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Abstract

Representing predicates in terms of their
argument distribution is common practice
in NLP. Multi-word predicates (MWPs) in
this context are often either disregarded or
considered as fixed expressions. The lat-
ter treatment is unsatisfactory in two ways:
(1) identifying MWPs is notoriously diffi-
cult, (2) MWPs show varying degrees of
compositionality and could benefit from
taking into account the identity of their
component parts. We propose a novel
approach that integrates the distributional
representation of multiple sub-sets of the
MWP’s words. We assume a latent distri-
bution over sub-sets of the MWP, and esti-
mate it relative to a downstream prediction
task. Focusing on the supervised identi-
fication of lexical inference relations, we
compare against state-of-the-art baselines
that consider a single sub-set of an MWP,
obtaining substantial improvements. To
our knowledge, this is the first work to
address lexical relations between MWPs
of varying degrees of compositionality
within distributional semantics.

1 Introduction
Multi-word expressions (MWEs) constitute a

large part of the lexicon and account for much
of its growth (Jackendoff, 2002; Seaton and
Macaulay, 2002). However, despite their impor-
tance, MWEs remain difficult to define and model,
and consequently pose serious difficulties for NLP
applications (Sag et al., 2001). Multi-word Predi-
cates (MWPs; sometimes termed Complex Predi-
cates) form an important and much addressed sub-
class of MWEs and are the focus of this paper.

MWPs are informally defined as multiple words
that constitute a single predicate (Alsina et al.,

1997). MWPs encompass a wide range of phe-
nomena, including causatives, light verbs, phrasal
verbs, serial verb constructions and many others,
and pose considerable challenges to both linguistic
theory and NLP applications (see Section 2). Part
of the difficulty in treating them stems from their
position on the borderline between syntax and the
lexicon. It is therefore often unclear whether they
should be treated as fixed expressions, as compo-
sitional phrases that reflect the properties of their
component parts or as both.

This work addresses the modelling of MWPs
within the context of distributional semantics (Tur-
ney and Pantel, 2010), in which predicates are
represented through the distribution of arguments
they may take. In order to collect meaningful
statistics, the predicate’s lexical unit should be suf-
ficiently frequent and semantically unambiguous.

MWPs pose a challenge to such models, as
naı̈vely collecting statistics over all instances of
highly ambiguous verbs is likely to result in noisy
representations. For instance, the verb “take” may
appear in MWPs as varied as “take time”, “take
effect” and “take to the hills”. This heterogene-
ity of “take” is likely to have a negative effect on
downstream systems that use its distributional rep-
resentation. For instance, while “take” and “ac-
cept” are often considered lexically similar, the
high frequency in which “take” participates in
non-compositional MWPs is likely to push the two
verbs’ distributional representations apart.

A straightforward approach to this problem is
to represent the predicate as a conjunction of mul-
tiple words, thereby trading ambiguity for spar-
sity. For instance, the verb “take” could be con-
joined with its object (e.g., “take care”, “take a
bus”). This approach, however, raises the chal-
lenge of identifying the sub-set of the predicate’s
words that should be taken to represent it (hence-
forth, its lexical components or LCs).

We propose a novel approach that addresses this
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challenge in the context of identifying lexical in-
ference relations between predicates (Lin and Pan-
tel, 2001; Schoenmackers et al., 2010; Melamud et
al., 2013a, inter alia). A (lexical) inference rela-
tion pL → pR is said to hold if the relation denoted
by pR generally holds between a set of arguments
whenever the relation pL does. For instance, an in-
ference relation holds between “annex” and “con-
trol” since if a country annexes another, it gener-
ally controls it. Most works to this task use dis-
tributional similarity, either as their main compo-
nent (Szpektor and Dagan, 2008; Melamud et al.,
2013b), or as part of a more comprehensive system
(Berant et al., 2011; Lewis and Steedman, 2013).

For example, consider the verb “take”. While
the inference relation “have→ take” does not gen-
erally hold, it does hold in the case of some light
verbs, such as “have a look→ take a look”, under-
scoring the importance of taking more inclusive
LCs into account. On the other hand, the pred-
icate “likely to give a green light” is unlikely to
appear often even within a very large corpus, and
could benefit from taking its lexical sub-units (e.g.,
“likely” or “give a green light”) into account.

We present a novel approach to the task that
models the selection and relative weighting of the
predicate’s LCs using latent variables. This ap-
proach allows the classifier that uses the distri-
butional representations to take into account the
most relevant LCs in order to make the predic-
tion. By doing so, we avoid the notoriously dif-
ficult problem of defining and identifying MWPs
and account for predicates of various sizes and de-
grees of compositionality. To our knowledge, this
is the first work to address lexical relations be-
tween MWPs of varying degrees of composition-
ality within distributional semantics.

