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Abstract

Widely used in speech and language pro-
cessing, Kneser-Ney (KN) smoothing has
consistently been shown to be one of
the best-performing smoothing methods.
However, KN smoothing assumes integer
counts, limiting its potential uses—for ex-
ample, inside Expectation-Maximization.
In this paper, we propose a generaliza-
tion of KN smoothing that operates on
fractional counts, or, more precisely, on
distributions over counts. We rederive all
the steps of KN smoothing to operate
on count distributions instead of integral
counts, and apply it to two tasks where
KN smoothing was not applicable before:
one in language model adaptation, and the
other in word alignment. In both cases,
our method improves performance signifi-
cantly.

1 Introduction

In speech and language processing, smoothing is
essential to reduce overfitting, and Kneser-Ney
(KN) smoothing (Kneser and Ney, 1995; Chen
and Goodman, 1999) has consistently proven to be
among the best-performing and most widely used
methods. However, KN smoothing assumes inte-
ger counts, whereas in many NLP tasks, training
instances appear with possibly fractional weights.
Such cases have been noted for language model-
ing (Goodman, 2001; Goodman, 2004), domain
adaptation (Tam and Schultz, 2008), grapheme-to-
phoneme conversion (Bisani and Ney, 2008), and
phrase-based translation (Andrés-Ferrer, 2010;
Wuebker et al., 2012).

For example, in Expectation-Maximization
(Dempster et al., 1977), the Expectation (E) step
computes the posterior distribution over possi-
ble completions of the data, and the Maximiza-
tion (M) step reestimates the model parameters as

if that distribution had actually been observed. In
most cases, the M step is identical to estimating
the model from complete data, except that counts
of observations from the E step are fractional. It
is common to apply add-one smoothing to the
M step, but we cannot apply KN smoothing.

Another example is instance weighting. If we
assign a weight to each training instance to indi-
cate how important it is (say, its relevance to a par-
ticular domain), and the counts are not integral,
then we again cannot train the model using KN
smoothing.

In this paper, we propose a generalization of KN
smoothing (called expected KN smoothing) that
operates on fractional counts, or, more precisely,
on distributions over counts. We rederive all the
steps of KN smoothing to operate on count distri-
butions instead of integral counts. We demonstrate
how to apply expected KN to two tasks where KN
smoothing was not applicable before. One is lan-
guage model domain adaptation, and the other is
word alignment using the IBM models (Brown et
al., 1993). In both tasks, expected KN smoothing
improves performance significantly.

2 Smoothing on integral counts

Before presenting our method, we review KN
smoothing on integer counts as applied to lan-
guage models, although, as we will demonstrate
in Section 7, KN smoothing is applicable to other
tasks as well.

2.1 Maximum likelihood estimation

Let uw stand for an n-gram, where u stands for
the (n − 1) context words and w, the predicted
word. Let c(uw) be the number of occurrences
of uw. We use a bullet (•) to indicate summa-
tion over words, that is, c(u•) = ∑w c(uw). Under
maximum-likelihood estimation (MLE), we max-
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imize
L =
∑
uw

c(uw) log p(w | u),

obtaining the solution

pmle(w | u) =
c(uw)
c(u•) . (1)

2.2 Absolute discounting

Absolute discounting (Ney et al., 1994) – on which
KN smoothing is based – tries to generalize bet-
ter to unseen data by subtracting a discount from
each seen n-gram’s count and distributing the sub-
tracted discounts to unseen n-grams. For now, we
assume that the discount is a constant D, so that
the smoothed counts are

c̃(uw) =

c(uw) − D if c(uw) > 0

n1+(u•)Dqu(w) otherwise

where n1+(u•) = |{w | c(uw) > 0}| is the number
of word types observed after context u, and qu(w)
specifies how to distribute the subtracted discounts
among unseen n-gram types. Maximizing the like-
lihood of the smoothed counts c̃, we get

p(w | u) =


c(uw) − D

c(u•) if c(uw) > 0

n1+(u•)Dqu(w)
c(u•) otherwise.

