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Abstract

Accurately segmenting a citation string
into fields for authors, titles, etc. is a chal-
lenging task because the output typically
obeys various global constraints. Previous
work has shown that modeling soft con-
straints, where the model is encouraged,
but not require to obey the constraints, can
substantially improve segmentation per-
formance. On the other hand, for impos-
ing hard constraints, dual decomposition
is a popular technique for efficient predic-
tion given existing algorithms for uncon-
strained inference. We extend dual decom-
position to perform prediction subject to
soft constraints. Moreover, with a tech-
nique for performing inference given soft
constraints, it is easy to automatically gen-
erate large families of constraints and learn
their costs with a simple convex optimiza-
tion problem during training. This allows
us to obtain substantial gains in accuracy
on a new, challenging citation extraction
dataset.

1 Introduction

Citation field extraction, an instance of informa-
tion extraction, is the task of segmenting and la-
beling research paper citation strings into their
constituent parts, including authors, editors, year,
journal, volume, conference venue, etc. This task
is important because citation data is often pro-
vided only in plain text; however, having an ac-
curate structured database of bibliographic infor-
mation is necessary for many scientometric tasks,
such as mapping scientific sub-communities, dis-
covering research trends, and analyzing networks
of researchers. Automated citation field extrac-
tion needs further research because it has not yet
reached a level of accuracy at which it can be prac-
tically deployed in real-world systems.

Hidden Markov models and linear-chain condi-
tional random fields (CRFs) have previously been
applied to citation extraction (Hetzner, 2008; Peng
and McCallum, 2004) . These models support ef-
ficient dynamic-programming inference, but only
model local dependencies in the output label se-
quence. However citations have strong global reg-
ularities not captured by these models. For exam-
ple many book citations contain both an author
section and an editor section, but none have two
disjoint author sections. Since linear-chain mod-
els are unable to capture more than Markov depen-
dencies, the models sometimes mislabel the editor
as a second author. If we could enforce the global
constraint that there should be only one author
section, accuracy could be improved.

One framework for adding such global con-
straints into tractable models is constrained infer-
ence, in which at inference time the original model
is augmented with restrictions on the outputs such
that they obey certain global regularities. When
hard constraints can be encoded as linear equa-
tions on the output variables, and the underlying
model’s inference task can be posed as linear opti-
mization, one can formulate this constrained infer-
ence problem as an integer linear program (ILP)
(Roth and Yih, 2004). Alternatively, one can em-
ploy dual decomposition (Rush et al., 2010). Dual
decompositions’s advantage over ILP is is that it
can leverage existing inference algorithms for the
original model as a black box. Such a modular
algorithm is easy to implement, and works quite
well in practice, providing certificates of optimal-
ity for most examples.

The above two approaches have previously been
applied to impose hard constraints on a model’s
output. On the other hand, recent work has demon-
strated improvements in citation field extraction
by imposing soft constraints (Chang et al., 2012).
Here, the model is not required obey the global
constraints, but merely pays a penalty for their vi-
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Figure 1: Example labeled citation

olation.
This paper introduces a novel method for im-

posing soft constraints via dual decomposition.
We also propose a method for learning the penal-
ties the prediction problem incurs for violating
these soft constraints. Because our learning
method drives many penalties to zero, it allows
practitioners to perform ‘constraint selection,’ in
which a large number of automatically-generated
candidate global constraints can be considered and
automatically culled to a smaller set of useful con-
straints, which can be run quickly at test time.

Using our new method, we are able to incor-
porate not only all the soft global constraints of
Chang et al. (2012), but also far more com-
plex data-driven constraints, while also provid-
ing stronger optimality certificates than their beam
search technique. On a new, more broadly rep-
resentative, and challenging citation field extrac-
tion data set, we show that our methods achieve a
17.9% reduction in error versus a linear-chain con-
ditional random field. Furthermore, we demon-
strate that our inference technique can use and
benefit from the constraints of Chang et al. (2012),
but that including our data-driven constraints on
top of these is beneficial. While this paper fo-
cusses on an application to citation field extrac-
tion, the novel methods introduced here would
easily generalize to many problems with global
output regularities.

