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Abstract

Vector space models (VSMs) represent
word meanings as points in a high dimen-
sional space. VSMs are typically created
using a large text corpora, and so repre-
sent word semantics as observed in text.
We present a new algorithm (JNNSE) that
can incorporate a measure of semantics
not previously used to create VSMs: brain
activation data recorded while people read
words. The resulting model takes advan-
tage of the complementary strengths and
weaknesses of corpus and brain activation
data to give a more complete representa-
tion of semantics. Evaluations show that
the model 1) matches a behavioral mea-
sure of semantics more closely, 2) can
be used to predict corpus data for unseen
words and 3) has predictive power that
generalizes across brain imaging technolo-
gies and across subjects. We believe that
the model is thus a more faithful represen-
tation of mental vocabularies.

1 Introduction
Vector Space Models (VSMs) represent lexical
meaning by assigning each word a point in high di-
mensional space. Beyond their use in NLP appli-
cations, they are of interest to cognitive scientists
as an objective and data-driven method to discover
word meanings (Landauer and Dumais, 1997).

Typically, VSMs are created by collecting word
usage statistics from large amounts of text data and
applying some dimensionality reduction technique
like Singular Value Decomposition (SVD). The
basic assumption is that semantics drives a per-
son’s language production behavior, and as a result
co-occurrence patterns in written text indirectly
encode word meaning. The raw co-occurrence
statistics are unwieldy, but in the compressed

VSM the distance between any two words is con-
ceived to represent their mutual semantic similar-
ity (Sahlgren, 2006; Turney and Pantel, 2010), as
perceived and judged by speakers. This space then
reflects the “semantic ground truth” of shared lex-
ical meanings in a language community’s vocab-
ulary. However corpus-based VSMs have been
criticized as being noisy or incomplete representa-
tions of meaning (Glenberg and Robertson, 2000).
For example, multiple word senses collide in the
same vector, and noise from mis-parsed sentences
or spam documents can interfere with the final se-
mantic representation.

When a person is reading or writing, the se-
mantic content of each word will be necessarily
activated in the mind, and so in patterns of ac-
tivity over individual neurons. In principle then,
brain activity could replace corpus data as input
to a VSM, and contemporary imaging techniques
allow us to attempt this. Functional Magnetic Res-
onance Imaging (fMRI) and Magnetoencephalog-
raphy (MEG) are two brain activation recording
technologies that measure neuronal activation in
aggregate, and have been shown to have a pre-
dictive relationship with models of word mean-
ing (Mitchell et al., 2008; Palatucci et al., 2009;
Sudre et al., 2012; Murphy et al., 2012b).1

If brain activation data encodes semantics, we
theorized that including brain data in a model of
semantics could result in a model more consistent
with semantic ground truth. However, the inclu-
sion of brain data will only improve a text-based
model if brain data contains semantic information
not readily available in the corpus. In addition,
if a semantic test involves another subject’s brain
activation data, performance can improve only if
the additional semantic information is consistent
across brains. Of course, brains differ in shape,
size and in connectivity, so additional information
encoded in one brain might not translate to an-

1For more details on fMRI and MEG, see Section 4.2
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other. Furthermore, different brain imaging tech-
nologies measure very different correlates of neu-
ronal activity. Due to these differences, it is possi-
ble that one subject’s brain activation data cannot
improve a model’s performance on another sub-
ject’s brain data, or for brain data collected using
a different recording technology. Indeed, inter-
subject models of brain activation is an open re-
search area (Conroy et al., 2013), as is learning the
relationship between recording technologies (En-
gell et al., 2012; Hall et al., 2013). Brain data
can also be corrupted by many types of noise (e.g.
recording room interference, movement artifacts),
another possible hindrance to the use of brain data
in VSMs.

VSMs are interesting from both engineering
and scientific standpoints. In this work we fo-
cus on the scientific question: Can the inclusion
of brain data improve semantic representations
learned from corpus data? What can we learn from
such a model? From an engineering perspective,
brain activation data will likely never replace text
data. Brain activation recordings are both expen-
sive and time consuming to collect, whereas tex-
tual data is vast and much of it is free to download.
However, from a scientific perspective, combining
text and brain data could lead to more consistent
semantic models, in turn leading to a better un-
derstanding of semantics and semantic modeling
generally.