(2)

How to choose D and qu(w) are described in the
next two sections.

2.3 Estimating D by leaving-one-out

The discount D can be chosen by various means;
in absolute discounting, it is chosen by the method
of leaving one out. Given N training instances, we
form the probability of each instance under the
MLE using the other (N − 1) instances as train-
ing data; then we maximize the log-likelihood of
all those instances. The probability of an n-gram
token uw using the other tokens as training data is

ploo(w | u) =


c(uw) − 1 − D

c(u•) − 1
c(uw) > 1

(n1+(u•) − 1)Dqu(w)
c(u•) − 1

c(uw) = 1.

We want to find the D that maximizes the

leaving-one-out log-likelihood

Lloo =
∑
uw

c(uw) log ploo(w | u)

=
∑

uw|c(uw)>1

c(uw) log
c(uw) − 1 − D

c(u•) − 1

+
∑

uw|c(uw)=1

log
(n1+(u•) − 1)Dqu(w)

c(u•) − 1

=
∑
r>1

rnr log(r − 1 − D) + n1 log D +C, (3)

where nr = |{uw | c(uw) = r}| is the number of n-
gram types appearing r times, and C is a constant
not depending on D. Setting the partial derivative
with respect to D to zero, we have

∂Lloo

∂D
= −
∑
r>1

rnr

r − 1 − D
+

n1

D

n1

D
=
∑
r>1

rnr

r − 1 − D
≥ 2n2

1 − D
.

Solving for D, we have

D ≤ n1

n1 + 2n2
. (4)

Theoretically, we can use iterative methods to op-
timize D. But in practice, setting D to this upper
bound is effective and simple (Ney et al., 1994;
Chen and Goodman, 1999).

2.4 Estimating the lower-order distribution
Finally, qu(w) is defined to be proportional to an
(n − 1)-gram model p′(w | u′), where u′ is the
(n − 2)-gram suffix of u. That is,

qu(w) = γ(u)p′(w | u′),
where γ(u) is an auxiliary function chosen to make
the distribution p(w | u) in (2) sum to one.

Absolute discounting chooses p′(w | u′) to be
the maximum-likelihood unigram distribution; un-
der KN smoothing (Kneser and Ney, 1995), it is
chosen to make p in (2) satisfy the following con-
straint for all (n − 1)-grams u′w:

pmle(u′w) =
∑

v

p(w | vu′)pmle(vu′). (5)

Substituting in the definition of pmle from (1) and
p from (2) and canceling terms, we get

c(u′w) =
∑

v|c(vu′w)>0

(c(vu′w) − D)

+
∑

v|c(vu′w)=0

n1+(vu′•)Dγ(vu′)p′(w | u′).
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Solving for p′(w | u′), we have

p′(w | u′) =
∑

v|c(vu′w)>0 1∑
v|c(vu′w)=0 n1+(vu′•)γ(vu′)

.

Kneser and Ney assume the denominator is con-
stant in w and renormalize to get an approximation

p′(w | u′) ≈ n1+(•u′w)
n1+(•u′•) , (6)

where

n1+(•u′w) = |{v | c(vu′w) > 0}|
n1+(•u′•) =

∑
w

n1+(•u′w).

3 Count distributions

The computation of D and p′ above made use of
nr and nr+, which presupposes integer counts. But
in many applications, the counts are not integral,
but fractional. How do we apply KN smoothing in
such cases? In this section, we introduce count dis-
tributions as a way of circumventing this problem.

3.1 Definition
In the E step of EM, we compute a probability dis-
tribution (according to the current model) over all
possible completions of the observed data, and the
expected counts of all types, which may be frac-
tional. However, note that in each completion of
the data, the counts are integral. Although it does
not make sense to compute nr or nr+ on fractional
counts, it does make sense to compute them on
possible completions.