2 Background

2.1 Structured Linear Models

The overall modeling technique we employ is to
add soft constraints to a simple model for which
we have an existing efficient prediction algorithm.
For this underlying model, we employ a chain-
structured conditional random field (CRF), since
CRFs have been shown to perform better than
other simple unconstrained models like hidden
markov models for citation extraction (Peng and
McCallum, 2004). We produce a prediction by
performing MAP inference (Koller and Friedman,
2009).

The MAP inference task in a CRF be can ex-
pressed as an optimization problem with a lin-

ear objective (Sontag, 2010; Sontag et al., 2011).
Here, we define a binary indicator variable for
each candidate setting of each factor in the graph-
ical model. Each of these indicator variables is
associated with the score that the factor takes on
when it has the indictor variable’s corresponding
value. Since the log probability of some y in the
CRF is proportional to sum of the scores of all the
factors, we can concatenate the indicator variables
as a vector y and the scores as a vectorw and write
the MAP problem as

max. 〈w, y〉
s.t. y ∈ U , (1)

where the set U represents the set of valid config-
urations of the indicator variables. Here, the con-
straints are that all neighboring factors agree on
the components of y in their overlap.

Structured Linear Models are the general fam-
ily of models where prediction requires solving a
problem of the form (1), and they do not always
correspond to a probabilistic model. The algo-
rithms we present in later sections for handling
soft global constraints and for learning the penal-
ties of these constraints can be applied to gen-
eral structured linear models, not just CRFs, pro-
vided we have an available algorithm for perform-
ing MAP inference.

2.2 Dual Decomposition for Global
Constraints

In order to perform prediction subject to various
global constraints, we may need to augment the
problem (1) with additional constraints. Dual De-
composition is a popular method for performing
MAP inference in this scenario, since it lever-
ages known algorithms for MAP in the base prob-
lem where these extra constraints have not been
added (Komodakis et al., 2007; Sontag et al.,
2011; Rush and Collins, 2012). In this case, the
MAP problem can be formulated as a structured
linear model similar to equation (1), for which we
have a MAP algorithm, but where we have im-
posed some additional constraints Ay ≤ b that
no longer allow us to use the algorithm. In other
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Algorithm 1 DD: projected subgradient for dual
decomposition with hard constraints

1: while has not converged do
2: y(t) = argmaxy∈U

〈
w +ATλ, y

〉
3: λ(t) = Π0≤·

[
λ(t−1) − η(t)(Ay − b)

]

words, we consider the problem

max. 〈w, y〉
s.t. y ∈ U

Ay ≤ b,
(2)

for an arbitrary matrix A and vector b. We can
write the Lagrangian of this problem as

L(y, λ) = 〈w, y〉+ λT (Ay − b). (3)

Regrouping terms and maximizing over the primal
variables, we have the dual problem

min.λD(λ) = max
y∈U

〈
w +ATλ, y

〉− λT b. (4)

For any λ, we can evaluate the dual objective
D(λ), since the maximization in (4) is of the same
form as the original problem (1), and we assumed
we had a method for performing MAP in this. Fur-
thermore, a subgradient ofD(λ) isAy∗−b, for an
y∗ which maximizes this inner optimization prob-
lem. Therefore, we can minimize D(λ) with the
projected subgradient method (Boyd and Vanden-
berghe, 2004), and the optimal y can be obtained
when evaluating D(λ∗). Note that the subgradient
of D(λ) is the amount by which each constraint is
violated by λ when maximizing over y.

Algorithm 1 depicts the basic projected subgra-
dient descent algorithm for dual decomposition.
The projection operator Π consists of truncating
all negative coordinates of λ to 0. This is neces-
sary because λ is a vector of dual variables for in-
equality constraints. The algorithm has converged
when each constraint is either satisfied by y(t) with
equality or its corresponding component of λ is 0,
due to complimentary slackness (Boyd and Van-
denberghe, 2004).