In this paper, we leverage both kinds of data to
build a hybrid VSM using a new matrix factor-
ization method (JNNSE). Our hypothesis is that
the noise of brain and corpus derived statistics
will be largely orthogonal, and so the two data
sources will have complementary strengths as in-
put to VSMs. If this hypothesis is correct, we
should find that the resulting VSM is more suc-
cessful in modeling word semantics as encoded in
human judgements, as well as separate corpus and
brain data that was not used in the derivation of the
model. We will show that our method:

1. creates a VSM that is more correlated to an
independent measure of word semantics.

2. produces word vectors that are more pre-
dictable from the brain activity of different
people, even when brain data is collected
with a different recording technology.

3. predicts corpus representations of withheld
words more accurately than a model that does
not combine data sources.

4. directly maps semantic concepts onto the
brain by jointly learning neural representa-
tions.

Together, these results suggest that corpus and
brain activation data measure semantics in com-
patible and complimentary ways. Our results
are evidence that a joint model of brain- and
text-based semantics may be closer to seman-
tic ground truth than text-only models. Our
findings also indicate that there is additional se-
mantic information available in brain activation
data that is not present in corpus data, and that
there are elements of semantics currently lack-
ing in text-based VSMs. We have made avail-
able the top performing VSMs created with brain
and text data (http://www.cs.cmu.edu/
˜afyshe/papers/acl2014/).

In the following sections we will review NNSE,
and our extension, JNNSE. We will describe the
data used and the experiments to support our posi-
tion that brain data is a valuable source of semantic
information that compliments text data.

2 Non-Negative Sparse Embedding
Non-Negative Sparse Embedding (NNSE) (Mur-
phy et al., 2012a) is an algorithm that produces
a latent representation using matrix factorization.
Standard NNSE begins with a matrix X ∈ Rw×c

made of c corpus statistics for w words. NNSE
solves the following objective function:

argmin
A,D

w∑
i=1

∥∥Xi,: −Ai,: ×D
∥∥2 + λ

∥∥A∥∥
1

(1)

subject to: Di,:D
T
i,: ≤ 1,∀ 1 ≤ i ≤ ` (2)

Ai,j ≥ 0, 1 ≤ i ≤ w, 1 ≤ j ≤ ` (3)

The solution will find a matrix A ∈ Rw×` that is
sparse, non-negative, and represents word seman-
tics in an `-dimensional latent space. D ∈ R`×c

gives the encoding of corpus statistics in the la-
tent space. Together, they factor the original cor-
pus statistics matrix X in a way that minimizes
the reconstruction error. TheL1 constraint encour-
ages sparsity in A; λ is a hyperparameter. Equa-
tion 2 constrains D to eliminate solutions where
A is made arbitrarily small by making D arbi-
trarily large. Equation 3 ensures that A is non-
negative. We may increase ` to give more dimen-
sional space to represent word semantics, or de-
crease ` for more compact representations.
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The sparse and non-negative representation in
A produces a more interpretable semantic space,
where interpretability is quantified with a behav-
ioral task (Chang et al., 2009; Murphy et al.,
2012a). To illustrate the interpretability of NNSE,
we describe a word by selecting the word’s top
scoring dimensions, and selecting the top scoring
words in those dimensions. For example, the word
chair has the following top scoring dimensions:

1. chairs, seating, couches;
2. mattress, futon, mattresses;
3. supervisor, coordinator, advisor.

These dimensions cover two of the distinct mean-
ings of the word chair (furniture and person of
power).

NNSE’s sparsity constraint dictates that each
word can have a non-zero score in only a few di-
mensions, which aligns well to previous feature
elicitation experiments in psychology. In feature
elicitation, participants are asked to name the char-
acteristics (features) of an object. The number of
characteristics named is usually small (McRae et
al., 2005), which supports the requirement of spar-
sity in the learned latent space.

3 Joint Non-Negative Sparse Embedding

We extend NNSEs to incorporate an additional
source of data for a subset of the words in X ,
and call the approach Joint Non-Negative Sparse
Embeddings (JNNSEs). The JNNSE algorithm
is general enough to incorporate any new infor-
mation about the a word w, but for this study
we will focus on brain activation recordings of
a human subject reading single words. We
will incorporate either fMRI or MEG data, and
call the resulting models JNNSE(fMRI+Text) and
JNNSE(MEG+Text) and refer to them generally
as JNNSE(Brain+Text). For clarity, from here
on, we will refer to NNSE as NNSE(Text), or
NNSE(Brain) depending on the single source of
input data used.