In other situations where fractional counts arise,
we can still think of the counts as expectations un-
der some distribution over possible “realizations”
of the data. For example, if we assign a weight
between zero and one to every instance in a cor-
pus, we can interpret each instance’s weight as the
probability of that instance occurring or not, yield-
ing a distribution over possible subsets of the data.

Let X be a random variable ranging over pos-
sible realizations of the data, and let cX(uw) be
the count of uw in realization X. The expecta-
tion E[cX(uw)] is the familiar fractional expected
count of uw, but we can also compute the proba-
bilities p(cX(uw) = r) for any r. From now on, for
brevity, we drop the subscript X and understand
c(uw) to be a random variable depending on X.
The nr(u•) and nr+(u•) and related quantities also
become random variables depending on X.

For example, suppose that our data consists of
the following bigrams, with their weights:

(a) fat cat 0.3
(b) fat cat 0.8
(c) big dog 0.9

We can interpret this as a distribution over eight
subsets (not all distinct), with probabilities:

∅ 0.7 · 0.2 · 0.1 = 0.014
{a} 0.3 · 0.2 · 0.1 = 0.006
{b} 0.7 · 0.8 · 0.1 = 0.056
{a, b} 0.3 · 0.8 · 0.1 = 0.024
{c} 0.7 · 0.2 · 0.9 = 0.126
{a, c} 0.3 · 0.2 · 0.9 = 0.054
{b, c} 0.7 · 0.8 · 0.9 = 0.504
{a, b, c} 0.3 · 0.8 · 0.9 = 0.216

Then the count distributions and the E[nr] are:
r = 1 r = 2 r > 0

p(c(fat cat) = r) 0.62 0.24 0.86
p(c(big dog) = r) 0.9 0 0.9
E[nr] 1.52 0.24

3.2 Efficient computation
How to compute these probabilities and expecta-
tions depends in general on the structure of the
model. If we assume that all occurrences of uw
are independent (although in fact they are not al-
ways), the computation is very easy. If there are
k occurrences of uw, each occurring with proba-
bility pi, the count c(uw) is distributed according
to the Poisson-binomial distribution (Hong, 2013).
The expected count E[c(uw)] is just

∑
i pi, and the

distribution of c(uw) can be computed as follows:

p(c(uw) = r) = s(k, r)

where s(k, r) is defined by the recurrence

s(k, r) =


s(k − 1, r)(1 − pk)
+ s(k − 1, r − 1)pk if 0 ≤ r ≤ k

1 if k = r = 0
0 otherwise.

We can also compute

p(c(uw) ≥ r) = max
{

s(m, r), 1 −
∑
r′<r

s(m, r′)
}
,

the floor operation being needed to protect against
rounding errors, and we can compute

E[nr(u•)] =
∑

w

p(c(uw) = r)

E[nr+(u•)] =
∑

w

p(c(uw) ≥ r).

Since, as we shall see, we only need to compute
these quantities up to a small value of r (2 or 4),
this takes time linear in k.
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4 Smoothing on count distributions

We are now ready to describe how to apply KN
smoothing to count distributions. Below, we reca-
pitulate the derivation of KN smoothing presented
in Section 2, using the expected log-likelihood
in place of the log-likelihood and applying KN
smoothing to each possible realization of the data.