3 Soft Constraints in Dual
Decomposition

We now introduce an extension of Algorithm 1
to handle soft constraints. In our formulation, a
soft-constrained model imposes a penalty for each
unsatisfied constraint, proportional to the amount
by which it is violated. Therefore, our derivation

parallels how soft-margin SVMs are derived from
hard-margin SVMs by introducing auxiliary slack
variables (Cortes and Vapnik, 1995). Note that
when performing MAP subject to soft constraints,
optimal solutions might not satisfy some con-
straints, since doing so would reduce the model’s
score by too much.

Consider the optimization problems of the
form:

max. 〈w, y〉 − 〈c, z〉
s.t. y ∈ U

Ay − b ≤ z
−z ≤ 0,

(5)

For positive ci, it is clear that an optimal zi will
be equal to the degree to which aTi y ≤ bi is vio-
lated. Therefore, we pay a cost ci times the degree
to which the ith constraint is violated, which mir-
rors how slack variables are used to represent the
hinge loss for SVMs. Note that ci has to be pos-
itive, otherwise this linear program is unbounded
and an optimal value can be obtained by setting zi
to infinity.

Using a similar construction as in section 2.2 we
write the Lagrangian as:

(6)L(y, z, λ, µ) = 〈w, y〉 − 〈c, z〉
+ λT (Ay − b− z) + µT (−z).

The optimality constraints with respect to z tell us
that −c− λ− µ = 0, hence µ = −c− λ. Substi-
tuting, we have

L(y, λ) = 〈w, y〉+ λT (Ay − b), (7)

except the constraint that µ = −c− λ implies that
for µ to be positive λ ≤ c.

Since this Lagrangian has the same form as
equation (3), we can also derive a dual problem,
which is the same as in equation (4), with the ad-
ditional constraint that each λi can not be bigger
than its cost ci. In other words, the dual problem
can not penalize the violation of a constraint more
than the soft constraint model in the primal would
penalize you if you violated it.

This optimization problem can still be solved
with projected subgradient descent and is depicted
in Algorithm 2. The only modifications to Al-
gorithm 1 are replacing the coordinate-wise pro-
jection Π0≤· with Π0≤·≤c and how we check for
convergence. Now, we check for the KKT con-
ditions of (5), where for every constraint i, either
the constraint is satisfied with equality, λi = 0, or
λi = ci.
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Algorithm 2 Soft-DD: projected subgradient for
dual decomposition with soft constraints

1: while has not converged do
2: y(t) = argmaxy∈U

〈
w +ATλ, y

〉
3: λ(t) = Π0≤·≤c

[
λ(t−1) − η(t)(Ay − b)

]

Therefore, implementing soft-constrained dual
decomposition is as easy as implementing hard-
constrained dual decomposition, and the per-
iteration complexity is the same. We encourage
further applications of soft-constraint dual decom-
position to existing and new NLP problems.

3.1 Learning Penalties
One consideration when using soft v.s. hard con-
straints is that soft constraints present a new train-
ing problem, since we need to choose the vector
c, the penalties for violating the constraints. An
important property of problem (5) in the previous
section is that it corresponds to a structured lin-
ear model over y and z. Therefore, we can apply
known training algorithms for estimating the pa-
rameters of structured linear models to choose c.

All we need to employ the structured perceptron
algorithm (Collins, 2002) or the structured SVM
algorithm (Tsochantaridis et al., 2004) is a black-
box procedure for performing MAP inference in
the structured linear model given an arbitrary cost
vector. Fortunately, the MAP problem for (5) can
be solved using Soft-DD, in Algorithm 2.

Each penalty ci has to be non-negative; other-
wise, the optimization problem in equation (5) is
ill-defined. This can be ensured by simple mod-
ifications of the perceptron and subgradient de-
scent optimization of the structured SVM objec-
tive simply by truncating c coordinate-wise to be
non-negative at every learning iteration.

