource, namely Wikipedia
abstracts, which are concise descriptions (hence
useful to signal hypernymy) of a large variety of
world entities.

Presence and distance: For each potential edge
(xj,x;), we mine patterns from all abstracts in
which the two terms co-occur in either order, al-
lowing a maximum term distance of 20 (because
beyond that, co-occurrence may not imply a rela-
tion). We add a presence feature based on whether
the process above found at least one pattern for
that term pair, or not. We also fire features on
the value of the minimum distance d,,;,, at which

%We also allow patterns with surrounding words, e.g., the
CisaPandC, P of.
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the two terms were found in some abstract (plus
thresholded versions).

Patterns: For each term pair, we take the top-%’
patterns (based on count) of length up to [ from
its full list of patterns, and add an indicator feature
on each pattern string (without the counts). We use
k'=5, 1=10. Similar to the Web n-grams case, we
also fire Wikipedia-based pattern order features.

3.3 Sibling Features

We also incorporate similar features on sibling
factors. For each sibling factor S;;, which rep-
resents the potential parent-children term triple
(x;, x4,z ), we consider the potential sibling term
pair (x;, ). Siblinghood for this pair would be
indicated by the presence of surface patterns such
as either Cy or Ca, Cy is similar to Cs in large cor-
pora. Hence, we fire Web n-gram pattern features
and Wikipedia presence, distance, and pattern fea-
tures, similar to those described above, on each
potential sibling term pair.” The main difference
here from the edge factors is that the sibling fac-
tors are symmetric (in the sense that S, is redun-
dant to Sj;;) and hence the patterns are undirected.
Therefore, for each term pair, we first symmetrize
the collected Web n-grams and Wikipedia patterns
by accumulating the counts of symmetric patterns
like rats or squirrels and squirrels or rats.®

4 Related Work

In our work, we assume a known term set and
do not address the problem of extracting related
terms from text. However, a great deal of past
work has considered automating this process, typ-
ically taking one of two major approaches. The
clustering-based approach (Lin, 1998; Lin and
Pantel, 2002; Davidov and Rappoport, 2006; Ya-
mada et al., 2009) discovers relations based on the
assumption that similar concepts appear in sim-

"One can also add features on the full triple (z;, z;, Tx)
but most such features will be sparse.

8 All the patterns and counts for our Web and Wikipedia

edge and sibling features described above are extracted after
stemming the words in the terms, the n-grams, and the ab-
stracts (using the Porter stemmer). Also, we threshold the
features (to prune away the sparse ones) by considering only
those that fire for at least ¢ trees in the training data ({ = 4 in
our experiments).
Note that one could also add various complementary types of
useful features presented by previous work, e.g., bootstrap-
ping using syntactic heuristics (Phillips and Riloff, 2002),
dependency patterns (Snow et al., 2006), doubly anchored
patterns (Kozareva et al., 2008; Hovy et al., 2009), and Web
definition classifiers (Navigli et al., 2011).

ilar contexts (Harris, 1954). The pattern-based
approach uses special lexico-syntactic patterns to
extract pairwise relation lists (Phillips and Riloff,
2002; Girju et al., 2003; Pantel and Pennacchiotti,
2006; Suchanek et al., 2007; Ritter et al., 2009;
Hovy et al., 2009; Baroni et al., 2010; Ponzetto
and Strube, 2011) and semantic classes or class-
instance pairs (Riloff and Shepherd, 1997; Katz
and Lin, 2003; Pasca, 2004; Etzioni et al., 2005;
Talukdar et al., 2008).

We focus on the second step of taxonomy induc-
tion, namely the structured organization of terms
into a complete and coherent tree-like hierarchy.’
Early work on this task assumes a starting par-
tial taxonomy and inserts missing terms into it.
Widdows (2003) place unknown words into a re-
gion with the most semantically-similar neigh-
bors. Snow et al. (2006) add novel terms by greed-
ily maximizing the conditional probability of a set
of relational evidence given a taxonomy. Yang and
Callan (2009) incrementally cluster terms based
on a pairwise semantic distance. Lao et al. (2012)
extend a knowledge base using a random walk
model to learn binary relational inference rules.

However, the task of inducing full taxonomies
without assuming a substantial initial partial tax-
onomy is relatively less well studied. There is
some prior work on the related task of hierarchical
clustering, or grouping together of semantically
related words (Cimiano et al., 2005; Cimiano and
Staab, 2005; Poon and Domingos, 2010; Fountain
and Lapata, 2012). The task we focus on, though,
is the discovery of direct taxonomic relationships
(e.g., hypernymy) between words.