4.1 Maximum likelihood estimation
The MLE objective function is the expected log-
likelihood,

E[L] = E

∑
uw

c(uw) log p(w | u)


=
∑
uw

E[c(uw)] log p(w | u)

whose maximum is

pmle(w | u) =
E[c(uw)]
E[c(u•)] . (7)

4.2 Absolute discounting
If we apply absolute discounting to every realiza-
tion of the data, the expected smoothed counts are

E[c̃(uw)] =
∑
r>0

p(c(uw) = r)(r − D)

+ p(c(uw) = 0)E[n1+(u•)]Dqu(w)

= E[c(uw)] − p(c(uw) > 0)D

+ p(c(uw) = 0)E[n1+(u•)]Dqu(w) (8)

where, to be precise, the expectation E[n1+(u•)]
should be conditioned on c(uw) = 0; in practice, it
seems safe to ignore this. The MLE is then

p(w | u) =
E[c̃(uw)]
E[c̃(u•)] . (9)

4.3 Estimating D by leaving-one-out
It would not be clear how to perform leaving-
one-out estimation on fractional counts, but here
we have a distribution over realizations of the
data, each with integral counts, and we can
perform leaving-one-out estimation on each of
these. In other words, our goal is to find the D
that maximizes the expected leaving-one-out log-
likelihood, which is just the expected value of (3):

E[Lloo] = E
[
n1 log D +

∑
r>1

rnr log(r − 1 − D) +C
]

= E[n1] log D

+
∑
r>1

rE[nr] log(r − 1 − D) +C,

where C is a constant not depending on D. We
have made the assumption that the nr are indepen-
dent.

By exactly the same reasoning as before, we ob-
tain an upper bound for D:

D ≤ E[n1]
E[n1] + 2E[n2]

. (10)

In our example above, D = 1.52
1.52+2·0.24 = 0.76.

4.4 Estimating the lower-order distribution
We again require p′ to satisfy the marginal con-
straint (5). Substituting in (7) and solving for p′ as
in Section 2.4, we obtain the solution

p′(w | u′) = E[n1+(•u′w)]
E[n1+(•u′•)] . (11)

For the example above, the estimates for the un-
igram model p′(w) are

p′(cat) = 0.86
0.86+0.9 ≈ 0.489

p′(dog) = 0.9
0.86+0.9 ≈ 0.511.

4.5 Extensions
Chen and Goodman (1999) introduce three exten-
sions to Kneser-Ney smoothing which are now
standard. For our experiments, we used all three,
for both integral counts and count distributions.

4.5.1 Interpolation
In interpolated KN smoothing, the subtracted dis-
counts are redistributed not only among unseen
events but also seen events. That is,

c̃(uw) = max{0, c(uw) − D} + n1+(u•)Dp′(w | u′).
In this case, γ(u) is always equal to one, so that
qu(w) = p′(w | u′). (Also note that (6) becomes
an exact solution to the marginal constraint.) The-
oretically, this requires us to derive a new estimate
for D. However, as this is not trivial, nearly all im-
plementations simply use the original estimate (4).

On count distributions, the smoothed counts be-
come

E[c̃(uw)] = E[c(uw)] − p(c(uw) > 0)D

+ E[n1+(u•)]Dp′(w | u′). (12)

In our example, the smoothed counts are:
uw E[c̃]
fat cat 1.1 − 0.86 · 0.76 + 0.86 · 0.76 · 0.489 ≈ 0.766
fat dog 0 − 0 · 0.76 + 0.86 · 0.76 · 0.511 ≈ 0.334
big cat 0 − 0 · 0.76 + 0.9 · 0.76 · 0.489 ≈ 0.334
big dog 0.9 − 0.9 · 0.76 + 0.9 · 0.76 · 0.511 ≈ 0.566
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which give the smoothed probability estimates:

p(cat | fat) = 0.766
0.766+0.334 = 0.696

p(dog | fat) = 0.334
0.766+0.334 = 0.304

p(dog | big) = 0.334
0.334+0.556 = 0.371

p(cat | big) = 0.556
0.334+0.556 = 0.629.

4.5.2 Modified discounts
Modified KN smoothing uses a different discount
Dr for each count r < 3, and a discount D3+ for
counts r ≥ 3. On count distributions, a similar ar-
gument to the above leads to the estimates:

D1 ≤ 1 − 2Y
E[n2]
E[n1]

D2 ≤ 2 − 3Y
E[n3]
E[n2]

D3+ ≈ 3 − 4Y
E[n4]
E[n3]

Y =
E[n1]

E[n1] + 2E[n2]
.