We conduct experiments on the dataset of Ze-
ichner et al. (2012) and compare our methods with
analogous ones that select a fixed LC, using state-
of-the-art feature sets. Our method obtains sub-
stantial performance gains across all scenarios.

Finally, we note that our approach is cognitively
appealing. Significant cognitive findings support
the claim that a speaker’s lexicon consists of par-
tially overlapping lexical units of various sizes, of
which several can be evoked in the interpretation
of an utterance (Jackendoff, 2002; Wray, 2008).

2 Background and Related Work
Inference Relations. The detection of inference
relations between predicates has become a central

task over the past few years (Sekine, 2005; Zan-
zotto et al., 2006; Schoenmackers et al., 2010;
Berant et al., 2011; Melamud et al., 2013a, in-
ter alia). Inference rules are used in a wide va-
riety of applications including Question Answer-
ing (Ravichandran and Hovy, 2002), Information
Extraction (Shinyama and Sekine, 2006), and as
a main component in Textual Entailment systems
(Dinu and Wang, 2009; Dagan et al., 2013).

Most approaches to the task used distributional
similarity as a major component within their sys-
tem. Lin and Pantel (2001) introduced DIRT, an
unsupervised distributional system for detecting
inference relations. The system is still considered
a state-of-the-art baseline (Melamud et al., 2013a),
and is often used as a component within larger sys-
tems. Schoenmackers et al. (2010) presented an
unsupervised system for learning inference rules
directly from open-domain web data. Melamud
et al. (2013a) used topic models to combine type-
level predicate inference rules with token-level in-
formation from their arguments in a specific con-
text. Melamud et al. (2013b) used lexical expan-
sion to improve the representation of infrequent
predicates. Lewis and Steedman (2013) combined
distributional and symbolic representations, eval-
uating on a Question Answering task, as well as
on a quantification-focused entailment dataset.

Several studies tackled the task using super-
vised systems. Weisman et al. (2012) used a set
of linguistically motivated features, but evaluated
their system on a corpus that consists almost en-
tirely of single-word predicates. Mirkin et al.
(2006) presented a system for learning inference
rules between nouns, using distributional similar-
ity and pattern-based features. Hagiwara et al.
(2009) identified synonyms using a supervised ap-
proach relying on distributional and syntactic fea-
tures. Berant et al. (2011) used distributional simi-
larity between predicates to weight the edges of an
entailment graph. By imposing global constraints
on the structure of the graph, they obtained a more
accurate set of inference rules.

Previous work used simple methods to select
the predicate’s LC. Some filtered out frequent
highly ambiguous verbs (Lewis and Steedman,
2013), others selected a single representative word
(Melamud et al., 2013a), while yet others used
multi-word LCs but treated them as fixed expres-
sions (Lin and Pantel, 2001; Berant et al., 2011).

The goals of the above studies are largely com-
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plementary to ours. While previous work focused
either on improving the quality of the distribu-
tional representations themselves or on their incor-
poration into more elaborate systems, we focus on
the integration of the distributional representation
of multiple LCs to improve the identification of
inference relations between MWPs.
MWP Extraction and Identification. MWPs
have received considerable attention over the years
in both theoretical and applicative contexts. Their
position on the crossroads of syntax and the lexi-
con, their varying degrees of compositionality, as
well as the wealth of linguistic phenomena they
exhibit, made them the object of ongoing linguis-
tic discussion (Alsina et al., 1997; Butt, 2010).

In NLP, the discovery and identification of
MWEs in general and MWPs in particular has
been the focus of much work over the years
(Lin, 1999; Baldwin et al., 2003; Biemann and
Giesbrecht, 2011). Despite wide interest, the
field has yet to converge to a general and widely
agreed-upon method for identifying MWPs. See
(Ramisch et al., 2013) for an overview.

Most work on MWEs emphasized idiosyncratic
or non-compositional expressions. Other lines of
work focused on specific MWP classes such as
light verbs (Tu and Roth, 2011; Vincze et al.,
2013) and phrasal verbs (McCarthy et al., 2003;
Pichotta and DeNero, 2013). Our work proposes a
uniform treatment to MWPs of varying degrees of
compositionality, and avoids defining MWPs ex-
plicitly by modelling their LCs as latent variables.
Compositional Distributional Semantics.
Much work in recent years has concentrated on
the relation between the distributional representa-
tions of composite phrases and the representations
of their component sub-parts (Widdows, 2008;
Mitchell and Lapata, 2010; Baroni and Zampar-
elli, 2010; Coecke et al., 2010). Several works
have used compositional distributional semantics
(CDS) representations to assess the composition-
ality of MWEs, such as noun compounds (Reddy
et al., 2011) or verb-noun combinations (Kiela
and Clark, 2013). Despite significant advances,
previous work has mostly been concerned with
highly compositional cases and does not address
the distributional representation of predicates of
varying degrees of compositionality.

