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Abstract
Most existing relation extraction models
make predictions for each entity pair lo-
cally and individually, while ignoring im-
plicit global clues available in the knowl-
edge base, sometimes leading to conflicts
among local predictions from different en-
tity pairs. In this paper, we propose
a joint inference framework that utilizes
these global clues to resolve disagree-
ments among local predictions. We ex-
ploit two kinds of clues to generate con-
straints which can capture the implicit type
and cardinality requirements of a relation.
Experimental results on three datasets, in
both English and Chinese, show that our
framework outperforms the state-of-the-
art relation extraction models when such
clues are applicable to the datasets. And,
we find that the clues learnt automatically
from existing knowledge bases perform
comparably to those refined by human.

1 Introduction

Identifying predefined kinds of relationship be-
tween pairs of entities is crucial for many knowl-
edge base related applications(Suchanek et al.,
2013). In the literature, relation extraction (RE) is
usually investigated in a classification style, where
relations are simply treated as isolated class labels,
while their definitions or background information
are sometimes ignored. Take the relation Capital
as an example, we can imagine that this relation
will expect a country as its subject and a city as
object, and in most cases, a city can be the capital
of only one country. All these clues are no doubt
helpful, for instance, Yao et al. (2010) explicitly
modeled the expected types of a relation’s argu-
ments with the help of Freebase’s type taxonomy
and obtained promising results for RE.

∗Yansong Feng is the corresponding author.

However, properly capturing and utilizing such
typing clues are not trivial. One of the hurdles here
is the lack of off-the-shelf resources and such clues
often have to be coded by human experts. Many
knowledge bases do not have a well-defined typing
system, let alone fine-grained typing taxonomies
with corresponding type recognizers, which are
crucial to explicitly model the typing requirements
for arguments of a relation, but rather expensive
and time-consuming to collect. Similarly, the car-
dinality requirements of arguments, e.g., a person
can have only one birthdate and a city can only be
labeled as capital of one country, should be con-
sidered as a strong indicator to eliminate wrong
predictions, but has to be coded manually as well.

On the other hand, most previous relation ex-
tractors process each entity pair (we will use en-
tity pair and entity tuple exchangeably in the rest
of the paper) locally and individually, i.e., the ex-
tractor makes decisions solely based on the sen-
tences containing the current entity pair and ig-
nores other related pairs, therefore has difficulties
to capture possible disagreements among different
entity pairs. However, when looking at the output
of a multi-class relation predictor globally, we can
easily find possible incorrect predictions such as a
university locates in two different cities, two dif-
ferent cities have been labeled as capital for one
country, a country locates in a city and so on.

In this paper, we will address how to derive and
exploit two categories of these clues: the expected
types and the cardinality requirements of a rela-
tion’s arguments, in the scenario of relation extrac-
tion. We propose to perform joint inference upon
multiple local predictions by leveraging implicit
clues that are encoded with relation specific re-
quirements and can be learnt from existing knowl-
edge bases. Specifically, the joint inference frame-
work operates on the output of a sentence level re-
lation extractor as input, derives 5 types of con-
straints from an existing KB to implicitly capture
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the expected type and cardinality requirements for
a relation’s arguments, and jointly resolve the dis-
agreements among candidate predictions. We for-
malize this procedure as a constrained optimiza-
tion problem, which can be solved by many opti-
mization frameworks. We use integer linear pro-
gramming (ILP) as the solver and evaluate our
framework on English and Chinese datasets. The
experimental results show that our framework per-
forms better than the state-of-the-art approaches
when such clues are applicable to the datasets. We
also show that the automatically learnt clues per-
form comparably to those refined manually.

In the rest of the paper, we first review related
work in Section 2, and in Section 3, we describe
our framework in detail. Experimental setup and
results are discussed in Section 4. We conclude
this paper in Section 5.