(13)

One side-effect of this change is that (6) is no
longer the correct solution to the marginal con-
straint (Teh, 2006; Sundermeyer et al., 2011). Al-
though this problem can be fixed, standard imple-
mentations simply use (6).

4.5.3 Recursive smoothing
In the original KN method, the lower-order
model p′ was estimated using (6); recursive KN
smoothing applies KN smoothing to p′. To do this,
we need to reconstruct counts whose MLE is (6).
On integral counts, this is simple: we generate, for
each n-gram type vu′w, an (n−1)-gram token u′w,
for a total of n1+(•u′w) tokens. We then apply KN
smoothing to these counts.

Analogously, on count distributions, for each n-
gram type vu′w, we generate an (n − 1)-gram to-
ken u′w with probability p(c(vu′w) > 0). Since

E[c(u′w)] =
∑

v

p(c(vu′w) > 0) = E[n1+(•u′w)],

this has (11) as its MLE and therefore satisfies the
marginal constraint. We then apply expected KN
smoothing to these count distributions.

For the example above, the count distributions
used for the unigram distribution would be:

r = 0 r = 1
p(c(cat) = r) 0.14 0.86
p(c(dog) = r) 0.1 0.9

4.6 Summary

In summary, to perform expected KN smoothing
(either the original version or Chen and Good-
man’s modified version), we perform the steps
listed below:

orig. mod.
compute count distributions §3.2
estimate discount D (10) (13)
estimate lower-order model p′ (11) §4.5.3
compute smoothed counts c̃ (8) (12)
compute probabilities p (9)

The computational complexity of expected KN
is almost identical to KN on integral counts. The
main addition is computing and storing the count
distributions. Using the dynamic program in Sec-
tion 3.2, computing the distributions for each r is
linear in the number of n-gram types, and we only
need to compute the distributions up to r = 2 (or
r = 4 for modified KN), and store them for r = 0
(or up to r = 2 for modified KN).

5 Related Work

Witten-Bell (WB) smoothing is somewhat easier
than KN to adapt to fractional counts. The SRI-
LM toolkit (Stolcke, 2002) implements a method
which we call fractional WB:

p(w | u) = λ(u)pmle(w | u) + (1 − λ(u))p′(w | u′)
λ(u) =

E[c(u)]
E[c(u)] + n1+(u•) ,

where n1+(u•) is the number of word types ob-
served after context u, computed by ignoring all
weights. This method, although simple, inconsis-
tently uses weights for counting tokens but not
types. Moreover, as we will see below, it does not
perform as well as expected KN.

The only previous adaptation of KN smoothing
to fractional counts that we are aware of is that
of Tam and Schultz (2008) and Bisani and Ney
(2008), called fractional KN. This method sub-
tracts D directly from the fractional counts, zero-
ing out counts that are smaller than D. The dis-
count D must be set by minimizing an error metric
on held-out data using a line search (Tam, p. c.) or
Powell’s method (Bisani and Ney, 2008), requiring
repeated estimation and evaluation of the language
model. By contrast, we choose D by leaving-one-
out. Like KN on integral counts, our method has
a closed-form approximation and requires neither
held-out data nor trial and error.
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6 Language model adaptation

N-gram language models are widely used in appli-
cations like machine translation and speech recog-
nition to select fluent output sentences. Although
they can easily be trained on large amounts of data,
in order to perform well, they should be trained on
data containing the right kind of language. For ex-
ample, if we want to model spoken language, then
we should train on spoken language data. If we
train on newswire, then a spoken sentence might
be regarded as ill-formed, because the distribution
of sentences in these two domains are very differ-
ent. In practice, we often have limited-size training
data from a specific domain, and large amounts
of data consisting of language from a variety of
domains (we call this general-domain data). How
can we utilize the large general-domain dataset to
help us train a model on a specific domain?