We know of two closely-related previous sys-
tems, Kozareva and Hovy (2010) and Navigli et
al. (2011), that build full taxonomies from scratch.
Both of these systems use a process that starts
by finding basic level terms (leaves of the fi-
nal taxonomy tree, typically) and then using re-
lational patterns (hand-selected ones in the case of
Kozareva and Hovy (2010), and ones learned sep-
arately by a pairwise classifier on manually anno-
tated co-occurrence patterns for Navigli and Ve-
lardi (2010), Navigli et al. (2011)) to find interme-
diate terms and all the attested hypernymy links
between them.!? To prune down the resulting tax-

°Determining the set of input terms is orthogonal to our
work, and our method can be used in conjunction with vari-
ous term extraction approaches described above.

Unlike our system, which assumes a complete set of
terms and only attempts to induce the taxonomic structure,
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onomy graph, Kozareva and Hovy (2010) use a
procedure that iteratively retains the longest paths
between root and leaf terms, removing conflicting
graph edges as they go. The end result is acyclic,
though not necessarily a tree; Navigli et al. (2011)
instead use the longest path intuition to weight
edges in the graph and then find the highest weight
taxonomic tree using a standard MST algorithm.

Our work differs from the two systems above
in that ours is the first discriminatively trained,
structured probabilistic model over the full space
of taxonomy trees that uses structured inference
via spanning tree algorithms (MST and MTT)
through both the learning and decoding phases.
Our model also automatically learns relational pat-
terns as a part of the taxonomic training phase, in-
stead of relying on hand-picked rules or pairwise
classifiers on manually annotated co-occurrence
patterns, and it is the first end-to-end (i.e., non-
incremental) system to include heterogeneous re-
lational information via sibling (e.g., coordina-
tion) patterns.

5 Experiments

5.1 Data and Experimental Regime

We considered two distinct experimental setups,
one that illustrates the general performance of
our model by reproducing various medium-sized
WordNet domains, and another that facilitates
comparison to previous work by reproducing the
much larger animal subtree provided by Kozareva
and Hovy (2010).

General setup: In order to test the accuracy
of structured prediction on medium-sized full-
domain taxonomies, we extracted from WordNet
3.0 all bottomed-out full subtrees which had a
tree-height of 3 (i.e., 4 nodes from root to leaf),
and contained (10, 50] terms.!! This gives us
761 non-overlapping trees, which we partition into

both these systems include term discovery in the taxonomy
building process.

!Subtrees that had a smaller or larger tree height were dis-

carded in order to avoid overlap between the training and test
divisions. This makes it a much stricter setting than other
tasks such as parsing, which usually has repeated sentences,
clauses and phrases between training and test sets.
To project WordNet synsets to terms, we used the first (most
frequent) term in each synset. A few WordNet synsets have
multiple parents so we only keep the first of each such pair of
overlapping trees. We also discard a few trees with duplicate
terms because this is mostly due to the projection of different
synsets to the same term, and theoretically makes the tree a
graph.

70/15/15% (533/114/114 trees) train/dev/test sets.

Comparison setup: We also compare our method
(as closely as possible) with related previous work
by testing on the much larger animal subtree made
available by Kozareva and Hovy (2010), who cre-
ated this dataset by selecting a set of ‘harvested’
terms and retrieving all the WordNet hypernyms
between each input term and the root (i.e., an-
imal), resulting in ~700 terms and ~4,300 is-a
ancestor-child links.'> Our training set for this an-
imal test case was generated from WordNet us-
ing the following process: First, we strictly re-
move the full animal subtree from WordNet in or-
der to avoid any possible overlap with the test data.
Next, we create random 25-sized trees by picking
random nodes as singleton trees, and repeatedly
adding child edges from WordNet to the tree. This
process gives us a total of ~1600 training trees.'>

Feature sources: The n-gram semantic features
are extracted from the Google n-grams corpus
(Brants and Franz, 2006), a large collection of
English n-grams (for n = 1 to 5) and their fre-
quencies computed from almost 1 trillion tokens
(95 billion sentences) of Web text. The Wikipedia
abstracts are obtained via the publicly available
dump, which contains almost ~4.1 million ar-
ticles.!* Preprocessing includes standard XML
parsing and tokenization. Efficient collection of
feature statistics is important because these must
be extracted for millions of query pairs (for each
potential edge and sibling pair in each term set).
For this, we use a hash-trie on term pairs (sim-
ilar to that of Bansal and Klein (2011)), and scan
once through the n-gram (or abstract) set, skipping
many n-grams (or abstracts) based on fast checks
of missing unigrams, exceeding length, suffix mis-
matches, etc.