3 Our Proposal: A Latent LC Approach

This section details our approach for distribu-
tionally representing MWPs by leveraging their

component LCs. Section 3.1 describes our gen-
eral approach, Section 3.2 presents our model and
Section 3.3 details the feature set.
3.1 General Approach and Notation

We propose a method for addressing MWPs of
varying degrees of compositionality through the
integration of the distributional representation of
multiple sub-sets of the predicate’s words (LCs).
We use it to tackle a supervised prediction task that
represents predicates distributionally. Our model
assumes a latent distribution over the LCs, and es-
timates its parameters so to best conform to the
goals of the target prediction task.

Formally, given a predicate p, we denote the set
of words comprising it as W (p). The set of al-
lowable LCs for p is denoted with Hp ⊂ 2W (p).
Hp contains all sub-sets of p that we consider as
apriori possible to represent p. For instance, if p is
“likely to give a green light”, Hp may include LCs
such as “likely” or “give light”. As our method is
aimed at discovering the most relevant LCs, we do
not attempt to analyze the MWPs in advance, but
rather take an inclusive Hp, allowing the model to
estimate the relative weights of the LCs.

The task we use as a testbed for our approach
is the lexical inference identification task between
predicates. Given a pair of predicates p =
(pL, pR), the task is to predict whether an infer-
ence relation holds between them. For instance, if
pL is “devour” and pR is “eat greedily”, the clas-
sifier should use the similarity between “devour”
and “eat” in order to correctly predict an infer-
ence relation in this case. Selecting the wider LC
“eat greedily” might result in sparser statistics. In
other examples, however, taking a wider LC is po-
tentially beneficial. For instance, the dissimilar-
ity between “take” and “make” should not prevent
the classifier from identifying the inference rela-
tion between “take a step” and “make a step”.

Our statistical model aims at predicting the cor-
rect label by making use of partially overlapping
LCs of various sizes, both for the premise left-
hand side (LHS) predicate pL and the hypothesis
right-hand side (RHS) predicate pR. More for-
mally, we take the space of values for our latent
LC variables to be HpL,pR = HpL ×HpR .

Our evaluation dataset consists of pairs p(i) =
(p(i)

L , p
(i)
R ) for i ∈ {1, . . . ,M}, where M is the

number of examples available, coupled with their
gold-standard labels y(i) ∈ {1,−1}. For brevity,
we denote H(i) = Hp(i) = H

p
(i)
L ,p

(i)
R

. We also as-
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sume the existence of a feature function Φ(p, y, h)
which maps a triplet of a predicate pair p, an infer-
ence label y, and a latent state h ∈ Hp to Rd for
some integer d. We denote the training set by D.

3.2 The Model

We address the task with a latent variable log-
linear model, representing the LCs of the predi-
cates. We choose this model for its generality, con-
ceptual simplicity, and because it allows to easily
incorporate various feature sets and sets of latent
variables. We introduce L2 regularization to avoid
over-fitting. We use maximum likelihood estima-
tion, and arrive at the following objective function:

L(w|D) =
1

M

MX
i=1

logP (y(i)|p(i), w)− λ

2
‖w‖2 =

=
1

n

nX
i=1

0@log
X

h∈H(i)

exp
“
w>Φ(p(i), y(i), h)

”
− logZ(w, i)

«
− λ

2
‖w‖2

where:

Z(w, i) =
X

y∈{−1,1}

X
h∈Hi

exp(w>Φ(pi, y, h)).

We maximizeL using the BFGS algorithm (No-
cedal and Wright, 1999). The gradient (with re-
spect to w) is the following:

∇L = Eh[Φ(pi, yi, h)]− Eh,y[Φ(pi, y, h)]− λ · w
Hp can be defined to be any sub-set of 2W (p)

given that taking an expectation over H can be
done efficiently. It is therefore possible to use prior
linguistic knowledge to consider only sub-sets of p
that are likely to be non-compositional (e.g., verb-
preposition or verb-noun pairs).

In our experiments we attempt to keep the ap-
proach maximally general, and defineHp to be the
set of all subsets of size 1 or 2 of content words in
Wp

1. We bound the size of h ∈ Hp in order to re-
tain computational efficiency and a sufficient fre-
quency of the LCs in Hp. MWPs of length greater
than 2 are effectively approximated by their set of
subsets of sizes 1 and 2.