Many methods (Lin et al., 1997; Gao et al.,
2002; Klakow, 2000; Moore and Lewis, 2010; Ax-
elrod et al., 2011) rank sentences in the general-
domain data according to their similarity to the
in-domain data and select only those with score
higher than some threshold. Such methods are ef-
fective and widely used. However, sometimes it is
hard to say whether a sentence is totally in-domain
or out-of-domain; for example, quoted speech in a
news report might be partly in-domain if the do-
main of interest is broadcast conversation. Here,
we propose to assign each sentence a probability
to indicate how likely it is to belong to the domain
of interest, and train a language model using ex-
pected KN smoothing. We show that this approach
yields models with much better perplexity than the
original sentence-selection approach.

6.1 Method
One of the most widely used sentence-selection
approaches is that of Moore and Lewis (2010).
They first train two language models, pin on a set
of in-domain data, and pout on a set of general-
domain data. Then each sentence w is assigned a
score

H(w) =
log(pin(w)) − log(pout(w))

|w| .

They set a threshold on the score to select a subset.
We adapt this approach as follows. After selec-

tion, for each sentence in the subset, we use a sig-
moid function to map the scores into probabilities:

p(w is in-domain) =
1

1 + exp(−H(w))
.
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Figure 1: On the language model adaptation task,
expected KN outperforms all other methods across
all sizes of selected subsets. Integral KN is ap-
plied to unweighted instances, while fractional
WB, fractional KN and expected KN are applied
to weighted instances.

Then we use the weighted subset to train a lan-
guage model with expected KN smoothing.

6.2 Experiments

Moore and Lewis (2010) test their method by
partitioning the in-domain data into training data
and test data, both of which are disjoint from
the general-domain data. They use the in-domain
training data to select a subset of the general-
domain data, build a language model on the se-
lected subset, and evaluate its perplexity on the in-
domain test data. Here, we follow this experimen-
tal framework and compare Moore and Lewis’s
unweighted method to our weighted method.

For our experiments, we used all the English
data allowed for the BOLT Phase 1 Chinese-
English evaluation. We took 60k sentences (1.7M
words) of web forum data as in-domain data,
further subdividing it into 54k sentences (1.5M
words) for training, 3k sentences (100k words)
for testing, and 3k sentences (100k words) for fu-
ture use. The remaining 12.7M sentences (268M
words) we treated as general-domain data.

We trained trigram language models and com-
pared expected KN smoothing against integral KN
smoothing, fractional WB smoothing, and frac-
tional KN smoothing, measuring perplexity across
various subset sizes (Figure 1). For fractional KN,
for each subset size, we optimized D to mini-
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mize perplexity on the test set to give it the great-
est possible advantage; nevertheless, it is clearly
the worst performer. Expected KN consistently
gives the best perplexity, and, at the optimal sub-
set size, obtains better perplexity (148) than the
other methods (156 for integral KN, 162 for frac-
tional WB and 197 for fractional KN). Finally, we
note that integral KN is very sensitive to the subset
size, whereas expected KN and the other methods
are more robust.

7 Word Alignment

In this section, we show how to apply expected KN
to the IBM word alignment models (Brown et al.,
1993). This illustrates both how to use expected
KN inside EM and how to use it beyond language
modeling. Of course, expected KN can be applied
to other instances of EM besides word alignment.

7.1 Problem
Given a French sentence f = f1 f2 · · · fm and its
English translation e = e1e2 · · · en, an alignment a
is a sequence a1, a2, . . . , am, where ai is the index
of the English word which generates the French
word fi, or NULL. As is common, we assume that
each French word can only be generated from one
English word or from NULL (Brown et al., 1993;
Och and Ney, 2003; Vogel et al., 1996).