2 Related Work

Since traditional supervised relation extraction
methods (Soderland et al., 1995; Zhao and Gr-
ishman, 2005) require manual annotations and are
often domain-specific, nowadays many efforts fo-
cus on semi-supervised or unsupervised methods
(Banko et al., 2007; Fader et al., 2011). Distant
supervision (DS) is a semi-supervised RE frame-
work and has attracted many attentions (Bunescu,
2007; Mintz et al., 2009; Yao et al., 2010; Sur-
deanu et al., 2010; Hoffmann et al., 2011; Sur-
deanu et al., 2012). DS approaches can predict
canonicalized (predefined in KBs) relations for
large amount of data and do not need much hu-
man involvement. Since the automatically gener-
ated training datasets in DS often contain noises,
there are also research efforts focusing on reduc-
ing the noisy labels in the training data (Takamatsu
et al., 2012). To bridge the gaps between the rela-
tions extracted from open information extraction
and the canonicalized relations in KBs, Yao et al.
(2012) and Riedel et al. (2013) propose a universal
schema which is a union of KB schemas and nat-
ural language patterns, making it possible to in-
tegrate the unlimited set of uncanonicalized rela-
tions in open settings with the relations in existing
KBs.

As far as we know, few works have managed
to take the relation specific requirements for ar-
guments into account, and most existing works
make predictions locally and individually. The
MultiR system allows entity tuples to have more

than one relations, but still predicts each entity
tuple locally (Hoffmann et al., 2011). Surdeanu
et al. (2012) propose a two-layer multi-instance
multi-label (MIML) framework to capture the de-
pendencies among relations. The first layer is a
multi-class classifier making local predictions for
single sentences, the output of which are aggre-
gated by the second layer into the entity pair level.
Their approach only captures relation dependen-
cies, while we learn implicit relation backgrounds
from knowledge bases, including argument type
and cardinality requirements. Riedel et al. (2013)
propose to use latent vectors to estimate the pref-
erences between relations and entities. These can
be considered as the latent type information of the
relations’ arguments, which is learnt from various
data sources. In contrast, our approach learn im-
plicit clues from existing KBs, and jointly opti-
mize local predictions among different entity tu-
ples to capture both relation argument type clues
and cardinality clues. Li et al. (2011) and Li et al.
(2013) use co-occurring statistics among relations
or events to jointly improve information extrac-
tion performances in ACE tasks, while we mine
existing KBs to collect global clues to solve lo-
cal conflicts and find the optimal aggregation as-
signments, regarding existing knowledge facts. de
Lacalle and Lapata (2013) encode general domain
knowledge as FOL rules in a topic model while
our instantiated constraints are directly operated in
an ILP model. Zhang et al. (2013) utilize relation
cardinality to create negative samples for distant
supervision while we use both implicit type clues
and relation cardinality expectations to discover
possible inconsistencies among local predictions.

3 The Framework

Our framework takes a set of entity pairs and their
supporting sentences as its input. We first train
a preliminary sentence level extractor which can
output confidence scores for its predictions, e.g.,
a maximum entropy or logistic regression model,
and use this local extractor to produce local predic-
tions. In order to implicitly capture the expected
type and cardinality requirements for a relation’s
arguments, we derive two kinds of clues from an
existing KB, which are further utilized to discover
the disagreements among local candidate predic-
tions. Our objective is to maximize the overall
confidence of all the selected predictions.
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3.1 Generating Candidate Relations
Since we will focus on the open domain relation
extraction, we still follow the distant supervision
paradigm to collect our training data guided by
a KB, and train the local extractor accordingly.
Specifically, we train a sentence level extractor us-
ing the maximum entropy model. Given a sen-
tence containing an entity pair, the model will
output the confidence of this sentence represent-
ing certain relationship (from a predefined relation
set) between the entity pair. Formally R repre-
sents the relation set we are working on, T is the
set of entity tuples that we will predict in the test
set.

Keep in mind that our local extractor is trained
on noisy training data, which, we admit, is not
fully reliable. As we observed in a pilot experi-
ment that there is a good chance that the predic-
tions ranked in the second or third may still be
correct, we select top three predictions as the can-
didate relations for each mention in order to intro-
duce more potentially correct output.

On the other hand, we should discard the pre-
dictions whose confidences are too low to be true,
where we set up a threshold of 0.1. For a tuple t,
we obtain its candidate relation set by combining
the candidate relations of all its mentions, and rep-
resent it as Rt. For a candidate relation r ∈ Rt and
a tuple t, we define M r

t as all t’s mentions whose
candidate relations contain r. Now the confidence
score of a relation r ∈ Rt being assigned to tuple
t can be calculated as:

conf(t, r) =
∑

m∈Mr
t

MEscore(m, r) (1)

where MEscore(m, r) is the confidence of mention
m representing relation r output by our prelimi-
nary extractor.

