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Abstract

We use single-agent and multi-agent Rein-
forcement Learning (RL) for learning dia-
logue policies in a resource allocation ne-
gotiation scenario. Two agents learn con-
currently by interacting with each other
without any need for simulated users
(SUs) to train against or corpora to learn
from. In particular, we compare the Q-
learning, Policy Hill-Climbing (PHC) and
Win or Learn Fast Policy Hill-Climbing
(PHC-WoLF) algorithms, varying the sce-
nario complexity (state space size), the
number of training episodes, the learning
rate, and the exploration rate. Our re-
sults show that generally Q-learning fails
to converge whereas PHC and PHC-WoLF
always converge and perform similarly.
We also show that very high gradually
decreasing exploration rates are required
for convergence. We conclude that multi-
agent RL of dialogue policies is a promis-
ing alternative to using single-agent RL
and SUs or learning directly from corpora.

1 Introduction

The dialogue policy of a dialogue system decides
on which actions the system should perform given
a particular dialogue state (i.e., dialogue context).
Building a dialogue policy can be a challenging
task especially for complex applications. For this
reason, recently much attention has been drawn
to machine learning approaches to dialogue man-
agement and in particular Reinforcement Learning
(RL) of dialogue policies (Williams and Young,
2007; Rieser et al., 2011; Jurcicek et al., 2012).
Typically there are three main approaches to
the problem of learning dialogue policies using
RL: (1) learn against a simulated user (SU), i.e.,
a model that simulates the behavior of a real user
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(Georgila et al., 2006; Schatzmann et al., 2006);
(2) learn directly from a corpus (Henderson et al.,
2008; Li et al., 2009); or (3) learn via live interac-
tion with human users (Singh et al., 2002; Gasi¢ et
al., 2011; Gasi¢ et al., 2013).

We propose a fourth approach: concurrent
learning of the system policy and the SU policy
using multi-agent RL techniques. Both agents are
trained simultaneously and there is no need for
building a SU separately or having access to a cor-
pus.! As we discuss below, concurrent learning
could potentially be used for learning via live in-
teraction with human users. Moreover, for negoti-
ation in particular there is one more reason in fa-
vor of concurrent learning as opposed to learning
against a SU. Unlike slot-filling domains, in nego-
tiation the behaviors of the system and the user are
symmetric. They are both negotiators, thus build-
ing a good SU is as difficult as building a good
system policy.

So far research on using RL for dialogue pol-
icy learning has focused on single-agent RL tech-
niques. Single-agent RL methods make the as-
sumption that the system learns by interacting with
a stationary environment, i.e., an environment that
does not change over time. Here the environ-
ment is the user. Generally the assumption that
users do not significantly change their behavior
over time holds for simple information providing
tasks (e.g., reserving a flight). But this is not nec-
essarily the case for other genres of dialogue, in-
cluding negotiation. Imagine a situation where a
negotiator is so uncooperative and arrogant that
the other negotiators decide to completely change
their negotiation strategy in order to punish her.
Therefore it is important to investigate RL ap-
proaches that do not make such assumptions about
the user/environment.

'Though corpora or SUs may still be useful for bootstrap-
ping the policies and encoding real user behavior (see sec-
tion 6).
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Multi-agent RL is designed to work for non-
stationary environments. In this case the envi-
ronment of a learning agent is one or more other
agents that can also be learning at the same time.
Therefore, unlike single-agent RL, multi-agent RL
can handle changes in user behavior or in the be-
havior of other agents participating in the inter-
action, and thus potentially lead to more realis-
tic dialogue policies in complex dialogue scenar-
ios. This ability of multi-agent RL can also have
important implications for learning via live inter-
action with human users. Imagine a system that
learns to change its strategy as it realizes that a
particular user is no longer a novice user, or that a
user no longer cares about five star restaurants.

We apply multi-agent RL to a resource alloca-
tion negotiation scenario. Two agents with dif-
ferent preferences negotiate about how to share
resources. We compare Q-learning (a single-
agent RL algorithm) with two multi-agent RL al-
gorithms: Policy Hill-Climbing (PHC) and Win
or Learn Fast Policy Hill-Climbing (PHC-WoLF)
(Bowling and Veloso, 2002). We vary the scenario
complexity (i.e., the quantity of resources to be
shared and consequently the state space size), the
number of training episodes, the learning rate, and
the exploration rate.