Each h can therefore be written as a 4-tuple
(hA

L , h
B
L , h

A
R, h

B
R), where hA

L (hA
R) denotes the first

word of the LHS (RHS) predicate’s LC. hB
L (hB

R)
denotes the (possibly empty) second word of the
predicate. Inference is carried out by maximizing
P (y|p(i)) over y. As |Hp| = O(k4), where k is the

1We use a POS tagger to identify content words. Preposi-
tions are considered content words under this definition.

number of content words in p, and as the number
of content words is usually small2, inference can
be carried out by directly summing over H(i).
Initialization. The introduction of latent vari-
ables into the log-linear model leads to a non-
convex objective function. Consequently, BFGS
is not guaranteed to converge to the global opti-
mum, but rather to a stationary point. The result
may therefore depend on the parameter initializa-
tion. Indeed, preliminary experiments showed that
both initializing w to be zero and using a random
initializer results in lower performance.

Instead, we initialize our model with a simpli-
fied convex model that fixes the LCs to be the
pair of left-most content words comprising each
of the predicates. This is a common method for
selecting the predicate’s LC (e.g., Melamud et al.,
2013a). Once h has been fixed, the model col-
lapses to a convex log-linear model. The optimal
w is then taken as an initialization point for the la-
tent variable model. While this method may still
not converge to the global maximum, our experi-
ments show that this initialization technique yields
high quality values for w (see Section 6).
3.3 Feature Set

This section lists the features used for our exper-
iments. We intentionally select a feature set that
relies on either completely unsupervised or shal-
low processing tools that are available for a wide
variety of languages and domains.

Given a predicate pair p(i), a label y ∈ {1,−1}
and a latent state h ∈ H(i), we define their feature
vector as Φ(p(i), y, h) = y · Φ(p(i), h). The com-
putation of Φ(p(i), h) requires a reference corpus
R that contains triplets of the type (p, x, y) where
p is a binary predicate and x and y are its argu-
ments. We use the Reverb corpus as R in our ex-
periments (Fader et al., 2011; see Section 4). We
refrain from encoding features that directly reflect
the vocabulary of the training set. Such features
are not applicable beyond that set’s vocabulary,
and as available datasets contain no more than a
few thousand examples, these features are unlikely
to generalize well.

Table 1 presents the set of features we use in our
experiments. The features can be divided into two
main categories: similarity features between the
LHS and the RHS predicates (table’s top), and fea-
tures that reflect the individual properties of each

2|Hp| is about 15 on average in our dataset, where less
than 5% of the H(i) are of size greater than 50.
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C
at

eg
or

y

Name Description

Si
m

ila
ri

ty COSINE DIRT cosine similarity between the vectors of hL and hR

COSINEA DIRT cosine similarity between the vectors of hA
L and hA

R

BInc DIRT BInc similarity between the vectors of hL and hR

BIncA DIRT BInc similarity between the vectors of hA
L and hA

R

W
or

d
A

L
H

S POSA
L The most frequent POS tag for the lemma of hA

L

POS2A
L The second most frequent POS tag for the word lemma of hA

L

FREQA
L The number of occurrences of hA

L in the reference corpus
COMMONA

L A binary feature indicating whether hA
L appears in both predicates

ORDINALA
L The ordinal number of hA

L among the content words of the LHS predicate

Pa
ir

L
H

S POSAB
L The conjunction of POSA

L and POSB
L

FREQAB
L The frequency of hA

L and hB
L in the reference corpus

PREFABL P (hA
L |hA

L) as estimated from the reference corpus
PREFBAL P (hB

L |hA
L) as estimated from the reference corpus

PMIABL The point-wise mutual information of hA
L and hB

L

L
D

A TOPICSL P (topic|hL) for each of the induced topics.
TOPICENTL The entropy of the topic distribution P (topic|hL)

Table 1: The feature set used in our experiments. The top part presents the similarity measures based on the DIRT approach.
The rest of the listed features apply to the LHS predicate (hL), and to the first word in it (hA

L ). Analogous features are
introduced for the second word, hB

L , and for the RHS predicate. The upper-middle part presents the word features for hA
L . The

lower-middle part presents features that apply where hL is of size 2. The bottom part lists the LDA-based features.

of them. Within the LHS feature set, we distin-
guish between two sub-types of features: word
features that encode the individual properties of
hA

L and hB
L (table’s upper middle part), and pair

features that only apply to LCs of size 2 and re-
flect the relation between hA

L and hB
L (table’s lower

middle part). We further incorporate LDA-based
features that reflect the selectional preferences of
the predicates (table’s bottom).

Distributional Similarity Features. The distri-
butional similarity features are based on the DIRT
system (Lin and Pantel, 2001). The score defines
for each predicate p and for each argument slot
s ∈ {L,R} (corresponding to the arguments to the
right and left of that predicate) a vector vp

s which
represents the distribution of arguments appearing
in that slot. We take vp

s(x) to be the number of
times that the argument x appeared in the slot s of
the predicate p. Given these vectors, the similarity
between the predicates p1 and p2 is defined as:

score(p1, p2) =
q

sim(vp1
L , vp2

L ) · sim(vp1
R , vp2

R )

where sim is some vector similarity measure.
We use two common similarity measures: the

vector cosine metric, and the BInc (Szpektor and
Dagan, 2008) similarity measure. These measures
give complementary perspectives on the similar-
ity between the predicates, as the cosine similar-
ity is symmetric between the LHS and RHS predi-
cates, while BInc takes into account the direction-
ality of the inference relation. Preliminary exper-
iments with other measures, such as those of Lin

(1998) and Weeds and Weir (2003) did not yield
additional improvements.