Traditionally, both lexical features and syntac-
tic features are used in relation extraction. Lexi-
cal features are the word chains between the sub-
jects and objects in the sentences, while syntactic
features are the dependency paths from the sub-
jects to the objects on the dependency graphs of
the supporting sentences. However, lexical fea-
tures are usually too specific to frequently appear
in the test data, while the reliability of syntactic
features depends heavily on the quality of depen-
dency parsing tools. Generally, we expect more
potentially correct relations to be put into the can-
didate relation set for further consideration. So in
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Figure 1: The different types of disagreements we
will investigate in the candidate relations. The
clues of detecting these inconsistencies can be
learnt from a knowledge base.

addition to lexical and syntactic features, we also
use n-gram features to train our preliminary rela-
tion extraction model. N-gram features are consid-
ered as more ambiguous compared to traditional
lexical and syntactic features, and may introduce
incorrect predictions, thus improving the recall at
the cost of precision.

3.2 Disagreements among the Candidates

The candidate relations we obtained in the pre-
vious subsection inevitably include many incor-
rect predictions. Ideally we should discard those
wrong predictions to produce more accurate re-
sults.

As discussed earlier, we will exploit from the
knowledge base two categories of clues that im-
plicitly capture relations’ backgrounds: their ex-
pected argument types and argument cardinalities,
based on which we can discover two categories
of disagreements among the candidate predictions,
summarized as argument type inconsistencies and
violations of arguments’ uniqueness, which have
been rarely considered before. We will discuss
them in detail, and describe how to learn the clues
from a KB afterwards.

Implicit Argument Types Inconsistencies:
Generally, the argument types of the correct
predictions should be consistent with each other.
Given a relation, its arguments sometimes are
required to be certain types of entities. For
example, in Figure 1, the relation LargestCity
restricts its subject to be either countries or states,
and its object to be cities. If the predictions
among different entity tuples require the same
entity to belong to different types, we call this
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an argument type inconsistency. Take <USA,
New York> and <USA, Washington D.C.> as an
example. In Figure 1, <USA, New York> has
a candidate relation LargestCity which restricts
USA to be either countries or states, while <USA,
Washington D.C.> has a prediction LocationCity
which indicates a disagreement in terms of USA’s
type because the latter prediction expects USA to
be an organization located in a city. This warns
that at least one of the two candidate relations is
incorrect.

The previous scenario shows that the subjects
of two candidate relations may disagree with each
other. From Figure 1, we can observe two more
situations: the first one is that the objects of
the two candidate relations are inconsistent with
each other, for example <New York University,
New York> with the prediction LocationCity and
<Columbia University, New York> with the pre-
diction LocationCountry. The second one is
that the subject of one candidate relation do not
agree with another prediction’s object, for exam-
ple <Richard Fuld, USA> with the prediction Na-
tionality and <USA, New York> with the pre-
diction LocationCity. Although we have not as-
signed explicit types to these entities, we can still
exploit the inconsistencies implicitly with the help
of shared entities. Note that the implicit argument
typing clues here mean whether two relations can
share arguments, but NOT enumate what types ex-
plicitly their arguments should have.

We formalize all the relation pairs that disagree
with each other as follows. These relation pairs
can be divided into three subcategories. We repre-
sent the relation pairs (ri, rj) that are inconsistent
in terms of subjects as Csr, the relations pairs that
are inconsistent in terms of objects as Cro, the re-
lation pairs that are inconsistent in terms of one’s
subject and the other one’s object as Crer.

It is worth mentioning that disagreements in-
side a tuple are also included here. For instance,
an entity tuple <USA, Washington D.C.> in Fig-
ure 1 has two candidate relations, Capital and Lo-
cationCity. These two predictions are inconsistent
with each other with respect to the type of USA.
They implicitly consider USA as “country” and
“organization”, respectively.

Violations of Arguments’ Uniqueness: The
previous categories of disagreements are all based
on the implicit type information of the relations’
arguments, Now we make use of the clues of ar-

gument cardinality requirements. Given a subject,
some relations should have unique objects. For
example, in Figure 1, given USA as the subject of
the relation Capital, we can only accept one pos-
sible object, because there is great chance that a
country only have one capital. On the other hand,
given Washington D.C. as the object of the relation
Capital, we can only accept one subject, since usu-
ally a city can only be the capital of one country
or state. If these are violating in the candidates,
we could know that there may be some incorrect
predictions. We represent the relations expecting
unique objects as Cou, and the relations expecting
unique subjects as Csu.