Our research contributions are as follows: (1)
we propose concurrent learning using multi-agent
RL as a way to deal with some of the issues of cur-
rent approaches to dialogue policy learning (i.e.,
the need for SUs and corpora), which may also
potentially prove useful for learning via live inter-
action with human users; (2) we show that concur-
rent learning can address changes in user behav-
ior over time, and requires multi-agent RL tech-
niques and variable exploration rates; (3) to our
knowledge this is the first time that PHC and PHC-
WOoLF are used for learning dialogue policies; (4)
for the first time, the above techniques are applied
to a negotiation domain; and (5) this is the first
study that compares Q-learning, PHC, and PHC-
WOoLF in such a variety of situations (varying a
large number of parameters).

The paper is structured as follows. Section 2
presents related work. Section 3 provides a brief
introduction to single-agent RL and multi-agent
RL. Section 4 describes our negotiation domain
and experimental setup. In section 5 we present
our results. Finally, section 6 concludes and pro-
vides some ideas for future work.
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2 Related Work

Most research in RL for dialogue management has
been done in the framework of slot-filling applica-
tions such as restaurant recommendations (Lemon
et al., 2006; Thomson and Young, 2010; Gasié¢
et al., 2012; Daubigney et al., 2012), flight reser-
vations (Henderson et al., 2008), sightseeing rec-
ommendations (Misu et al., 2010), appointment
scheduling (Georgila et al., 2010), etc. RL has
also been applied to question-answering (Misu et
al., 2012), tutoring domains (Tetreault and Litman,
2008; Chi et al., 2011), and learning negotiation
dialogue policies (Heeman, 2009; Georgila and
Traum, 2011; Georgila, 2013).

As mentioned in section 1, there are three main
approaches to the problem of learning dialogue
policies using RL.

In the first approach, a SU is hand-crafted or
learned from a small corpus of human-human or
human-machine dialogues. Then the dialogue pol-
icy can be learned by having the system interact
with the SU for a large number of dialogues (usu-
ally thousands of dialogues). Depending on the
application, building a realistic SU can be just as
difficult as building a good dialogue policy. Fur-
thermore, it is not clear what constitutes a good
SU for dialogue policy learning. Should the SU
resemble real user behavior as closely as possi-
ble, or should it exhibit some degree of random-
ness to explore a variety of interaction patterns?
Despite much research on the issue, these are still
open questions (Schatzmann et al., 2006; Ai and
Litman, 2008; Pietquin and Hastie, 2013).

In the second approach, no SUs are required.
Instead the dialogue policy is learned directly from
a corpus of human-human or human-machine dia-
logues. For example, Henderson et al. (2008) used
a combination of RL and supervised learning to
learn a dialogue policy in a flight reservation do-
main, whereas Li et al. (2009) used Least-Squares
Policy Iteration (Lagoudakis and Parr, 2003), an
RL-based technique that can learn directly from
corpora, in a voice dialer application. However,
collecting such corpora is not trivial, especially in
new domains. Typically, data are collected in a
Wizard-of-Oz setup where human users think that
they interact with a system while in fact they inter-
act with a human pretending to be the system, or
by having human users interact with a preliminary
version of the dialogue system. In both cases the
resulting interactions are expected to be quite dif-



ferent from the interactions of human users with
the final system. In practice this means that dia-
logue policies learned from such data could be far
from optimal.

The first experiment on learning via live inter-
action with human users (third approach) was re-
ported by Singh et al. (2002). They used RL to
help the system with two choices: how much ini-
tiative it should allow the user, and whether or not
to confirm information provided by the user. Re-
cently, learning of “full” dialogue policies (not just
choices at specific points in the dialogue) via live
interaction with human users has become possi-
ble with the use of Gaussian processes (Engel et
al., 2005; Rasmussen and Williams, 2006). Typi-
cally learning a dialogue policy is a slow process
requiring thousands of dialogues, hence the need
for SUs. Gaussian processes have been shown to
speed up learning. This fact together with easy
access to a large number of human users through
crowd-sourcing has allowed dialogue policy learn-
ing via live interaction with human users (Gasi¢ et
al., 2011; Gasi¢ et al., 2013).