We encode the similarity of all measures for the
pair hL and hR as well as the pair hA

L and hA
R. The

latter feature is an approximation to the similar-
ity between the heads of the predicates, as heads
in English tend to be to the left of the predicates.
These two features coincide for h values of size 1.
Word and Pair Features. These features en-
code the basic properties of the LC. The motiva-
tion behind them is to allow a more accurate lever-
aging of the similarity features, as well as to better
determine the relative weights of h ∈ H(i).

The feature set is composed of four analogous
sets corresponding to hA

L ,hB
L ,hA

R and hB
R , as well

as two sets of features that capture relations be-
tween hA

L , hB
L and hA

R, hB
R (in cases h is of size 2).

The features include the ordinal index of the word
within the predicate, the lemma’s frequency ac-
cording to R, and a feature that indicates whether
that word’s lemma also appears in both predicates
of the pair. For instance, when considering the
predicates “likely to come” and “likely to leave”,
“likely” appears in both predicates, while “come”
and “leave” appear only in one of them.

In addition, we use POS-based features that
encode the most frequent POS tag for the word
lemma and the second most frequent POS tag (ac-
cording toR). Information about the second most
frequent POS tag can be important in identifying
light verb constructions, such as “take a swim” or
“give a smile”, where the object is derived from a
verb. It can thus be interpreted as a generalization
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of the feature that indicates whether the object is
a deverbal noun, which is used by some light verb
identification algorithms (Tu and Roth, 2011).

In cases where hL is of size 2, we additionally
encode features that apply to the conjunction of
hA

L and hB
L . We encode the conjunction of their

POS and the number of times the two lemmas oc-
curred together in R. We also introduce features
that capture the statistical correlation between the
words of hL. To do so, we use point-wise mu-
tual information, and the conditional probabili-
ties P (hA

L |hB
L ) and P (hB

L |hA
L). Similar measures

have often been used for the unsupervised detec-
tion of MWEs (Villavicencio et al., 2007; Fazly
and Stevenson, 2006). We also include the analo-
gous set of features for hR.
LDA-based Features. We further incorporate
features based on a Latent Dirichlet Allocation
(LDA) topic model (Blei et al., 2003). Several
recent works have underscored the usefulness of
using topic models to model a predicate’s selec-
tional preferences (Ritter et al., 2010; Dinu and
Lapata, 2010; Séaghdha, 2010; Lewis and Steed-
man, 2013; Melamud et al., 2013a). We adopt the
approach of Lewis and Steedman (2013), and de-
fine a pseudo-document for each LC in the evalu-
ation corpus. We populate the pseudo-documents
of an LC with its arguments according to R. We
then train an LDA model with 25 topics over these
documents. This yields a probability distribution
P (topic|h) for each LC h, reflecting the types of
arguments h may take.

We further include a feature for the entropy of
the topic distribution of the predicate, which re-
flects its heterogeneity. This feature is motivated
by the assumption that a heterogeneous predicate
is more likely to benefit from selecting a more in-
clusive LC than a homogeneous one.
Technical Issues. All features used, except the
similarity ones and the topic distribution features
are binary. Frequency features are binned into 4
bins of equal frequency. We conjoin some of the
feature sets by multiplying their values. Specifi-
cally, we add the cross product of the features of
the category “Similarity” (see Table 1) with the
rest of the features. In addition, we conjoin all
LHS (RHS) features with an indicator feature that
indicates whether hL (hR) is of size two. This re-
sults in 1605 non-constant features.

We further note that some LCs that appear in the
evaluation corpus do not appear at all inR. In our
experiments they amounted to 0.2% of the LCs in

our evaluation dataset. While previous work of-
ten discarded predicates below a certain frequency
from the evaluation, we include them in order to
facilitate comparison to future work. We assign
the similarity features of such examples a 0 value,
and assign their other numerical features the mean
value of those features.

4 Experimental Setup

Corpora and Preprocessing. As a reference
corpus R, we use Reverb (Fader et al., 2011), a
web-based corpus consisting of 15M web extrac-
tions of binary relations. Each relation is a triplet
of a predicate and two arguments, one preceding it
and one following it. Relations were extracted us-
ing regular expressions over the output of a POS
tagger and an NP chunker. Each predicate may
consist of a single verb, a verb and a preposi-
tion or a sequence of words starting in a verb and
ending in a preposition, between which there may
nouns, adjectives, adverbs, pronouns, determiners
and verbs. The verb may also be a copula. Exam-
ples of predicates are “make the most of”, “could
be exchanged for” and “is happy with”.