3.3 Obtaining the Global Clues

Now, the issue is how to obtain the clues used
in the previous subsection. That is, how we de-
termine which relations expect certain types of
subjects, which relations expect certain types of
objects, etc. These knowledge can be definitely
coded by human, or learnt from a KB.

Most existing knowledge bases represent their
knowledge facts in the form of (<subject, rela-
tion, object>) triple, which can be seen as re-
lational facts between entity tuples. Usually the
triples in a KB are carefully defined by experts. It
is rare to find inconsistencies among the triples in
the knowledge base. The clues are therefore learnt
from KBs, and further refined manually if needed.

Given two relations r1 and r2, we query the KB
for all tuples bearing the relation r1 or r2. We use
Si and Oi to represent ri’s (i ∈ {1, 2}) subject set
and object set, respectively. We adopt the point-
wise mutual information (PMI) to estimate the de-
pendency between the argument sets of two rela-
tions:

PMI(A, B) = log
p(A, B)

p(A)p(B)
(2)

where p(A, B) is number of the entities both in
A and B, p(A) and p(B) are the numbers of
the entities in A and B, respectively. For any
pair of relations from R × R, we calculate four
scores: PMI(S1, S2), PMI(O1, O2), PMI(S1, O2)
and PMI(S2, O1). To make more stable esti-
mations, we set up a threshold for the PMI. If
PMI(S1, S2) is lower than the threshold, we will
consider that r1 and r2 cannot share a subject.
Things are similar for the other three scores. The
threshold is set to -3 in this paper.

821



We can also learn the uniqueness of arguments
for relations. For each pre-defined relation in R,
we collect all the triples containing this relation,
and count the portion of the triples which only
have one object for each subject, and the por-
tion of the triples which only have one subject
for each object. The relations whose portions are
higher than the threshold will be considered to
have unique argument values. This threshold is
set to 0.8 in this paper.

3.4 Integer Linear Program Formulation
As discussed above, given a set of entity pairs and
their candidate relations output by a preliminary
extractor, our goal is to find an optimal configura-
tion for all those entities pairs jointly, solving the
disagreements among those candidate predictions
and maximizing the overall confidence of the se-
lected predictions. This is an NP-hard optimiza-
tion problem. Many optimization models can be
used to obtain the approximate solutions.

In this paper, we propose to solve the problem
by using an ILP tool, IBM ILOG Cplex1. Firstly,
for each tuple t and one of its candidate relations
r, we define a binary decision variable dr

t indicat-
ing whether the candidate relation r is selected by
the solver. Our objective is to maximize the total
confidence of all the selected candidates, and the
objective function can be written as:

max
∑

t∈T ,r∈Rt

conf(t, r)dr
t

+
∑

∀t,r∈Rt,m∈Mr
t

max MEscore(m, r)dr
t

where conf(t, r) is the confidence of the tuple t
bearing the candidate relation r. The first compo-
nent is the sum of the original confidence scores of
all the selected candidates, and the second one is
the sum of the maximal mention-level confidence
scores of all the selected candidates. The latter is
designed to encourage the model to select the can-
didates with higher individual mention-level con-
fidence scores.

We add the constraints with respect to the dis-
agreements described in Section 3.2. For the sake
of clarity, we describe the constraints derived from
each scenario of the two categories of disagree-
ments separately.

The subject-relation constraints avoid the dis-
agreements between the predictions of two tuples

1www.cplex.com

sharing a subject. These constraints can be repre-
sented as:

drti

ti + drtj

tj ≤ 1 (3)

∀ti, tj : subj(ti) = subj(tj) ∧ (rti , rtj ) ∈ Csr

where ti and tj are two tuples in T , subj(ti) is the
subject of ti, rti is a candidate relation of ti, rtj is
a candidate relation of tj .

The object-relation constraints avoid the incon-
sistencies between the predictions of two tuples
sharing an object. Formally we add the following
constraints:

drti

ti + drtj

tj ≤ 1 (4)

∀ti, tj : obj(ti) = obj(tj) ∧ (rti , rtj ) ∈ Cro

where ti ∈ T and tj ∈ T are two tuples, obj(ti)
is the object of ti.