Space constraints prevent us from providing an
exhaustive list of previous work on using RL for
dialogue management. Thus below we focus only
on research that is directly related to our work,
specifically research on concurrent learning of the
policies of multiple agents, and the application of
RL to negotiation domains.

So far research on RL in the dialogue commu-
nity has focused on using single-agent RL tech-
niques where the stationary environment is the
user. Most approaches assume that the user goal
is fixed and that the behavior of the user is ratio-
nal. Other approaches account for changes in user
goals (Ma, 2013). In either case, one can build a
user simulation model that is the average of dif-
ferent user behaviors or learn a policy from a cor-
pus that contains a variety of interaction patterns,
and thus safely assume that single-agent RL tech-
niques will work. However, in the latter case if
the behavior of the user changes significantly over
time then the assumption that the environment is
stationary will no longer hold.

There has been a lot of research on multi-agent
RL in the optimal control and robotics communi-
ties (Littman, 1994; Hu and Wellman, 1998; Buso-
niu et al., 2008). Here two or more agents learn si-
multaneously. Thus the environment of an agent is
one or more other agents that continuously change
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their behavior because they are also learning at the
same time. Therefore the environment is no longer
stationary and single-agent RL techniques do not
work well or do not work at all. We are particu-
larly interested in the work of Bowling and Veloso
(2002) who proposed the PHC and PHC-WoLF al-
gorithms that we use in this paper. We chose these
two algorithms because, unlike other multi-agent
RL methods (Littman, 1994; Hu and Wellman,
1998), they do not make assumptions that do not
always hold and do not require quadratic or linear
programming that does not always scale.

English and Heeman (2005) were the first in the
dialogue community to explore the idea of con-
current learning of dialogue policies. However,
English and Heeman (2005) did not use multi-
agent RL but only standard single-agent RL, in
particular an on-policy Monte Carlo method (Sut-
ton and Barto, 1998). But single-agent RL tech-
niques are not well suited for concurrent learning
where each agent is trained against a continuously
changing environment. Indeed, English and Hee-
man (2005) reported problems with convergence.
Chandramohan et al. (2012) proposed a frame-
work for co-adaptation of the dialogue policy and
the SU using single-agent RL. They applied In-
verse Reinforcement Learning (IRL) (Abbeel and
Ng, 2004) to a corpus in order to learn the reward
functions of both the system and the SU. Further-
more, Cuaydhuitl and Dethlefs (2012) used hier-
archical multi-agent RL for co-ordinating the ver-
bal and non-verbal actions of a robot. Cuayahuitl
and Dethlefs (2012) did not use PHC or PHC-
WOoLF and did not compare against single-agent
RL methods.

With regard to using RL for learning negotia-
tion policies, the amount of research that has been
performed is very limited compared to slot-filling.
English and Heeman (2005) learned negotiation
policies for a furniture layout task. Then Hee-
man (2009) extended this work by experiment-
ing with different representations of the RL state
in the same domain (this time learning against
a hand-crafted SU). In both cases, to reduce the
search space, the RL state included only infor-
mation about e.g., whether there was a pending
proposal rather than the actual value of this pro-
posal. Paruchuri et al. (2009) performed a theo-
retical study on how Partially Observable Markov
Decision Processes (POMDPs) can be applied to
negotiation domains.



Georgila and Traum (2011) built argumentation
dialogue policies for negotiation against users of
different cultural norms in a one-issue negotiation
scenario. To learn these policies they trained SUs
on a spoken dialogue corpus in a florist-grocer
negotiation domain, and then tweaked these SUs
towards a particular cultural norm using hand-
crafted rules. Georgila (2013) learned argumen-
tation dialogue policies from a simulated corpus
in a two-issue negotiation scenario (organizing a
party). Finally, Nouri et al. (2012) used IRL to
learn a model for cultural decision-making in a
simple negotiation game (the Ultimatum Game).