Reverb is an appealing reference corpus for this
task for several reasons. First, it uses fairly shal-
low preprocessing technology which is available
for many domains and languages. Second, Reverb
applies considerable noise filtering, which results
in extractions of fair quality. Third, our evaluation
dataset is based on Reverb extractions.

We evaluate our algorithm on the dataset of
Zeichner et al. (2012). This publicly available
corpus3 provides pairs of Reverb binary relations
and an indication of whether an inference rela-
tion holds between them within the context of
a specific pair of argument fillers. The corpus
was compiled using distributional methods to de-
tect pairs of relations in Reverb that are likely
to have an inference relation between. Annota-
tors, employed through Amazon Mechanical Turk,
were then asked to determine whether each pair
is meaningful, and if so, to determine whether an
inference relation holds. Further measures were
taken to monitor the accuracy of the annotation.

For example, the pair of predicates “make the
most of” and “take advantage of” appears in the
corpus as a pair between which an inference rela-
tion holds. The arguments in this case are “stu-
dents” and “their university experience”. An ex-

3http://tinyurl.com/krx2acd
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ample of a pair between which an inference rela-
tion does not hold is “tend to neglect” and “under-
estimate the importance of”, where the arguments
are “Robert” and “his family”.

The dataset contains 6,565 instances in total.
We use 5,411 pairs of them, discarding instances
that were deemed as meaningless by the annota-
tors. We also discard cases where the set of ar-
guments is reversed between the LHS and RHS
predicates. In these examples, pR(x, y) is infer-
able from pL(y, x), rather than from pL(x, y). As
there are less than 150 reversed instances in the
corpus, experimenting on this sub-set is unlikely
to be informative.

The average length of a predicate in the cor-
pus is 2.7 words (including function words). In
87.3% of the predicate pairs, there was more than
one LC (i.e., |Hp| > 1), underscoring the im-
portance of correctly leveraging the different LCs.
We randomly partition the corpus into a training
set which contains 4,343 instances (∼80%), and a
test set that contains 1,068 instances, maintaining
the same positive to negative label ratio in both
datasets4. Development was carried out using
cross-validation on the training data (see below).

We use a Maximum Entropy POS Tagger,
trained on the Penn Treebank, and the WordNet
lemmatizer, both implemented within the NLTK
package (Loper and Bird, 2002). To obtain a
coarse-grained set of POS tags, we collapse the
tag set to 7 categories: nouns, verbs, adjectives,
adverbs, prepositions, the word “to” and a cate-
gory that includes all other words. A Reverb argu-
ment is represented as the conjunction of its con-
tent words that appear more than 10 times in the
corpus. Function words are defined according to
their POS tags and include determiners, possessive
pronouns, existential “there”, numbers and coordi-
nating conjunctions. Auxiliary verbs and copulas
are also considered function words.

To compute the LDA features, we use the on-
line variational Bayes algorithm of (Hoffman et
al., 2010) as implemented in the Gensim software
package (Rehurek and Sojka, 2010).

Evaluated Algorithms. The only two previous
works on this dataset (Melamud et al., 2013a;
Melamud et al., 2013b) are not directly compara-
ble, as they used unsupervised systems and evalu-

4A script that replicates our train-test partition of the cor-
pus can be found here: http://homepages.inf.ed.
ac.uk/oabend/mwpreds.html

ated on sub-sets of the evaluation dataset. Instead,
we use several baselines to demonstrate the use-
fulness of integrating multiple LCs, as well as the
relative usefulness of our feature sets.

The simplest baseline is ALLNEG, which pre-
dicts the most frequent label in the dataset (in our
case: “no inference”). The other evaluated sys-
tems are formed by taking various subsets of our
feature set. We experiment with 4 feature sets. The
smallest set, SIM, includes only the similarity fea-
tures. This feature set is related to the composi-
tional distributional model of Mitchell and Lap-
ata (2010) (see Section 6). We note that despite
recent advances in identifying predicate inference
relations, the DIRT system (Lin and Pantel, 2001)
remains a strong baseline, and is often used as a
component in state-of-the-art systems (Berant et
al., 2011), and specifically in the two aforemen-
tioned works that used the same evaluation corpus.

The next feature set BASIC includes the features
found to be most useful during the development
of the model: the most frequent POS tag, the fre-
quency features and the feature Common. More
inclusive is the feature set NO-LDA, which in-
cludes all features except the LDA features. Ex-
periments with this set were performed in order
to isolate the effect of the LDA features. Finally,
ALL includes our complete set of features.