Intuitively, the perceptron update increases the
penalty for a constraint if it is satisfied in the
ground truth and not in an inferred prediction, and
decreases the penalty if the constraint is satisfied
in the prediction and not the ground truth. Since
we truncate penalties at 0, this suggests that we
will learn a penalty of 0 for constraints in three cat-
egories: constraints that do not hold in the ground
truth, constraints that hold in the ground truth but
are satisfied in practice by performing inference
in the base CRF model, and constraints that are
satisfied in practice as a side-effect of imposing
non-zero penalties on some other constraints . A
similar analysis holds for the structured SVM ap-

proach.
Therefore, we can view learning the values of

the penalties not just as parameter tuning, but as a
means to perform ‘constraint selection,’ since con-
straints that have a penalty of 0 can be ignored.
This property allows us to consider large families
of constraints, from which the useful ones are au-
tomatically identified.

We found it beneficial, though it is not theoreti-
cally necessary, to learn the constraints on a held-
out development set, separately from the other
model parameters, as during training most con-
straints are satisfied due to overfitting, which leads
to an underestimation of the relevant penalties.

4 Citation Extraction Data

We consider the UMass citation dataset, first intro-
duced in Anzaroot and McCallum (2013). It has
over 1800 citation from many academic fields, ex-
tracted from the arXiv. This dataset contains both
coarse-grained and fine-grained labels; for exam-
ple it contains labels for the segment of all authors,
segments for each individual author, and for the
first and last name of each author. There are 660
citations in the development set and 367 citation
in the test set.

The labels in the UMass dataset are a con-
catenation of labels from a hierarchically-defined
schema. For example, a first name of an author is
tagged as: authors/person/first. In addition, indi-
vidual tokens are labeled using a BIO label schema
for each level in the hierarchy. BIO is a commonly
used labeling schema for information extraction
tasks. BIO labeling allows individual labels on
tokens to label segmentation information as well
as labels for the segments. In this schema, labels
that begin segments are prepended with a B, la-
bels that continue a segment are prepended with
an I, and tokens that don’t have a labeling in this
schema are given an O label. For example, in a hi-
erarchical BIO label schema the first token in the
first name for the second author may be labeled as:
I-authors/B-person/B-first.

An example labeled citation in this dataset can
be viewed in figure 1.

5 Global Constraints for Citation
Extraction

5.1 Constraint Templates
We now describe the families of global constraints
we consider for citation extraction. Note these
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constraints are all linear, since they depend only
on the counts of each possible conditional ran-
dom field label. Moreover, since our labels are
BIO-encoded, it is possible, by counting B tags,
to count how often each citation tag itself appears
in a sentence. The first two families of constraints
that we describe are general to any sequence la-
beling task while the last is specific to hierarchical
labeling such as available in the UMass dataset.

Our sequence output is denoted as y and an ele-
ment of this sequence is yk.

We denote [[yk = i]] as the function that outputs
1 if yk has a 1 at index i and 0 otherwise. Here, yk
represents an output tag of the CRF, so if [[yk = i]]
= 1, then we have that yk was given a label with
index i.

5.2 Singleton Constraints
Singleton constraints ensure that each label can
appear at most once in a citation. These are same
global constraints that were used for citation field
extraction in Chang et al. (2012). We define s(i)
to be the number of times the label with index i is
predicted in a citation, formally:

s(i) =
∑
yk∈y

[[yk = i]]

The constraint that each label can appear at
most once takes the form:

s(i) <= 1

5.3 Pairwise Constraints
Pairwise constraints are constraints on the counts
of two labels in a citation. We define z1(i, j) to be

z1(i, j) =
∑
yk∈y

[[yk = i]] +
∑
yk∈y

[[yk = j]]

and z2(i, j) to be

z2(i, j) =
∑
yk∈y

[[yk = i]]−
∑
yk∈y

[[yk = j]]

We consider all constraints of the forms:
z(i, j) ≤ 0, 1, 2, 3 and z(i, j) ≥ 0, 1, 2, 3.

Note that some pairs of these constraints are re-
dundant or logically incompatible. However, we
are using them as soft constraints, so these con-
straints will not necessarily be satisfied by the out-
put of the model, which eliminates concern over

enforcing logically impossible outputs. Further-
more, in section 3.1 we described how our proce-
dure for learning penalties will drive some penal-
ties to 0, which effectively removes them from our
set of constraints we consider. It can be shown, for
example, that we will never learn non-zero penal-
ties for certain pairs of logically incompatible con-
straints using the perceptron-style algorithm de-
scribed in section 3.1 .