3 Single-Agent vs. Multi-Agent
Reinforcement Learning

Reinforcement Learning (RL) is a machine learn-
ing technique used to learn the policy of an agent,
i.e., which action the agent should perform given
its current state (Sutton and Barto, 1998). The goal
of an RL-based agent is to maximize the reward it
gets during an interaction. Because it is very dif-
ficult for the agent to know what will happen in
the rest of the interaction, the agent must select an
action based on the average reward it has previ-
ously observed after having performed that action
in similar contexts. This average reward is called
expected future reward. Single-agent RL is used
in the framework of Markov Decision Processes
(MDPs) (Sutton and Barto, 1998) or Partially Ob-
servable Markov Decision Processes (POMDPs)
(Williams and Young, 2007). Here we focus on
MDPs.

An MDP is defined as a tuple (S, A, T, R, )
where S is the set of states (representing different
contexts) which the agent may be in, A is the set
of actions of the agent, 7' is the transition func-
tion S x A x S — [0, 1] which defines a set of
transition probabilities between states after taking
an action, R is the reward function S x A — R
which defines the reward received when taking an
action from the given state, and + is a factor that
discounts future rewards. Solving the MDP means
finding a policy 7 : S — A. The quality of the
policy 7 is measured by the expected discounted
(with discount factor ) future reward also called
Q-value, Q™ : S x A — R.

A stochastic game is defined as a tuple (n, S,
A1 n, T, Ri.n, 7) where n is the number of
agents, S is the set of states, A; is the set of ac-
tions available for agent ¢ (and A is the joint ac-

503

tion space Ay X Ao X ... X Ay), T is the transi-
tion function S x A x S — [0, 1] which defines
a set of transition probabilities between states af-
ter taking a joint action, R; is the reward function
for the ith agent S x A — R, and ~ is a factor
that discounts future rewards. The goal is for each
agent 7 to learn a mixed policy 7; : S x A; — [0,
1] that maps states to mixed strategies, which are
probability distributions over the agent’s actions,
so that the agent’s expected discounted (with dis-
count factor ) future reward is maximized.

Stochastic games are a generalization of MDPs
for multi-agent RL. In stochastic games there are
many agents that select actions and the next state
and rewards depend on the joint action of all these
agents. The agents can have different reward
functions. Partially Observable Stochastic Games
(POSGs) are the equivalent of POMDPs for multi-
agent RL. In POSGs, the agents have different ob-
servations, and uncertainty about the state they are
in and the beliefs of their interlocutors. POSGs
are very hard to solve but new algorithms continu-
ously emerge in the literature.

In this paper we use three algorithms: Q-
learning, Policy Hill-Climbing (PHC), and Win
or Learn Fast Policy Hill-Climbing (PHC-WoLF).
PHC is an extension of Q-learning. For all three
algorithms, Q-values are updated as follows:

Q(s,a) — (1—a)Q(s,a)+a (7“ + Wmaxa/Q(s/, a/))
(1
In Q-learning, for a given state s, the agent
performs the action with the highest Q-value for
that state. In addition to Q-values, PHC and
PHC-WoLF also maintain the current mixed pol-
icy m(s,a). In each step the mixed policy is up-
dated by increasing the probability of selecting the
highest valued action according to a learning rate
0 (see equations (2), (3), and (4) below).

m(s,a) «— m(s,a) + Agq 2)

—J
Ay = { sa
Ea/yéa sa

0sq = min <7T(s7 a), |A|5—1> 4

The difference between PHC and PHC-WoLF is
that PHC uses a constant learning rate § whereas

if a # argmax Q) (s, a)
otherwise

3)



PHC-WoLF uses a variable learning rate (see
equation (5) below). The main idea is that when
the agent is “winning” the learning rate dyy should
be low so that the opponents have more time to
adapt to the agent’s policy, which helps with con-
vergence. On the other hand when the agent is
“losing” the learning rate d; 7 should be high so
that the agent has more time to adapt to the other
agents’ policies, which also facilitates conver-
gence. Thus PHC-WoLF uses two learning rates
Oow and 07, . PHC-WoLF determines whether the
agent is “winning” or “losing” by comparing the
current policy’s 7(s, a) expected payoff with that
of the average policy 7 (s, a) over time. If the cur-
rent policy’s expected payoff is greater then the
agent is “winning”, otherwise it is “losing”.

if { ,
X 7(s,a)Q(s, )

0 otherwise

!