The more direct comparison is against partial
implementations of our system where the LC h is
deterministically selected. Determining h for each
predicate yields a regular log-linear binary classi-
fication model. We use two variants of this base-
line. The first, LEFTMOST, selects the left-most
content word for each predicate. Similar selec-
tion strategy was carried out by Melamud et al.
(2013a). The second, VPREP, selects h to be the
verb along with its following preposition. In cases
the predicate contains multiple verbs, the one pre-
ceding the preposition is selected, and where the
predicate does not contain any non-copula verbs,
it regresses to LEFTMOST. This LC selection
method approximates a baseline that includes sub-
categorized prepositions. Such cases are highly
frequent and account for a large portion of the
MWPs in English. Including a verb’s preposition
in its LC was commonly done in previous work
(e.g., Lewis and Steedman, 2013).

We also attempted to identify verb-preposition
constructions using a dependency parser. Unfor-
tunately, our evaluation dataset is only available in
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a lemmatized version, which posed a difficulty for
the parser. Due to the low quality of the resulting
parses, we implemented VPREP using POS-based
regular expressions as defined above.

The full model is denoted with LATENTLC. For
each system and feature set, we report results us-
ing 10-fold cross-validation on the training set, as
well as results on the test set. Both cases use
the same set of parameters determined by cross-
validation on the training set. As the task at hand
is a binary classification problem, we use accuracy
scores to rate the performance of our systems.

5 Results
Table 2 presents the results of our experi-

ments. Rows correspond to the evaluated algo-
rithms, while columns correspond to the feature
sets used and the evaluation scenarios (i.e., train-
ing set cross-validation or test set evaluation). Our
experiments make first use of this dataset in its
fullest form for the problem of supervised learning
of inference relations, and may serve as a starting
point for further exploration of this dataset.

For all feature sets and settings, LATENTLC
scored highest, often with a considerable margin
of up to 3.0% in the cross-validation and up to
4.6% on the test set relative to the LEFTMOST

baseline, and 5.1% (cross-validation) and 6.8%
(test) margins relative to VPREP.

The best scoring result of our LATENTLC
model in the cross-validation scenario is 65.72%,
obtained by the feature set All. The best scoring
result by any of the baseline models in this sce-
nario is 62.7%, obtained by the same feature set.
For the test set scenario, LATENTLC obtained its
highest accuracy, 65.73%, when using the feature
set Basic. This is a substantial improvement over
the highest scoring baseline model in this scenario
that obtained 61.6% accuracy, using the feature set
All. This performance gap is substantial when tak-
ing into consideration that the improvements ob-
tained by the highly competitive DIRT similarity
features using the stronger LEFTMOST baseline,
result in an improvement of 3.1% and 5.3% over
the trivial ALLNEG baseline in the test set and
cross-validation scenarios respectively.

Comparing the different feature sets on our pro-
posed model, we find that the Basic feature set
gives a consistent and substantial increase over the
Sim feature set. Improvements are of 2.8% (test)
and 2.2% (cross-validation). Introducing more
elaborate features (i.e., the feature sets NoLDA

and All) yields some improvements in the cross-
validation, but these improvements are not repli-
cated on the test set. This may be due to idiosyn-
crasies in the test set that are averaged out in the
cross-validation scenario.

For a qualitative analysis, we took the best per-
forming model of the data set (i.e., with the Basic
feature set), and extracted the set of instances
where it made a correct prediction while both
baselines made an error. This set contains many
verb-preposition pairs, such as “list as → report
as” or “submit via→ deliver by”, underscoring the
utility of leveraging multiple LCs rather than con-
sidering only a head word (as with LEFTMOST)
or the entire phrase (as with VPREP). Other ex-
amples in this set contain more complex patterns.
These include the positive pairs “talk much about
→ have much to say about” and “increase with
→ go up with”, and the negative “make predic-
tion about → meet the challenge of” and “enjoy
watching→ love to play”.

6 Discussion
Relation to CDS. Much recent work subsumed
under the title Compositional Distributional Se-
mantics addressed the distributional representa-
tion of multi-word phrases (see Section 2). This
line of work focuses on compositional predicates,
such as “kick the ball” and not on idiosyncratic
predicates such as “kick the bucket”.

A variant of the CDS approach can be framed
within ours. Assume we wish to compute the
similarity of the predicates pL = (w1, ..., wn)
and pR = (w′

1, ..., w
′
m). Let us denote the vec-

tor space representations of the individual words
as v1, ..., vn and v′

1, ..., v
′
m respectively. A stan-

dard approach in CDS is to compose distributional
representations by taking their vector sum vL =
v1 + v2...+ vn and vR = v′

1 + ...+ v′
m (Mitchell

and Lapata, 2010). One of the most effective sim-
ilarity measures is the cosine similarity, which is a
normalized dot product. The distributional sim-
ilarity between pL and pR under this model is
sim(pL, pR) =