5.4 Hierarchical Equality Constraints

The labels in the citation dataset are hierarchical
labels. This means that the labels are the concate-
nation of all the levels in the hierarchy. We can
create constraints that are dependent on only one
or couple of elements in the hierarchy.

We define C(x, i) as the function that returns 1
if the output x contains the label i in the hierarchy
and 0 otherwise. We define e(i, j) to be

e(i, j) =
∑
yk∈y

[[C(yk, i)]]−
∑
yk∈y

[[C(yk, j)]]

Hierarchical equality constraints take the forms:

e(i, j) ≥ 0 (8)

e(i, j) ≤ 0 (9)

5.5 Local constraints

We constrain the output labeling of the chain-
structured CRF to be a valid BIO encoding.
This both improves performance of the underly-
ing model when used without global constraints,
as well as ensures the validity of the global con-
straints we impose, since they operate only on
B labels. The constraint that the labeling is
valid BIO can be expressed as a collection of
pairwise constraints on adjacent labels in the se-
quence. Rather than enforcing these constraints
using dual decomposition, they can be enforced
directly when performing MAP inference in the
CRF by modifying the dynamic program of the
Viterbi algorithm to only allow valid pairs of adja-
cent labels.

5.6 Constraint Pruning

While the techniques from section 3.1 can easily
cope with a large numbers of constraints at train-
ing time, this can be computationally costly, spe-
cially if one is considering very large constraint
families. This is problematic because the size
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Unconstrained [17]ref-marker [ D.first Sivia ,last person J.first Skilling ,last person ]authors [ Data Analysis : A Bayesian Tutorial
,booktitle Oxford University Press , publisher 2006 year date ]venue

Constrained [17]ref-marker [ D.first Sivia ,last person J.first Skilling ,last person ]authors Data Analysis : A Bayesian Tutorial
,title [ Oxford University Press , publisher 2006 year date ]venue

Unconstrained
[ Sobol’ ,last I.first M.middle person ]authors [ (1990) .year ]date [On sensitivity estimation for nonlinear mathe-
matical models .]title [ Matematicheskoe Modelirovanie ,journal 2volume (1) :number 112–118 .pages ( In Russian
) . status ]venue

Constrained
[ Sobol’ ,last I.first M.middle person ]authors [ (1990) .year ]date [On sensitivity estimation for nonlinear mathe-
matical models .]title [ Matematicheskoe Modelirovanie ,journal 2volume (1) :number 112–118 .pages ( In Russian
) . language ]venue

Figure 2: Two examples where imposing soft global constraints improves field extraction errors. Soft-
DD converged in 1 iteration on the first example, and 7 iterations on the second. When a reference is
citing a book and not a section of the book, the correct labeling of the name of the book is title. In
the first example, the baseline CRF incorrectly outputs booktitle, but this is fixed by Soft-DD, which
penalizes outputs based on the constraint that booktitle should co-occur with an address label. In the
second example, the unconstrained CRF output violates the constraint that title and status labels should
not co-occur. The ground truth labeling also violates a constraint that title and language labels should
not co-occur. At convergence of the Soft-DD algorithm, the correct labeling of language is predicted,
which is possible because of the use of soft constraints.

Constraints F1 score Sparsity # of cons
Baseline 94.44
Only-one 94.62 0% 3
Hierarchical 94.55 56.25% 16
Pairwise 95.23 43.19% 609
All 95.39 32.96% 628
All DD 94.60 0% 628

Table 1: Set of constraints learned and F1 scores.
The last row depicts the result of inference using
all constraints as hard constraints.

of some constraint families we consider grows
quadratically with the number of candidate labels,
and there are about 100 in the UMass dataset.
Such a family consists of constraints that the sum
of the counts of two different label types has to
be bounded (a useful example is that there can’t
be more than one out of “phd thesis” and “jour-
nal”). Therefore, quickly pruning bad constraints
can save a substantial amount of training time, and
can lead to better generalization.