(s, a,)Q(s, a) >

0= 5)

More details about Q-learning, PHC, and PHC-
WOLF can be found in (Sutton and Barto, 1998;
Bowling and Veloso, 2002).

As discussed in sections 1 and 2, single-agent
RL techniques, such as Q-learning, are not suit-
able for multi-agent RL. Nevertheless, despite its
shortcomings Q-learning has been used success-
fully for multi-agent RL (Claus and Boutilier,
1998). Indeed, as we see in section 5, Q-learning
can converge to the optimal policy for small state
spaces. However, as the state space size increases
the performance of Q-learning drops (compared to
PHC and PHC-WoLF).

4 Domain and Experimental Setup

Our domain is a resource allocation negotiation
scenario. Two agents negotiate about how to share
resources. For the sake of readability from now on
we will refer to apples and oranges.

The two agents have different goals. Also,
they have human-like constraints of imperfect in-
formation about each other; they do not know
each other’s reward function or degree of rational-
ity (during learning our agents can be irrational).
Thus a Nash equilibrium (if there exists one) can-
not be computed in advance. Agent 1 cares more
about apples and Agent 2 cares more about or-
anges. Table 1 shows the points that Agents 1
and 2 earn for each apple and each orange that they
have at the end of the negotiation.
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Agent1 Agent2
300 200
200 300

apple
orange

Table 1: Points earned by Agents 1 and 2 for each
apple and each orange that they have at the end of
the negotiation.

Agent I: offer-2-2 (I offer you 2 A and 2 O)
offer-3-0 (I offer you 3 A and 0 O)
offer-0-3 (I offer you 0 A and 3 O)

offer-4-0 (I offer you 4 A and 0 O)

Agent 2:
Agent I:
Agent 2:

Agent I: accept (I accept your offer)

Figure 1:
and 2 (A:

Example interaction between Agents 1
apples, O: oranges).

We use a simplified dialogue model with two
types of speech acts: offers and acceptances. The
dialogue proceeds as follows: one agent makes an
offer, e.g., “I give you 3 apples and 1 orange”, and
the other agent may choose to accept it or make a
new offer. The negotiation finishes when one of
the agents accepts the other agent’s offer or time
runs out.

We compare Q-learning with PHC and PHC-
WoLF. For all algorithms and experiments each
agent is rewarded only at the end of the dialogue
based on the negotiation outcome (see Table 1).
Thus the two agents have different reward func-
tions. There is also a penalty of -10 for each agent
action to ensure that dialogues are not too long.
Also, to avoid long dialogues, if none of the agents
accepts the other agent’s offers, the negotiation
finishes after 20 pairs of exchanges between the
two agents (20 offers from Agent 1 and 20 offers
from Agent 2).

An example interaction between the two agents
is shown in Figure 1. As we can see, each agent
can offer any combination of apples and oranges.
So if we have X apples and Y oranges for sharing,
there can be (X + 1) x (Y + 1) possible offers.
For example if we have 2 apples and 2 oranges
for sharing, there can be 9 possible offers: “offer-
0-07, “offer-0-17, ..., “offer-2-2”. For our exper-
iments we vary the number of fruits to be shared
and choose to keep X equalto Y.

Table 2 shows our state representation, i.e., the
state variables that we keep track of with all the
possible values they can take, where X is the num-



Current offer: (X + 1) x (Y 4 1) possible
values

How many times the current offer has already
been rejected: (0, 1, 2, 3, or 4)

Is the current offer accepted: yes, no

Table 2: State variables.

ber of apples and Y is the number of oranges to be
shared. The third variable is always set to “no” un-
til one of the agents accepts the other agent’s offer.

Table 3 shows the state and action space sizes
for different numbers of apples and oranges to be
shared used in our experiments below. The num-
ber of actions includes the acceptance of an of-
fer. Table 3 also shows the number of state-action
pairs (Q-values). As we will see in section 5, even
though the number of states for each agent is not
large, it takes many iterations and high exploration
rates for convergence due to the fact that both
agents are learning at the same time and the as-
sumption of interacting with a stationary environ-
ment no longer holds. For comparison, in (English
and Heeman, 2005) the state specification for each
agent included 5 binary variables resulting in 32
possible states. English and Heeman (2005) kept
track of whether there was an offer on the table but
not of the actual value of the offer. For our task it
is essential to keep track of the offer values, which
of course results in much larger state spaces. Also,
in (English and Heeman, 2005) there were 5 possi-
ble actions resulting in 160 state-action pairs. Our
state and action spaces are much larger and fur-
thermore we explore the effect of different state
and action space sizes on convergence.