∑n
i=1

∑m
j=1 sim(wi, w

′
j), where

sim(wi, w
′
j) is the dot product between vi and v′

j .
This similarity score is similar in spirit to a

simplified version of our statistical model that
restricts the set of allowable LCs Hp to be
{({wi}, {w′

j})|i ≤ n, j ≤ m}, i.e., only LCs of
size 1. Indeed, taking Hp as above, and cosine
similarity as the only feature (i.e., w ∈ R), yields
the distribution
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Test Set Cross Validation
Algorithm Sim Basic NoLDA All Sim Basic NoLDA All

LATENTLC 62.9 65.7 64.4 64.6 62.7 ± 1.9 64.9 ± 1.9 65.0 ± 1.7 65.7 ±1.9
LEFTMOST 59.0 61.1 60.0 60.4 61.2 ± 2.1 62.5 ± 2.4 62.4 ±2.2 62.7 ± 2.0

VPREP 56.1 60.9 60.7 61.6∗ 58.1 ± 1.7 60.8 ± 2.2 60.4 ± 2.6 60.6 ± 2.2
ALLNEG 55.9 55.9

Table 2: Results for the various evaluated systems. Accuracy results are presented in percents, followed in the cross vali-
dation scenario by the standard deviation over the folds. The rows correspond to the various systems as defined in Section 4.
LATENTLC is our proposed model. The columns correspond to the various feature sets, from the least to the most inclusive.
SIM includes only similarity features. BASIC additionally includes POS-based and frequency features. NOLDA includes all
features except LDA-based features. ALL is the full feature set. ALLNEG is the classifier that invariably predicts the label “no
inference”. Bold marks best overall accuracy per column, and ∗ marks figures that are not significantly worse (McNemar’s test,
p < 0.05). The same positive to negative label ratio was maintained in both the cross validation and test set scenarios. In all
cases, LATENTLC obtains substantial improvements over the baseline systems.

P (y|p) ∝
X

(wi,w′
j)∈Hp

exp
`
w · y · sim(wi, w

′
j)
´
.

This derivation highlights the relation of a sim-
plified version of our approach to the additive
CDS model, as both approaches effectively aver-
age over the similarities of all pairs of words in pL

and pR. The derivation also highlights a few ad-
vantages of our approach. First, our approach al-
lows to straightforwardly introduce additional fea-
tures and to weight them in a way most consistent
with the task at hand. Second, it allows much more
flexibility in defining the set of allowable LCs,Hp.
Specifically, Hp may contain LCs of sizes greater
than 1. Third, our approach uses standard proba-
bilistic modelling, and therefore has a natural sta-
tistical interpretation.

In order to appreciate the effect of these advan-
tages, we perform an experiment that takes H to
be the set of all LCs of size 1, and uses a sin-
gle similarity measure. We run a 10-fold cross-
validation on our training data, obtaining 61.3%
accuracy using COSINE and 62.2% accuracy us-
ing BInc. The performance gap between these re-
sults and the accuracy obtained by our full model
(65.7%) underscores the latter’s effectiveness in
integrating multiple features and LCs.
Effectiveness of Optimization Method. Our
maximization of the log-likelihood function is
not guaranteed to converge to a global optimum.
Therefore, the quality of the learned parameters
may be sensitive to the initialization point. We
hereby describe an experiment that tests the sen-
sitivity of our approach to such variance.

Selecting the highest scoring feature set on our
test set (i.e., BASIC), we ran the model with mul-
tiple initializers, by randomly perturbing our stan-
dard convex initializer (see Section 3). Concretely,
given a convex initializer w, we select the starting

point to be w + η, where ηi ∼ N (0, α|wi|). We
ran this experiment 400 times with α = 0.8.

To combine the resulting weight vectors into a
single classifier, we apply two types of standard
approaches: a Product of Experts (Hinton, 2002),
as well as a voting approach that selects the most
frequently predicted label. Neither of these exper-
iments yielded any significant performance gain.
This demonstrates the robustness of our optimiza-
tion method to the initialization point.

7 Conclusion
We have presented a novel approach to the

distributional representation of multi-word pred-
icates. Since MWPs demonstrate varying levels
of compositionality, a uniform treatment of MWPs
either as fixed expressions or through head words
is lacking. Instead, our approach integrates mul-
tiple lexical units contained in the predicate. The
approach takes into account both multi-word LCs
that address low compositionality cases, as well as
single-word LCs that address compositional cases
and are more frequent. It assumes a latent distribu-
tion over the LCs of the predicates, and estimates
it relative to a target application task.

We addressed the supervised inference identi-
fication task, obtaining substantial improvement
over state-of-the-art baseline systems. In future
work we intend to assess the benefit of this ap-
proach in MWP classes that are well-known from
the literature. We believe that a permissive ap-
proach that integrates multiple analyses would
perform better than standard single-analysis meth-
ods in a wide range of applications.
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