To do so, we calculate a score that estimates
how useful each constraint is expected to be. Our
score compares how often the constraint is vio-
lated in the ground truth examples versus our pre-
dictions. Here, prediction is done with respect to
the base chain-structured CRF tagger and does not
include global constraints. Note that it may make
sense to consider a constraint that is sometimes vi-
olated in the ground truth, as the penalty learning
algorithm can learn a small penalty for it, which

will allow it to be violated some of the time. Our
importance score is defined as, for each constraint
c on labeled set D,

imp(c) =
∑

d∈D[[maxywTd y]]c∑
d∈D[[yd]]c

, (10)

where [[y]]c is 1 if the constraint is violated on out-
put y and 0 otherwise. Here, yd denotes the ground
truth labeling and wd is the vector of scores for the
CRF tagger.

We prune constraints by picking a cutoff value
for imp(c). A value of imp(c) above 1 implies
that the constraint is more violated on the pre-
dicted examples than on the ground truth, and
hence that we might want to keep it.

We also find that the constraints that have the
largest imp values are semantically interesting.

6 Related Work

There are multiple previous examples of augment-
ing chain-structured sequence models with terms
capturing global relationships by expanding the
chain to a more complex graphical model with
non-local dependencies between the outputs. In-
ference in these models can be performed, for
example, with loopy belief propagation (Bunescu
and Mooney, 2004; Sutton and McCallum, 2004)
or Gibbs sampling (Finkel et al., 2005). Be-
lief propagation is prohibitively expensive in our
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model due to the high cardinalities of the out-
put variables and of the global factors, which in-
volve all output variables simultaneously. There
are various methods for exploiting the combi-
natorial structure of these factors, but perfor-
mance would still have higher complexity than our
method. While Gibbs sampling has been shown
to work well tasks such as named entity recogni-
tion (Finkel et al., 2005), our previous experiments
show that it does not work well for citation extrac-
tion, where it found only low-quality solutions in
practice because the sampling did not mix well,
even on a simple chain-structured CRF.

Recently, dual decomposition has become a
popular method for solving complex structured
prediction problems in NLP (Koo et al., 2010;
Rush et al., 2010; Rush and Collins, 2012; Paul
and Eisner, 2012; Chieu and Teow, 2012). Soft
constraints can be implemented inefficiently using
hard constraints and dual decomposition— by in-
troducing copies of output variables and an aux-
iliary graphical model, as in Rush et al. (2012).
However, at every iteration of dual decomposition,
MAP must be run in this auxiliary model. Further-
more the copying of variables doubles the num-
ber of iterations needed for information to flow
between output variables, and thus slows conver-
gence. On the other hand, our approach to soft
constraints has identical per-iteration complexity
as for hard constraints, and is a very easy modifi-
cation to existing hard constraint code.

Initial work in machine learning for citation ex-
traction used Markov models with no global con-
straints. Hidden Markov models (HMMs), were
originally employed for automatically extracting
information from research papers on the CORA
dataset (Seymore et al., 1999; Hetzner, 2008).
Later, CRFs were shown to perform better on
CORA, improving the results from the Hmm’s
token-level F1 of 86.6 to 91.5 with a CRF(Peng
and McCallum, 2004).

Recent work on globally-constrained inference
in citation extraction used an HMMCCM , which is
an HMM with the addition of global features that
are restricted to have positive weights (Chang et
al., 2012). Approximate inference is performed
using beam search. This method increased the
HMM token-level accuracy from 86.69 to 93.92
on a test set of 100 citations from the CORA
dataset. The global constraints added into the
model are simply that each label only occurs

once per citation. This approach is limited in its
use of an HMM as an underlying model, as it
has been shown that CRFs perform significantly
better, achieving 95.37 token-level accuracy on
CORA (Peng and McCallum, 2004). In our ex-
periments, we demonstrate that the specific global
constraints used by Chang et al. (2012) help on the
UMass dataset as well.

7 Experimental Results

Our baseline is the one used in Anzaroot and
McCallum (2013), with some labeling errors re-
moved. This is a chain-structured CRF trained
to maximize the conditional likelihood using L-
BFGS with L2 regularization.