5.2 Evaluation Metric

Ancestor F1: Measures the precision, recall, and
Fy =2PR/(P + R) of correctly predicted ances-

12This is somewhat different from our general setup where
we work with any given set of terms; they start with a large
set of leaves which have substantial Web-based relational
information based on their selected, hand-picked patterns.
Their data is available at http://www.isi.edu/-kozareva/
downloads.html.

3We tried this training regimen as different from that of
the general setup (which contains only bottomed-out sub-
trees), so as to match the animal test tree, which is of depth
12 and has intermediate nodes from higher up in WordNet.

14We used the 20730102 dump.
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’ System P R F1 ‘ ’ System ‘ P R F1 ‘

’ Edges-Only Model ‘ ’ Previous Work ‘
Baseline 59 83 6.9 Kozareva2010 98.6 36.2 52.9

Surface Features 175 413 24.6 Navigli2011** 97.0*  43.7"*  60.3**

Semantic Features 37.0 49.1 422 ’ This Paper ‘
Surface+Semantic 41.1 544 468 Fixed Prediction 342 551 66.6
Edges + Siblings Model | Free Prediction 79.3 49.0 60.6

Surface+Semantic 53.1 56.6 54.8 Table 2. C ' | . 4 ;

p aple . omparison resu ts on the anima ataset o

Surface+Semantic (TeSt) 480 552 514 Kozareva and Hovy (2010). Here, ‘Kozareva2010’ refers to

Table 1: Main results on our general setup. On the devel-
opment set, we present incremental results on the edges-only
model where we start with the chance baseline, then use sur-
face features only, semantic features only, and both. Finally,
we add sibling factors and features to get results for the full,
edges+siblings model with all features, and also report the
final test result for this setting.

tors, i.e., pairwise is-a relations:

P= ‘isagold N isapre(lictedl R= |isagold N isafpredicted|
’ |isag01d|

Iisapredicted‘

5.3 Results

Table 1 shows our main results for ancestor-based
evaluation on the general setup. We present a de-
velopment set ablation study where we start with
the edges-only model (Figure 2a) and its random
tree baseline (which chooses any arbitrary span-
ning tree for the term set). Next, we show results
on the edges-only model with surface features
(Section 3.1), semantic features (Section 3.2), and
both. We see that both surface and semantic fea-
tures make substantial contributions, and they also
stack. Finally, we add the sibling factors and fea-
tures (Figure 2b, Section 3.3), which further im-
proves the results significantly (8% absolute and
15% relative error reduction over the edges-only
results on the ancestor F1 metric). The last row
shows the final test set results for the full model
with all features.

Table 2 shows our results for comparison to
the larger animal dataset of Kozareva and Hovy
(2010)."> In the table, ‘Kozareva2010’ refers
to Kozareva and Hovy (2010) and ‘Navigli2011’
refers to Navigli et al. (2011).!® For appropri-

'5These results are for the 1st order model due to the scale
of the animal taxonomy (~700 terms). For scaling the 2nd
order sibling model, one can use approximations, e.g., prun-
ing the set of sibling factors based on 1st order link marginals,
or a hierarchical coarse-to-fine approach based on taxonomy
induction on subtrees, or a greedy approach of adding a few
sibling factors at a time. This is future work.

$The Kozareva and Hovy (2010) ancestor results are ob-
tained by using the output files provided on their webpage.

Kozareva and Hovy (2010) and ‘Navigli2011’ refers to Nav-
igli et al. (2011). For appropriate comparison to each previ-
ous work, we show our results both for the ‘Fixed Prediction’
setup, which assumes the true root and leaves, and for the
‘Free Prediction’ setup, which doesn’t assume any prior in-
formation. The % results of Navigli et al. (2011) represent a
different ground-truth data condition, making them incompa-
rable to our results; see Section 5.3 for details.

ate comparison to each previous work, we show
results for two different setups. The first setup
‘Fixed Prediction’ assumes that the model knows
the true root and leaves of the taxonomy to provide
for a somewhat fairer comparison to Kozareva and
Hovy (2010). We get substantial improvements
on ancestor-based recall and F1 (a 29% relative
error reduction). The second setup ‘Free Predic-
tion” assumes no prior knowledge and predicts the
full tree (similar to the general setup case). On
this setup, we do compare as closely as possible
to Navigli et al. (2011) and see a small gain in F1,
but regardless, we should note that their results are
incomparable (denoted by xx in Table 2) because
they have a different ground-truth data condition:
their definition and hypernym extraction phase in-
volves using the Google de f ine keyword, which
often returns WordNet glosses itself.