The IBM models and related models define
probability distributions p(a, f | e, θ), which model
how likely a French sentence f is to be generated
from an English sentence e with word alignment a.
Different models parameterize this probability dis-
tribution in different ways. For example, Model 1
only models the lexical translation probabilities:

p(a, f | e, θ) ∝
m∏

j=1

p( f j | ea j).

Models 2–5 and the HMM model introduce addi-
tional components to model word order and fer-
tility. All, however, have the lexical translation
model p( f j | ei) in common. It also contains most
of the model’s parameters and is where overfit-
ting occurs most. Thus, here we only apply KN
smoothing to the lexical translation probabilities,
leaving the other model components for future
work.

7.2 Method
The f and e are observed, while a is a latent vari-
able. Normally, in the E step, we collect expected

counts E[c(e, f )] for each e and f . Then, in the M
step, we find the parameter values that maximize
their likelihood. However, MLE is prone to over-
fitting, one symptom of which is the “garbage col-
lection” phenomenon where a rare English word is
wrongly aligned to many French words.

To reduce overfitting, we use expected KN
smoothing during the M step. That is, during the
E step, we calculate the distribution of c(e, f ) for
each e and f , and during the M step, we train a
language model on bigrams e f using expected KN
smoothing (that is, with u = e and w = f ). This
gives a smoothed probability estimate for p( f | e).

One question that arises is: what distribution to
use as the lower-order distribution p′? Following
common practice in language modeling, we use
the unigram distribution p( f ) as the lower-order
distribution. We could also use the uniform distri-
bution over word types, or a distribution that as-
signs zero probability to all known word types.
(The latter case is equivalent to a backoff language
model, where, since all bigrams are known, the
lower-order model is never used.) Below, we com-
pare the performance of all three choices.

7.3 Alignment experiments

We modified GIZA++ (Och and Ney, 2003) to
perform expected KN smoothing as described
above. Smoothing is enabled or disabled with a
command-line switch, making direct comparisons
simple. Our implementation is publicly available
as open-source software.1

We carried out experiments on two language
pairs: Arabic to English and Czech to English.
For Arabic-English, we used 5.4+4.3 million
words of parallel text from the NIST 2009 con-
strained task,2 and 346 word-aligned sentence
pairs (LDC2006E86) for evaluation. For Czech-
English, we used all 2.0+2.2 million words of
training data from the WMT 2009 shared task,
and 515 word-aligned sentence pairs (Bojar and
Prokopová, 2006) for evaluation.

For all methods, we used five iterations of IBM
Models 1, 2, and HMM, followed by three iter-
ations of IBM Models 3 and 4. We applied ex-
pected KN smoothing to all iterations of all mod-
els. We aligned in both the foreign-to-English

1https://github.com/hznlp/giza-kn
2All data was used except for: United Nations pro-

ceedings (LDC2004E13), ISI Automatically Extracted Par-
allel Text (LDC2007E08), and Ummah newswire text
(LDC2004T18).
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Alignment F1 Bleu
Smoothing p′ Ara-Eng Cze-Eng Ara-Eng Cze-Eng

none (baseline) – 66.5 67.2 37.0 16.6
variational Bayes uniform 65.7 65.5 36.5 16.6

fractional WB
unigram 60.1 63.7 – –
uniform 60.8 66.5 37.8 16.9

zero 60.8 65.2 – –
fractional KN unigram 67.7 70.2 37.2 16.5

expected KN
unigram 69.7 71.9 38.2 17.0
uniform 69.4 71.3 – –

zero 69.2 71.9 – –

Table 1: Expected KN (interpolating with the unigram distribution) consistently outperforms all other
methods. For variational Bayes, we followed Riley and Gildea (2012) in setting α to zero (so that the
choice of p′ is irrelevant). For fractional KN, we chose D to maximize F1 (see Figure 2).

and English-to-foreign directions and then used
the grow-diag-final method to symmetrize them
(Koehn et al., 2003), and evaluated the alignments
using F-measure against gold word alignments.