The relation-entity-relation constraints ensure
that if an entity works as subject and object in two
tuples ti and tj respectively, their relations agree
with each other. The constraints we add are:

drti

ti + drtj

tj ≤ 1 (5)

∀ti, tj : obj(ti) = subj(tj) ∧ (rti , rtj ) ∈ Crer

The object uniqueness constraints ensure that
the relations requiring unique objects do not bear
more than one object given a subject.∑

t∈Tuple(r),subj(t)=e

dr
t ≤ 1 (6)

∀e ∧ r ∈ Cou

where e is an entity, Tuple(r) are the tuples whose
candidate relations contain r.

The subject uniqueness constraints ensure that
given an object, the relations expecting unique
subjects do not bear more than one subject.∑

t∈Tuple(r),obj(t)=e

dr
t ≤ 1 (7)

∀e ∧ r ∈ Csu

By adopting ILP, we can combine the local
information including MaxEnt confidence scores
and the implicit relation backgrounds that are em-
bedded into global consistencies of the entity tu-
ples together. After the optimization problem is
solved, we will obtain a list of selected candidate
relations for each tuple, which will be our final
output.
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4 Experiments

4.1 Datasets

We evaluate our approach on three datasets, in-
cluding two English datasets and one Chinese
dataset.

The first English dataset, Riedel’s dataset, is the
one used in (Riedel et al., 2010; Hoffmann et al.,
2011; Surdeanu et al., 2012), with the same split.
It uses Freebase as the knowledge base and New
York Time corpus as the text corpus, including
about 60,000 entity tuples in the training set, and
about 90,000 entity tuples in the testing set.

We generate the second English dataset, DB-
pedia dataset, by mapping the triples in DBpedia
(Bizer et al., 2009) to the sentences in New York
Time corpus. We map 51 different relations to the
corpus and result in about 50,000 entity tuples,
134,000 sentences for training and 30,000 entity
tuples, 53,000 sentences for testing.

For the Chinese dataset, we derive knowledge
facts and construct a Chinese KB from the In-
foboxes of HudongBaike, one of the largest Chi-
nese online encyclopedias. We collect four na-
tional economic newspapers in 2009 as our corpus.
28 different relations are mapped to the corpus and
this results in 60,000 entity tuples, 120,000 sen-
tences for training and 40,000 tuples, 83,000 sen-
tences for testing.

4.2 Baselines and Competitors

The baseline we use in this paper is Mintz++,
which is described in (Surdeanu et al., 2012). It
is a modification of the model proposed by Mintz
et al. (2009). The model predicts for each mention
separately, and allows multi-label outputs for an
entity tuple by OR-ing the outputs of its mentions.

As we described in Section 3.1, originally we
select the top three predicted relations as the can-
didates for each mention. In order to investigate
whether it is necessary to use up to three candi-
dates, we implement two variants of our approach,
which select the top one and top two relations as
candidates for each mention, and represented as
ILP-1cand and ILP-2cand, respectively.

We also use two distant supervision approaches
for the comparison. The first one is MultiR (Hoff-
mann et al., 2011), a novel joint model that can
deal with the relation overlap issue. The second
one, MIML-RE (Surdeanu et al., 2012), is one of
the state-of-the-art MIML relation extraction sys-

tems. We tune the models of MultiR and MIML-
RE so that they fit our datasets.

4.3 Overall Performance

First we compare our framework and its vari-
ants with the baseline and the state-of-the-art RE
models. Following previous works, we use the
Precision-Recall curve as the evaluation criterion
in our experiment. The results are summarized
in Figure 2. For the constraints, we first manu-
ally select an average of 20 relation pairs for each
subcategory of the first kind of clues, and all the
relations with unique argument values in R. We
also show how automatically learnt clues perform
in Section 4.5.