Let us order the rows of the corpus data X so
that the first 1 . . . w′ rows have both corpus statis-
tics and brain activation recordings. Each brain
activation recording is a row in the brain data ma-
trix Y ∈ Rw′×v where v is the number of features
derived from the recording. For MEG recordings,
v =sensors × time points= 306× 150. For fMRI
v = grey-matter voxels =' 20, 000 depending on
the brain anatomy of each individual subject. The

new objective function is:

argmin
A,D(c),D(b)

w∑
i=1

∥∥Xi,: −Ai,: ×D(c)
∥∥2+

w′∑
i=1

∥∥Yi,: −Ai,: ×D(b)
∥∥2 + λ

∥∥A∥∥
1

(4)

subject to: D
(c)
i,: D

(c)
i,:

T ≤ 1, ∀ 1 ≤ i ≤ ` (5)

D
(b)
i,: D

(b)
i,:

T ≤ 1,∀ 1 ≤ i ≤ ` (6)

Ai,j ≥ 0, 1 ≤ i ≤ w, 1 ≤ j ≤ `
(7)

We have introduced an additional constraint on the
rows 1 . . . w′, requiring that some of the learned
representations in A also reconstruct the brain ac-
tivation recordings (Y ) through representations in
D(b) ∈ R`×v. Let us use A′ to refer to the brain-
constrained rows of A. Words that are close in
“brain space” must have similar representations in
A′, which can further percolate to affect the rep-
resentations of other words in A via closeness in
“corpus space”.

With A or D fixed, the objective function for
NNSE(Text) and JNNSE(Brain+Text) is convex.
However, we are solving forA andD, so the prob-
lem is non-convex. To solve for this objective, we
use the online algorithm of Section 3 from Mairal
et al. (Mairal et al., 2010). This algorithm is
guaranteed to converge, and in practice we found
that JNNSE(Brain+Text) converged as quickly as
NNSE(Text) for the same `. We used the SPAMS
package2 to solve, and set λ = 0.025. This al-
gorithm was a very easy extension to NNSE(Text)
and required very little additional tuning.

We also consider learning shared representa-
tions in the case where data X and Y contain the
effects of known disjoint features. For example,
when a person reads a word, the recorded brain
activation data Y will contain the physiological
response to viewing the stimulus, which is unre-
lated to the semantics of the word. These sig-
nals can be attributed to, for example, the num-
ber of letters in the word and the number of white
pixels on the screen (Sudre et al., 2012). To ac-
count for such effects in the data, we augment
A′ with a set of n fixed, manually defined fea-
tures (e.g. word length) to create A′percept ∈
Rw×(`+n). D(b) ∈ R(`+n)×v is used withA′percept,

2SPAMS Package: http://spams-devel.gforge.inria.fr/
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to reconstruct the brain data Y . More gener-
ally, one could instead allocate a certain num-
ber of latent features specific to X or Y, both of
which could be learned, as explored in some re-
lated work (Gupta et al., 2013). We use 11 per-
ceptual features that characterize the non-semantic
features of the word stimulus (for a list, see sup-
plementary material at http://www.cs.cmu.
edu/˜afyshe/papers/acl2014/).

The JNNSE algorithm is advantageous in that
it can handle partially paired data. That is, the
algorithm does not require that every row in X
also have a row in Y . Fully paired data is a re-
quirement of many other approaches (White et al.,
2012; Jia and Darrell, 2010). Our approach al-
lows us to leverage the semantic information in
corpus data even for words without brain activa-
tion recordings.

JNNSE(Brain+Text) does not require brain data
to be mapped to a common average brain, which
is often the case when one wants to generalize be-
tween human subjects. Such mappings can blur
and distort data, making it less useful for subse-
quent prediction steps. We avoid these mappings,
and instead use the fact that similar words elicit
similar brain activation within a subject. In the
JNNSE algorithm, it is this closeness in “brain
space” that guides the creation of the latent space
A. Leveraging intra-subject distance measures
to study inter-subject encodings has been studied
previously (Kriegeskorte et al., 2008a; Raizada
and Connolly, 2012), and has even been used
across species (humans and primates) (Kriegesko-
rte et al., 2008b).

Though we restrict ourselves to using one sub-
ject per JNNSE(Brain+Text) model, the JNNSE
algorithm could easily be extended to include
data from multiple brain imaging experiments by
adding a new squared loss term for additional
brain data.

3.1 Related Work
Perhaps the most well known related approach
to joining data sources is Canonical Correlation
Analysis (CCA) (Hotelling, 1936), which has been
applied to brain activation data in the past (Rus-
tandi et al., 2009). CCA seeks two linear trans-
formations that maximally correlate two data sets
in the transformed form. CCA requires that the
data sources be paired (all rows in the corpus data
must have a corresponding brain data), as corre-
lation between points is integral to the objective.