We use the same features as Anzaroot and Mc-
Callum (2013), which include word type, capital-
ization, binned location in citation, regular expres-
sion matches, and matches into lexicons. In addi-
tion, we use a rule-based segmenter that segments
the citation string based on punctuation as well as
probable start or end segment words (e.g. ‘in’ and
‘volume’). We add a binary feature to tokens that
correspond to the start of a segment in the output
of this simple segmenter. This final feature im-
proves the F1 score on the cleaned test set from
94.0 F1 to 94.44 F1, which we use as a baseline
score.

We then use the development set to learn the
penalties for the soft constraints, using the percep-
tron algorithm described in section 3.1. MAP in-
ference in the model with soft constraints is per-
formed using Soft-DD, shown in Algorithm 2.

We instantiate constraints from each template in
section 5.1, iterating over all possible labels that
contain a B prefix at any level in the hierarchy and
pruning all constraints with imp(c) < 2.75 cal-
culated on the development set. We asses perfor-
mance in terms of field-level F1 score, which is
the harmonic mean of precision and recall for pre-
dicted segments.

Table 1 shows how each type of constraint fam-
ily improved the F1 score on the dataset. Learning
all the constraints jointly provides the largest im-
provement in F1 at 95.39. This improvement in F1
over the baseline CRF as well as the improvement
in F1 over using only-one constraints was shown
to be statistically significant using the Wilcoxon
signed rank test with p-values < 0.05. In the
all-constraints settings, 32.96% of the constraints
have a learned parameter of 0, and therefore only
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Stop F1 score Convergence Avg Iterations
1 94.44 76.29% 1.0
2 95.07 83.38% 1.24
5 95.12 95.91% 1.61
10 95.39 99.18% 1.73

Table 2: Performance from terminating Soft-DD
early. Column 1 is the number of iterations we
allow each example. Column 3 is the % of test
examples that converged. Column 4 is the aver-
age number of necessary iterations, a surrogate for
the slowdown over performing unconstrained in-
ference.

421 constraints are active. Soft-DD converges,
and thus solves the constrained inference prob-
lem exactly, for all test set examples after at most
41 iterations. Running Soft-DD to convergence
requires 1.83 iterations on average per example.
Since performing inference in the CRF is by far
the most computationally intensive step in the iter-
ative algorithm, this means our procedure requires
approximately twice as much work as running the
baseline CRF on the dataset. On examples where
unconstrained inference does not satisfy the con-
straints, Soft-DD converges after 4.52 iterations
on average. For 11.99% of the examples, the
Soft-DD algorithm satisfies constraints that were
not satisfied during unconstrained inference, while
in the remaining 11.72% Soft-DD converges with
some constraints left unsatisfied, which is possible
since we are imposing them as soft constraints.

We could have enforced these constraints as
hard constraints rather than soft ones. This exper-
iment is shown in the last row of Table 1, where
F1 only improves to 94.6. In addition, running
the DD algorithm with these constraints takes 5.21
iterations on average per example, which is 2.8
times slower than Soft-DD with learned penalties.

In Figure 2, we analyze the performance of
Soft-DD when we don’t necessarily run it to con-
vergence, but stop after a fixed number of itera-
tions on each test set example. We find that a large
portion of our gain in accuracy can be obtained
when we allow ourselves as few as 2 dual decom-
position iterations. However, this only amounts to
1.24 times as much work as running the baseline
CRF on the dataset, since the constraints are satis-
fied immediately for many examples.

In Figure 2 we consider two applications of our
Soft-DD algorithm, and provide analysis in the
caption.

We train and evaluate on the UMass dataset in-

stead of CORA, because it is significantly larger,
has a useful finer-grained labeling schema, and its
annotation is more consistent. We were able to ob-
tain better performance on CORA using our base-
line CRF than the HMMCCM results presented
in Chang et al. (2012), which include soft con-
straints. Given this high performance of our base
model on CORA, we did not apply our Soft-DD
algorithm to the dataset. Furthermore, since the
dataset is so small, learning the penalties for our
large collection of constraints is difficult, and test
set results are unreliable. Rather than compare our
work to Chang et al. (2012) via results on CORA,
we apply their constraints on the UMass data us-
ing Soft-DD and demonstrate accuracy gains, as
discussed above.