Figure 2 shows that compared with the baseline,
our framework performs consistently better in the
DBpedia dataset and the Chinese dataset. Mintz++
proves to be a strong baseline on both datasets. It
tends to result in a high recall, and its weakness of
low precision is perfectly fixed by the ILP model.
Our ILP model and its variants all outperform
Mintz++ in precision in both datasets, indicating
that our approach helps filter out incorrect predic-
tions from the output of MaxEnt model. Com-
pared with MultiR, our framework obtains better
results in both datasets. Especially in the Chinese
dataset, the improvement in precision reaches as
high as 10-16% at the same recall points. Our
framework performs better compared to MIML-
RE in the English dataset. On the Chinese dataset,
our framework outperforms MIML-RE except in
the low-recall portion (<10%) of the P-R curve.
All these results show that embedding the relation
background information into RE can help elim-
inate the wrong predictions and improve the re-
sults.

However, in the Riedel’s dataset, Mintz++, the
MaxEnt relation extractor, does not perform well,
and our framework cannot improve its perfor-
mance. In order to find out the reasons, we manu-
ally investigate the dataset. The top three relations
of this dataset are /location/location/contains,
/people/person/nationality and
/people/person/place lived. About two-thirds of
the entity tuples belongs to these three relations,
and the outputs of the local extractor usually
bias even more to the large relations. What is
worse, we cannot find any clues from the top
three relations because their arguments’ types are
too general. Things are similar for many other
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Figure 2: Overall performances of our framework and its variants, the baselines and the state-of-the-art
approaches on the three datasets.

relations in this dataset. Although we may find
some clues any way, they are too few to make
any improvement. Hence, our framework does
not perform well due to the poor performance of
MaxEnt extractor and the lack of clues. To solve
this problem, we think of addressing the selection
preferences between relations and entities pro-
posed in (Riedel et al., 2013), which should be
our future work.

We notice that in all three datasets our variant
ILP-1cand is shorter than Mintz++ in recall, in-
dicating we may incorrectly discard some predic-
tions. Compared to ILP-2cand and original ILP,
ILP-1cand leads to slightly lower precision but
much lower recall, showing that selecting more
candidates may help us collect more potentially
correct predictions. Comparing ILP-2cand and
original ILP, the latter hardly makes any improve-
ment in precision, but is slightly longer in re-
call, indicating using three candidates can still col-
lect some more potentially correct predictions, al-
though the number may be limited.

In order to study how our framework improves
the performances on the DBpedia dataset and the
Chinese dataset, we further investigate the num-
ber of incorrect predictions eliminated by ILP and
the number of incorrect predictions corrected by
ILP. We also examine the number of correct pre-

Table 1: Details of the improvements made by ILP
in the DBpedia and Chinese datasets.

Datasets Incorrect Predictions Wrong Predictioins Correct Predictions

Eliminated Corrected Newly Introduced

DBpedia 268 61 1426

Chinese 1506 14 283

dictions newly introduce by ILP, which were NA
in Mintz++. We summarize the results in Table 1.

The results show that our framework can reduce
the incorrect predictions and introduce more cor-
rect predictions at the same time. We also find
an interesting results: in the DBpedia dataset, ILP
is more likely to introduce correct predictions to
the results, while in the Chinese dataset it tends to
reduce more incorrect predictions, which may be
caused by the differences between performances
of Mintz++ on the two datasets, where it gets a
higher recall on the Chinese dataset.

Following Surdeanu et al. (2012), we also list
the peak F1 score (highest F1 score) for each
model in Table 2. Different from (Surdeanu et al.,
2012), we use all the entity pairs instead of the
ones with more than 10 mentions. We can observe
that our model obtains the best performance in the
DBpedia dataset and the Chinese dataset. In the
DBpedia dataset, it is 3.6% higher than Mintz++,
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7.9% higher than MIML-RE and 13.9% higher
than MultiR. In the Chinese dataset, Mintz++,
MultiR and MIML-RE performs similarly in terms
of the highest F1 score, while our model gains
about 8% improvement. In the Riedel’s dataset,
our framework hardly obtains any improvement
compared with Mintz++.

We also investigate the impacts of the con-
straints used in ILP, which are derived based on the
two kinds of clues and can encode relation defini-
tion information into our framework. Experimen-
tal results in Table 2 shows that in the DBpedia
dataset, the highest F1 score increases from 35.2%
to 38.3% with the help of both kinds of clues,
while in the Chinese dataset the improvement is
from 44.4% to 52.8%. In the Riedel’s dataset we
do not see any improvements since there are al-
most no clues. Furthermore, using constraints de-
rived from only one kind of clues can also improve
the performance, but not as well as using both of
them.