To apply CCA to our data we would need to dis-
card the vast majority of our corpus data, and use
only the 60 rows of X with corresponding rows
in Y. While CCA holds the input data fixed and
maximally correlates the transformed form, we
hold the transformed form fixed and seek a solu-
tion that maximally correlates the reconstruction
(AD(c) or A′D(b)) with the data (X and Y respec-
tively). This shift in error compensation is what
allows our data to be only partially paired. While
a Bayesian formulation of CCA can handle miss-
ing data, our model has missing data for> 97% of
the full w × (v + c) brain and corpus data matrix.
To our knowledge, this extreme amount of missing
data has not been explored with Bayesian CCA.

One could also use a topic model style formula-
tion to represent this semantic representation task.
Supervised topic models (Blei and McAuliffe,
2007) use a latent topic to generate two observed
outputs: words in a document and a categorical la-
bel for the document. The same idea could be ap-
plied here: the latent semantic representation gen-
erates the observed brain activity and corpus statis-
tics. Generative and discriminative models both
have their own strengths and weaknesses, gener-
ative models being particularly strong when data
sources are limited (Ng and Jordan, 2002). Our
task is an interesting blend of data-limited and
data-rich problem scenarios.

In the past, various pieces of additional informa-
tion have been incorporated into semantic models.
For example, models with behavioral data (Sil-
berer and Lapata, 2012) and models with visual
information (Bruni et al., 2011; Silberer et al.,
2013) have both shown to improve semantic rep-
resentations. Other works have correlated VSMs
built with text or images with brain activation
data (Murphy et al., 2012b; Anderson et al., 2013).
To our knowledge, this work is the first to integrate
brain activation data into the construction of the
VSM.

4 Data
4.1 Corpus Data
The corpus statistics used here are the download-
able vectors from Fyshe et al. (2013)3. They
are compiled from a 16 billion word subset of
ClueWeb09 (Callan and Hoy, 2009) and contain
two types of corpus features: dependency and doc-
ument features, found to be complimentary for

3http://www.cs.cmu.edu/˜afyshe/papers/
conll2013/
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most tasks. Dependency statistics were derived
by dependency parsing the corpus and compil-
ing counts for all dependencies incident on the
word. Document statistics are word-document
co-occurrence counts. Count thresholding was
applied to reduce noise, and positive pointwise-
mutual-information (PPMI) (Church and Hanks,
1990) was applied to the counts. SVD was ap-
plied to the document and dependency statistics
and the top 1000 dimensions of each type were
retained. We selected the rows corresponding to
noun-tagged words (approx. 17000 words).
4.2 Brain Activation Data
We have MEG and fMRI data at our disposal.
MEG measures the magnetic field caused by many
thousands of neurons firing together, and has good
time resolution (1000 Hz) but poor spatial reso-
lution. fMRI measures the change in blood oxy-
genation that results from differential neural ac-
tivity, and has good spatial resolution but poor
time resolution (0.5-1 Hz). We have fMRI data
and MEG data for 18 subjects (9 in each imaging
modality) viewing 60 concrete nouns (Mitchell et
al., 2008; Sudre et al., 2012). The 60 words span
12 word categories (animals, buildings, tools, in-
sects, body parts, furniture, building parts, uten-
sils, vehicles, objects, clothing, food). Each of the
60 words was presented with a line drawing, so
word ambiguity is not an issue. For both record-
ing modalities, all trials for a particular word were
averaged together to create one training instance
per word, with 60 training instances in all for each
subject and imaging modality. More preprocess-
ing details appear in the supplementary material.

5 Experimental Results

Here we explore several variations of JNNSE and
NNSE formulations. For a comparison of the
models used, see Table 1.
5.1 Correlation to Behavioral Data
To test if our joint model of Brain+Text is closer
to semantic ground truth we compared the latent
representation A learned via JNNSE(Brain+Text)
or NNSE(Text) to an independent behavioral mea-
sure of semantics. We collected behavioral data
for the 60 nouns in the form of answers to 218
semantic questions. Answers were gathered with
Mechanical Turk. The full list of questions ap-
pear in the supplementary material. Some exam-
ple questions are:“Is it alive?”, and “Can it bend?”.
Mechanical Turk users were asked to respond to

each question for each word on a scale of 1-5. At
least 3 respondents answered each question and
the median score was used. This gives us a se-
mantic representation of each of the 60 words in
a 218-dimensional behavioral space. Because we
required answers to each of the questions for all
words, we do not have the problems of sparsity
that exist for feature production norms from other
studies (McRae et al., 2005). In addition, our an-
swers are ratings, rather than binary yes/no an-
swers.