During learning the two agents interact for
5 epochs. Each epoch contains N number of
episodes. We vary N from 25,000 up to 400,000
with a step of 25,000 episodes. English and Hee-
man (2005) trained their agents for 200 epochs,
where each epoch contained 200 episodes.

We also vary the exploration rate per epoch.
In particular, in the experiments reported in sec-
tion 5.1 the exploration rate is set as follows: 0.95
for epoch 1, 0.8 for epoch 2, 0.5 for epoch 3, 0.3
for epoch 4, and 0.1 for epoch 5. Section 5.2 re-
ports results again with 5 epochs of training but a
constant exploration rate per epoch set to 0.3. An
exploration rate of 0.3 means that 30% of the time
the agent will select an action randomly.

Finally, we vary the learning rate. For PHC-
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#States #Actions #State-Action
Pairs
1A&O 40 5 200
2A&0 90 10 900
3A&0 160 17 2720
4A &0 250 26 6500
5A&0 360 37 13320
6A&O0 490 50 24500
T7A&O 640 65 41600

Table 3: State space, action space, and state-action
space sizes for different numbers of apples and or-
anges to be shared (A: apples, O: oranges).

WOoLF we set dyy = 0.05 and 05, = 0.2 (see sec-
tion 3). These values were chosen with exper-
imentation and the basic idea is that the agent
should learn faster when “losing” and slower when
“winning”. For PHC we explore two cases. In the
first case which from now on will be referred to
as PHC-W, we set § to be equal to Jy (also used
for PHC-WoLF). In the second case which from
now on will be referred to as PHC-LF, we set ¢
to be equal to d7r (also used for PHC-WoLF). So
unlike PHC-WoLF, PHC-W and PHC-LF do not
use a variable learning rate. PHC-W always learns
slowly and PHC-LF always learns fast.

In all the above cases, training stops after 5
epochs. Then we test the learned policies against
each other for one more epoch the size of which is
the same as the size of the epochs used for train-
ing. For example, if the policies were learned
for 5 epochs with each epoch containing 25,000
episodes, then for testing the two policies will in-
teract for another 25,000 episodes. For compari-
son, English and Heeman (2005) had their agents
interact for 5,000 dialogues during testing. To en-
sure that the policies do not converge by chance,
we run the training and test sessions 20 times each
and we report averages. Thus all results presented
in section 5 are averages of 20 runs.

5 Results

Given that Agent 1 is more interested in apples
and Agent 2 cares more about oranges, the maxi-
mum total utility solution would be the case where
each agent offers to get all the fruits it cares about
and to give its interlocutor all the fruits it does not
care about, and the other agent accepts this of-
fer. Thus, when converging to the maximum to-
tal utility solution, in the case of 4 fruits (4 ap-



ples and 4 oranges), the average reward of the
two agents should be 1200 minus 10 for making
or accepting an offer. For 5 fruits the average re-
ward should be 1500 minus 10, and so forth. We
call 1200 (or 1500) the convergence reward, i.e.,
the reward after converging to the maximum to-
tal utility solution if we do not take into account
the action penalty. For example, in the case of 4
fruits, if Agent 1 starts the negotiation, after con-
verging to the maximum total utility solution the
optimal interaction should be: Agent 1 makes an
offer to Agent 2, namely O apples and 4 oranges,
and Agent 2 accepts. Thus the reward for Agent 1
is 1190, the reward for Agent 2 is 1190, and the av-
erage reward of the two agents is also 1190. Also,
the convergence reward for Agent 1 is 1200 and
the convergence reward for Agent 2 is also 1200.
Below, in all the graphs that we provide, we
show the average distance from the convergence
reward. This is to make all graphs comparable
because in all cases the optimal average distance
from the convergence reward of the two agents
should be equal to 10 (make the optimal offer
or accept the optimal offer that the other agent
makes). The formulas for calculating the average
distance from the convergence reward are:

> 2 |C Ry — Ry

AD; = (6)
Uz
" |CRy — Ry
AD, — > i21|C Ry — Ry o
Ty
AD — AD:[;‘ADQ )

where C'R; is the convergence reward for Agent 1,
Ry is the reward of Agent 1 for run j, C Ry is the
convergence reward for Agent 2, and Ry; is the
reward of Agent 2 for run j. Moreover, AD; is
the average distance from the convergence reward
for Agent 1, ADs is the average distance from the
convergence reward for Agent 2, and AD is the
average of AD; and AD». All graphs of section 5
show AD values. Also, n, is the number of runs
(in our case always equal to 20). Thus in the case
of 4 fruits, we will have C' R1=C' R2=1200, and if
for all runs Ry;j=R2;=1190, then AD=10.

5.1 Variable Exploration Rate

In this section we report results with different ex-
ploration rates per training epoch (see section 4).
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Q- PHC- PHC- PHC-
learning LF W WoLF
1A&O 10.5 10 10 10
2A&0 10.3 10.3 10 10
3A&0 11.7 10 10 10
4A&0 15 11.8 11.7 11.7
5A&0 45.4 29.5 26.5 229
6A&0 60.8 334  46.1 339
TA&O 95 56 187.8  88.6

Table 4: Average distance from convergence re-
ward over 20 runs for 100,000 episodes per epoch
and for different numbers of fruits to be shared (A:
apples, O: oranges). The best possible value is 10.

Table 4 shows the average distance from the con-
vergence reward over 20 runs for 100,000 episodes
per epoch, for different numbers of fruits, and
for all four methods (Q-learning, PHC-LF, PHC-
W, and PHC-WoLF). It is clear that as the state
space becomes larger 100,000 training episodes
per epoch are not enough for convergence. Also,
for 1, 2, and 3 fruits all algorithms converge and
perform comparably. As the number of fruits in-
creases, Q-learning starts performing worse than
the multi-agent RL algorithms. For 7 fruits PHC-
W appears to perform worse than Q-learning but
this is because, as we can see in Figure 5, in this
case more than 400,000 episodes per epoch are re-
quired for convergence. Thus after only 100,000
episodes per epoch all policies still behave some-
what randomly.

Figures 2, 3, 4, and 5 show the average distance
from the convergence reward as a function of the
number of episodes per epoch during training, for
4, 5, 6, and 7 fruits respectively. For 4 fruits it
takes about 125,000 episodes per epoch and for 5
fruits it takes about 225,000 episodes per epoch for
the policies to converge. This number rises to ap-
proximately 350,000 for 6 fruits and becomes even
higher for 7 fruits. Q-learning consistently per-
forms worse than the rest of the algorithms. The
differences between PHC-LF, PHC-W, and PHC-
WoLF are insignificant, which is a bit surprising
given that Bowling and Veloso (2002) showed that
PHC-WoLF performed better than PHC in a series
of benchmark tasks. In Figures 2 and 3, PHC-LF
appears to be reaching convergence slightly faster
than PHC-W and PHC-WoLF but this is not statis-
tically significant.




60

@
=]

IS
S

——Q-learning
—=-PHC-LF
——PHC-W
------ PHC-WolF

w
5}

N
o

Average distance from
convergence reward during testing

=
o

25000 50000 75000 100000 125000 150000 175000 200000 225000
Number of episodes per epoch during training

Figure 2: 4 fruits and variable exploration rate:
Average distance from convergence reward during
testing (20 runs). The best possible value is 10.

140

120

——Q-learning
—=-PHC-LF
——PHC-W
- PHC-WoLF

=Y
1<)

Average distance from
convergence reward during testing

IS

8

~
o

0

PP PSS S S
S P LS
VA

P PSP PEPSPLPSPLPSSS
S i°°° S S S
B R i A e A M M M M

Number of episodes per epoch during training
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5.2 Constant Exploration Rate

In this section we report results with a constant
exploration rate for all training epochs (see sec-
tion 4). Figures 6 and 7 show the average dis-
tance from the convergence reward as a function of
the number of episodes per epoch during training,
for 4 and 5 fruits respectively. Clearly having a
constant exploration rate in all epochs is problem-
atic. For 4 fruits, after 225,000 episodes per epoch
there is still no convergence. For comparison, with
a variable exploration rate it took about 125,000
episodes per epoch for the policies to converge.
Likewise for 5 fruits. After 400,000 episodes per
epoch there is still no convergence. For compari-
son, with a variable exploration rate it took about
225,000 episodes per epoch for convergence.
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The above results show that, unlike single-agent
RL where having a constant exploration rate is
perfectly acceptable, here a constant exploration
rate does not work.