We note that previous work achieves higher an-
cestor precision, while our approach achieves a
more even balance between precision and recall.
Of course, precision and recall should both ide-
ally be high, even if some applications weigh one
over the other. This is why our tuning optimized
for F1, which represents a neutral combination
for comparison, but other F, metrics could also
be optimized. In this direction, we also tried an
experiment on precision-based decoding (for the
‘Free Prediction’ scenario), where we discard any
edges with score (i.e., the belief odds ratio de-
scribed in Section 2.4) less than a certain thresh-
old. This allowed us to achieve high values of pre-
cision (e.g., 90.8%) at still high enough F1 values
(e.g., 61.7%).
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Hypernymy features

C and other P >P>C
C,Pof CisaP
C,aP P, including C

C or other P P(C
C:aP C, american P
C-like P C, the P
Siblinghood features ‘
C1 and C2 Cl, C2 (
Cyor Cy of Ci and/or Cy

, C1, Cyand either C1 or Cy

the C1/Co <s> Cq and Cy </s>

Table 3: Examples of high-weighted hypernymy and sibling-
hood features learned during development.

butterfly

copper hairstreak admiral

} |

American copper Strymon melinus  white admiral

Figure 3: Excerpt from the predicted butterfly tree. The terms
attached erroneously according to WordNet are marked in red
and italicized.

6 Analysis

Table 3 shows some of the hypernymy and sibling-
hood features given highest weight by our model
(in general-setup development experiments). The
training process not only rediscovers most of the
standard Hearst-style hypernymy patterns (e.g., C
and other P, C is a P), but also finds various
novel, intuitive patterns. For example, the pattern
C, american P is prominent because it captures
pairs like Lemmon, american actor and Bryon,
american politician, etc. Another pattern > P >
C captures webpage navigation breadcrumb trails
(representing category hierarchies). Similarly, the
algorithm also discovers useful siblinghood fea-
tures, e.g., either C1 or Ca, C1 and / or Ca, etc.
Finally, we look at some specific output errors
to give as concrete a sense as possible of some sys-
tem confusions, though of course any hand-chosen
examples must be taken as illustrative. In Figure
3, we attach white admiral to admiral, whereas
the gold standard makes these two terms siblings.
In reality, however, white admirals are indeed a
species of admirals, so WordNet’s ground truth
turns out to be incomplete. Another such example
is that we place logistic assessment in the evalu-

bottle

flask wine bottle jeroboam

vacuum flask  thermos Erlenmeyer flask

Figure 4: Excerpt from the predicted bottle tree. The terms
attached erroneously according to WordNet are marked in red
and italicized.

ation subtree of judgment, but WordNet makes it
a direct child of judgment. However, other dictio-
naries do consider logistic assessments to be eval-
uations. Hence, this illustrates that there may be
more than one right answer, and that the low re-
sults on this task should only be interpreted as
such. In Figure 4, our algorithm did not recog-
nize that thermos is a hyponym of vacuum flask,
and that jeroboam is a kind of wine bottle. Here,
our Web n-grams dataset (which only contains fre-
quent n-grams) and Wikipedia abstracts do not
suffice and we would need to add richer Web data
for such world knowledge to be reflected in the
features.

7 Conclusion

Our approach to taxonomy induction allows het-
erogeneous information sources to be combined
and balanced in an error-driven way. Direct indi-
cators of hypernymy, such as Hearst-style context
patterns, are the core feature for the model and are
discovered automatically via discriminative train-
ing. However, other indicators, such as coordina-
tion cues, can indicate that two words might be
siblings, independently of what their shared par-
ent might be. Adding second-order factors to our
model allows these two kinds of evidence to be
weighed and balanced in a discriminative, struc-
tured probabilistic framework. Empirically, we
see substantial gains (in ancestor F1) from sibling
features, and also over comparable previous work.
We also present results on the precision and recall
trade-offs inherent in this task.
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