4.4 Adapting MultiR Sentence Level
Extractor to Our Framework

The preliminary relation extractor of our optimiza-
tion framework is not limited to the MaxEnt ex-
tractor, and can take any sentence level relation
extractor with confidence scores. We also fit Mul-
tiR’s mention level extractor into our framework.

As shown in Figure 3, in the DBpedia dataset
and the Chinese dataset, in most parts of the curve,
ILP optimized MultiR outperforms original Mul-
tiR. We think the reason is that our framework
make use of global clues to discard the incorrect
predictions. The results are not as high as when
we use MaxEnt as the preliminary extractor. We
think one reason is that MultiR does not perform
well in these two datasets. Furthermore, the confi-
dence scores which MultiR outputs are not nor-
malized to the same scale, which brings us dif-
ficulties in setting up a confidence threshold to
select the candidates. As a result, we only use
the top one result as the candidate since including
top two predictions without thresholding the confi-
dences performs bad, indicating that a probabilis-
tic sentence-level extractor is more suitable for our
framework. We also notice that in the Riedel’s
dataset our framework does not improve the per-
formance significantly, and we have discussed the
reasons in Section 4.3.

(a)

(b)

Figure 4: F1 score v.s. number of relations (used
to introduce the related learnt clues into the ILP
framework) on the DBpedia dataset (a) and the
Chinese dataset (b).
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Figure 5: Performances of manually selected clues
and automatically learnt clues on two datasets.

4.5 Examining the Automatically Learnt
Clues

Now we evaluate the performance of automati-
cally collected clues used in our model. Since
there are almost no clues in the Riedel’s dataset,
we only investigate the other two datasets. We add
clues according to their related relations’ propor-
tions in the local predictions. For example, Coun-
try and birthPlace take up about 30% in the local
predictions, we thus add clues that are related to
these two relations, and then move on with new
clues related to other relations according to those
relations’ proportions in the local predictions.

As is shown in Figure 4, in both datasets, the
clues related to more local predictions will solve
more inconsistencies, thus are more effective.
Adding the first two relations improves the model
significantly, and as more relations are added, the
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Table 2: Results of the highest F1 score on all three datasets.
DBpedia Riedel Chinese

Method P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)
Mintz++ 40.2 30.5 34.7 35.3 23.2 27.9 43.3 45.7 44.4

MultiR 60.4 15.3 24.4 32.3 25.1 28.2 53.5 38.2 44.6

MIML-RE 51.3 21.6 30.4 41.5 19.9 26.9 49.2 41.3 44.9

ILP 37.4 39.2 38.3 35.5 23.2 28.0 52.6 52.9 52.8
ILP-No-Constraint 34.1 36.3 35.2 35.3 23.2 28.0 43.3 45.7 44.4

ILP-Type-Inconsistent 36.3 39.2 37.7 35.5 23.2 28.0 49.5 49.0 49.2

ILP-Cardinality 35.3 37.8 36.5 35.4 23.2 28.0 50.3 48.8 49.6
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Figure 3: The results of original MultiR and ILP optimized MultiR on the three datasets.

performances keep increasing until approaching
the still state. It is worth mentioning that when
sufficient learnt clues are added into the model, the
results are comparable to those based on the clues
refined manually, as shown in Figure 5. This indi-
cates that the clues can be collected automatically,
and further used to examine whether predicted re-
lations are consistent with the existing ones in the
KB, which can be considered as a form of quality
control.

5 Conclusions

In this paper, we make use of the global clues de-
rived from KB to help resolve the disagreements
among local relation predictions, thus reduce the
incorrect predictions and improve the performance
of relation extraction. Two kinds of clues, includ-
ing implicit argument type information and argu-
ment cardinality information of relations are in-
vestigated. Our framework outperforms the state-
of-the-art models if we can find such clues in the
KB. Furthermore, our framework is scalable for
other local sentence level extractors in addition to
the MaxEnt model. Finally, we show that the clues
can be learnt automatically from the KB, and lead
to comparable performance to manually refined
ones.

For future work, we will investigate other kinds
of clues and attempt a joint optimization frame-
work that could host entity disambiguation, rela-
tion extraction and entity linking together. We
will also adopt selection preference between en-
tities and relations since sometimes we may not
find useful clues.
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