6 Conclusion and Future Work

We used single-agent RL and multi-agent RL for
learning dialogue policies in a resource allocation
negotiation scenario. Two agents interacted with
each other and both learned at the same time. The
advantage of this approach is that it does not re-
quire SUs to train against or corpora to learn from.

We compared a traditional single-agent RL al-
gorithm (Q-learning) against two multi-agent RL
algorithms (PHC and PHC-WoLF) varying the
scenario complexity (state space size), the number



100

——Q-learning
—=-PHC-LF
——PHC-W
------ PHC-WolF

%
S

@
=]

Average distance from
convergence reward during testing
s
8

~
S}

25000 50000 75000 100000 125000 150000 175000 200000 225000
Number of episodes per epoch during training

Figure 6: 4 fruits and constant exploration rate:
Average distance from convergence reward during
testing (20 runs). The best possible value is 10.

220

200

H
@
S

,_.
o
S

=
15}

H
~
S}

7 ——Q-learning
—=—PHC-LF
——PHC-W
------ PHC-WoLF

=
o
5]

o
S

Average distance from
convergence reward during testing
o
3

IS
=

N
5]

TN

o

L O

S . P LSS LSS S
S LSS LS EL LS ESL S S
VTATE A A A o A5 P

Number of episodes per epoch during training

Figure 7: 5 fruits and constant exploration rate:
Average distance from convergence reward during
testing (20 runs). The best possible value is 10.

of training episodes, and the learning and explo-
ration rates. Our results showed that Q-learning
is not suitable for concurrent learning given that
it is designed for learning against a stationary en-
vironment. Q-learning failed to converge in all
cases, except for very small state space sizes. On
the other hand, both PHC and PHC-WoLF always
converged (or in the case of 7 fruits they needed
more training episodes) and performed similarly.
We also showed that in concurrent learning very
high gradually decreasing exploration rates are re-
quired for convergence. We conclude that multi-
agent RL of dialogue policies is a promising alter-
native to using single-agent RL and SUs or learn-
ing directly from corpora.

The focus of this paper is on comparing single-

agent RL and multi-agent RL for concurrent learn-
ing, and studying the implications for convergence
and exploration/learning rates. Our next step is
testing with human users. We are particularly in-
terested in users whose behavior changes during
the interaction and continuous testing against ex-
pert repeat users, which has never been done be-
fore. Another interesting question is whether cor-
pora or SUs may still be required for designing
the state and action spaces and the reward func-
tions of the interlocutors, bootstrapping the poli-
cies, and ensuring that information about the be-
havior of human users is encoded in the resulting
learned policies. Gasi¢ et al. (2013) showed that it
is possible to learn “full” dialogue policies just via
interaction with human users (without any boot-
strapping using corpora or SUs). Similarly, con-
current learning could be used in an on-line fash-
ion via live interaction with human users. Or al-
ternatively concurrent learning could be used off-
line to bootstrap the policies and then these poli-
cies could be improved via live interaction with
human users (again using concurrent learning to
address possible changes in user behavior). These
are open research questions for future work.
Furthermore, we intend to apply multi-agent RL
to more complex negotiation domains, e.g., exper-
iment with more than two types of resources (not
just apples and oranges) and more types of actions
(not just offers and acceptances). We would also
like to compare policies learned with multi-agent
RL techniques with policies learned with SUs or
from corpora both in simulation and with human
users. Finally, we aim to experiment with differ-
ent feature-based representations of the state and
action spaces. Currently all possible deal combi-
nations are listed as possible actions and as ele-
ments of the state, which can quickly lead to very
large state and action spaces as the application be-
comes more complex (in our case as the number of
fruits increases). However, abstraction is not triv-
ial because the agents have no guarantee that the
value of a deal is a simple function of the value of
its parts, and values may differ for different agents.
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