As shown in Table 1, for KN smoothing, in-
terpolation with the unigram distribution performs
the best, while for WB smoothing, interestingly,
interpolation with the uniform distribution per-
forms the best. The difference can be explained by
the way the two smoothing methods estimate p′.
Consider again a training example with a word e
that occurs nowhere else in the training data. In
WB smoothing, p′( f ) is the empirical unigram
distribution. If f contains a word that is much
more frequent than the correct translation of e,
then smoothing may actually encourage the model
to wrongly align e with the frequent word. This
is much less of a problem in KN smoothing,
where p′ is estimated from bigram types rather
than bigram tokens.

We also compared with variational Bayes (Ri-
ley and Gildea, 2012) and fractional KN. Overall,
expected KN performs the best. Variational Bayes
is not consistent across different language pairs.
While fractional KN does beat the baseline for
both language pairs, the value of D, which we op-
timized D to maximize F1, is not consistent across
language pairs: as shown in Figure 2, on Arabic-
English, a smaller D is better, while for Czech-
English, a larger D is better. By contrast, expected
KN uses a closed-form expression for D that out-
performs the best performance of fractional KN.

Table 2 shows that, if we apply expected KN
smoothing to only selected stages of training,
adding smoothing always brings an improvement,
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Figure 2: Alignment F1 vs. D of fractional KN
smoothing for word alignment.

Smoothed models Alignment F1
1 2 H 3 4 Ara-Eng Cze-Eng
◦ ◦ ◦ ◦ ◦ 66.5 67.2
• ◦ ◦ ◦ ◦ 67.3 67.9
◦ • ◦ ◦ ◦ 68.0 68.7
◦ ◦ • ◦ ◦ 68.6 70.0
◦ ◦ ◦ • ◦ 66.9 68.4
◦ ◦ ◦ ◦ • 67.0 68.6
• • • • • 69.7 71.9

Table 2: Smoothing more stages of training makes
alignment accuracy go up. For each row, we
smoothed all iterations of the models indicated.
Key: H = HMM model; • = smoothing enabled;
◦ = smoothing disabled.
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with the best setting being to smooth all stages.
This shows that expected KN smoothing is consis-
tently effective. It is also interesting to note that
smoothing is less helpful for the fertility-based
Models 3 and 4. Whether this is because modeling
fertility makes them less susceptible to “garbage
collection,” or the way they approximate the E step
makes them less amenable to smoothing, or an-
other reason, would require further investigation.

7.4 Translation experiments

Finally, we ran MT experiments to see whether the
improved alignments also lead to improved trans-
lations. We used the same training data as before.
For the Arabic-English tasks, we used the NIST
2008 test set as development data and the NIST
2009 test set as test data; for the Czech-English
tasks, we used the WMT 2008 test set as develop-
ment data and the WMT 2009 test set as test data.

We used the Moses toolkit (Koehn et al., 2007)
to build MT systems using various alignments
(for expected KN, we used the one interpolated
with the unigram distribution, and for fractional
WB, we used the one interpolated with the uni-
form distribution). We used a trigram language
model trained on Gigaword (AFP, AP World-
stream, CNA, and Xinhua portions), and minimum
error-rate training (Och, 2003) to tune the feature
weights.

Table 1 shows that, although the relationship
between alignment F1 and Bleu is not very con-
sistent, expected KN smoothing achieves the best
Bleu among all these methods and is significantly
better than the baseline (p < 0.01).

8 Conclusion

For a long time, and as noted by many authors,
the usage of KN smoothing has been limited by its
restriction to integer counts. In this paper, we ad-
dressed this issue by treating fractional counts as
distributions over integer counts and generalizing
KN smoothing to operate on these distributions.
This generalization makes KN smoothing, widely
considered to be the best-performing smoothing
method, applicable to many new areas. We have
demonstrated the effectiveness of our method in
two such areas and showed significant improve-
ments in both.
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