For a given value of ` we solve the NNSE(Text)
and JNNSE(Brain+Text) objective function as de-
tailed in Equation 1 and 4 respectively. We com-
pared JNNSE(Brain+Text) and NNSE(Text) mod-
els by measuring the correlation of all pairwise
distances in JNNSE(Brain+Text) and NNSE(Text)
space to the pairwise distances in the 218-
dimensional semantic space. Distances were
calculated using normalized Euclidean distance
(equivalent in rank-ordering to cosine distance,
but more suitable for sparse vectors). Figure 1
shows the results of this correlation test. The er-
ror bars for the JNNSE(Brain+Text) models rep-
resent a 95% confidence interval calculated using
the standard error of the mean (SEM) over the 9
person-specific JNNSE(Brain+Text) models. Be-
cause there is only one NNSE(Text) model for
each dimension setting, no SEM can be calculated,
but it suffices to show that the NNSE(Text) corre-
lation does not fall into the 95% confidence inter-
val of the JNNSE(Brain+Text) models. The SVD
matrix for the original corpus data has correlation
0.4279 to the behavioral data, also below the 95%
confidence interval for all JNNSE models. The re-
sults show that a model that incorporates brain ac-
tivation data is more faithful to a behavioral mea-
sure of semantics.

5.2 Word Prediction from Brain Activation
We now show that the JNNSE(Brain+Text) vec-
tors are more consistent with independent sam-
ples of brain activity collected from different sub-
jects, even when recorded using different record-
ing technologies. As previously mentioned, be-
cause there is a large degree of variation between
brains and because MEG and fMRI measure very
different correlates of neuronal activity, this type
of generalization has proven to be very challeng-
ing and is an open research question in the neuro-
science community.

The output A of the JNNSE(Brain+Text) or
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Table 1: A Comparison of the models explored in this paper, and the data upon which they operate.

Model Name Section(s) Text Data Brain Data Withheld Data
NNSE(Text) 2, 5 X x -
NNSE(Brain) 2, 5.2.1, 5.3 x X -
JNNSE(Brain+Text) 3, 5 X X -
JNNSE(Brain+Text): Dropout task 5.2.2 X X subset of brain data
JNNSE(Brain+Text): Predict corpus 5.3 X X subset of text data
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Figure 1: Correlation of JNNSE(Brain+Text) and
NNSE(Text) models with the distances in a se-
mantic space constructed from behavioral data.
Error bars indicate SEM.

NNSE(Text) algorithm can be used as a VSM,
which we use for the task of word prediction from
fMRI or MEG recordings. A JNNSE(Brain+Text)
created with a particular human subject’s data is
never used in the prediction framework with that
same subject. For example, if we use fMRI data
from subject 1 to create a JNNSE(fMRI+Text), we
will test it with the remaining 8 fMRI subjects, but
all 9 MEG subjects (fMRI and MEG subjects are
disjoint).

Let us call the VSM learned with
JNNSE(Brain+Text) or NNSE(Text) the se-
mantic vectors. We can train a weight matrix W
that predicts the semantic vector a of a word from
that word’s brain activation vector x: a = Wx.
W can be learned with a variety of methods, we
will use L2 regularized regression. One can also
train regressors that predict the brain activation
data from the semantic vector: x = Wa, but we
have found this to give lower predictive accuracy.
Note that we must re-train our weight matrix W
for each subject (instead of re-using D(b) from

Equation 4) because testing always occurs on a
different subject, and the brain activation data is
not inter-subject aligned.

We train ` independent L2 regularized regres-
sors to predict the `-dimensional vectors a =
{a1 . . . a`}. The predictions are concatenated
to produce a predicted semantic vector: â =
{â1, . . . , â`}. We assess word prediction perfor-
mance by testing if the model can differentiate be-
tween two unseen words, a task named 2 vs. 2 pre-
diction (Mitchell et al., 2008; Sudre et al., 2012).
We choose the assignment of the two held out se-
mantic vectors (a(1),a(2)) to predicted semantic
vectors (â(1), â(2)) that minimizes the sum of the
two normalized Euclidean distances. 2 vs. 2 ac-
curacy is the percentage of tests where the correct
assignment is chosen.