7.1 Examples of learned constraints

We now describe a number of the useful con-
straints that receive non-zero learned penalties
and have high importance scores, defined in Sec-
tion 5.6. The importance score of a constraint pro-
vides information about how often it is violated
by the CRF, but holds in the ground truth, and a
non-zero penalty implies we enforce it as a soft
constraint at test time.

The two singleton constraints with highest im-
portance score are that there should only be at
most one title segment in a citation and that there
should be at most one author segment in a cita-
tion. The only one author constraint is particu-
larly useful for correctly labeling editor segments
in cases where unconstrained inference mislabels
them as author segments. As can be seen in Table
3, editor fields are among the most improved with
our new method, largely due to this constraint.

The two hierarchical constraints with the high-
est importance scores with non-zero learned
penalties constrain the output such that number
of person segments does not exceed the number
of first segments and vice-versa. Together, these
constraints penalize outputs in which the number
of person segments do not equal the number of
first segments, i.e., every author should have a first
name.

One important pairwise constraint penalizes
outputs in which thesis segments don’t co-occur
with school segments. School segments label the
name of the university that the thesis was submit-
ted to. The application of this constraint increases
the performance of the model on school segments
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Label U C +
venue/series 35.29 66.67 31.37
venue/editor/person/first 66.67 94.74 28.07
venue/school 40.00 66.67 26.67
venue/editor/person/last 75.00 94.74 19.74
venue/editor 77.78 90.00 12.22
venue/editor/person/middle 81.82 91.67 9.85

Table 3: Labels with highest improvement in F1.
U is in unconstrained inference. C is the results of
constrained inference. + is the improvement in F1.

dramatically, as can be seen in table 3.
An interesting form of pairwise constraints pe-

nalize outputs in which some labels do not co-
occur with other labels. Some examples of con-
straints in this form enforce that journal segments
should co-occur with pages segments and that
booktitle segments should co-occur with address
segments. An example of the latter constraint be-
ing employed during inference is the first example
in Figure 2. Here, the constrained inference pe-
nalizes output which contains a booktitle segment
but no address segment. This penalization leads
allows the constrained inference to correctly label
the booktitle segment as a title segment.

The above example constraints are almost al-
ways satisfied on the ground truth, and would be
useful to enforce as hard constraints. However,
there are a number of learned constraints that are
often violated on the ground truth but are still use-
ful as soft constraints. Take, for example, the con-
straint that the number of number segments does
not exceed the number of booktitle segments, as
well as the constraint that it does not exceed the
number of journal segments. These constraints
are moderately violated on ground truth examples,
however. For example, when booktitle segments
co-occur with number segments but not with jour-
nal segments, the second constraint is violated. It
is still useful to impose these soft constraints, as
strong evidence from the CRF allows us to violate
them, and they can guide the model to good pre-
dictions when the CRF is unconfident.

8 Conclusion

We introduce a novel modification to the stan-
dard projected subgradient dual decomposition al-
gorithm for performing MAP inference subject to
hard constraints to one for performing MAP in the
presence of soft constraints. In addition, we offer
an easy-to-implement procedure for learning the
penalties on soft constraints. This method drives

many penalties to zero, which allows users to auto-
matically discover discriminative constraints from
large families of candidates.

We show via experiments on a recent substantial
dataset that using soft constraints, and selecting
which constraints to use with our penalty-learning
procedure, can lead to significant gains in accu-
racy. We achieve a 17% gain in accuracy over
a chain-structured CRF model, while only need-
ing to run MAP in the CRF an average of less
than 2 times per example. This minor incremen-
tal cost over Viterbi, plus the fact that we obtain
certificates of optimality on 100% of our test ex-
amples in practice, suggests the usefulness of our
algorithm for large-scale applications. We encour-
age further use of our Soft-DD procedure for other
structured prediction problems.
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