The 60 nouns fall into 12 word categories.
Words in the same word category (e.g. screw-
driver and hammer) are closer in semantic space
than words in different word categories, which
makes some 2 vs. 2 tests more difficult than oth-
ers. We choose 150 random pairs of words (with
each word represented equally) to estimate the dif-
ficulty of a typical word pair, without having to
test all

(
60
2

)
word pairs. The same 150 random

pairs are used for all subjects and all VSMs. Ex-
pected chance performance on the 2 vs. 2 test is
50%.

Results for testing on fMRI data in the
2 vs. 2 framework appear in Figure 2.
JNNSE(fMRI+Text) data performed on aver-
age 6% better than the best NNSE(Text), and
exceeding even the original SVD corpus represen-
tations while maintaining interpretability. These
results generalize across brain activity recording
types; JNNSE(MEG+Text) performs as well as
JNNSE(fMRI+Text) when tested on fMRI data.
The results are consistent when testing on MEG
data: JNNSE(MEG+Text) or JNNSE(fMRI+Text)
outperforms NNSE(Text) (see Figure 3).

494



250 500 1000

64

66

68

70

72

74

Number of Latent Dimensions

2 
vs

. 2
 A

cc
ur

ac
y

2 vs. 2 Acc. for JNNSE and NNSE, tested on fMRI data

 

 

JNNSE(fMRI+Text)
JNNSE(MEG+Text)
NNSE(Text)
SVD(Text)

Figure 2: Average 2 vs. 2 accuracy for
NNSE(Text) and JNNSE(Brain+Text), tested on
fMRI data. Models created with one subject’s
fMRI data were not used to compute 2 vs. 2 ac-
curacy for that same subject.
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Figure 3: Average 2 vs. 2 accuracy for
NNSE(Text) and JNNSE(Brain+Text), tested on
MEG data. Models created with one subject’s
MEG data were not used to compute 2 vs. 2 ac-
curacy for that same subject.

NNSE(Text) performance decreases as the
number of latent dimension increases. This im-
plies that without the regularizing effect of brain
activation data, the extra NNSE(Text) dimensions
are being used to overfit to the corpus data, or
possibly to fit semantic properties not detectable
with current brain imaging technologies. How-
ever, when brain activation data is included, in-
creasing the number of latent dimensions strictly
increases performance for JNNSE(fMRI+Text).
JNNSE(MEG+Text) has peak performance with
500 latent dimensions, with ∼ 1% decrease in
performance at 1000 latent dimensions. In previ-
ous work, the ability to decode words from brain
activation data was found to improve with added
latent dimensions (Murphy et al., 2012a). Our
results may differ because our words are POS
tagged, and we included only nouns for the final
NNSE(Text) model. We found that with the orig-
inal λ = 0.05 setting from Murphy et al. (Mur-
phy et al., 2012a) produced vectors that were too
sparse; four of the 60 test words had all-zero vec-
tors (JNNSE(Brain+Text) models did have any all-
zero vectors). To improve the NNSE(Text) vectors
for a fair comparison, we reduced λ = 0.025, un-
der which NNSE(Text) did not produce any all-
zero vectors for the 60 words.

Our results show that brain activation data con-
tributes additional information, which leads to an
increase in performance for the task of word pre-
diction from brain activation data. This suggests

that corpus-only models may not capture all rel-
evant semantic information. This conflicts with
previous studies which found that semantic vec-
tors culled from corpus statistics contain all of the
semantic information required to predict brain ac-
tivation (Bullinaria and Levy, 2013).

5.2.1 Prediction from a Brain-only Model

How much predictive power does the corpus data
provide to this word prediction task? To test
this, we calculated the 2 vs. 2 accuracy for a
NNSE(Brain) model trained on brain activation
data only. We train NNSE(Brain) with one sub-
ject’s data and use the resulting vectors to calculate
2 vs. 2 accuracy for the remaining subjects. We
have brain data for only 60 words, so using ` ≥ 60
latent dimensions leads to an under-constrained
system and a degenerate solution wherein only one
latent dimension is active for any word (and where
the brain data can be perfectly reconstructed). The
degenerate solution makes it impossible to gen-
eralize across words and leads to performance at
chance levels. An NNSE(MEG) trained on MEG
data gave maximum 2 vs. 2 accuracy of 67% when
` = 20. The reduced performance may be due to
the limited training data and the low SNR of the
data, but could also be attributed to the lack of cor-
pus information, which provides another piece of
semantic information.
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5.2.2 Effect on Rows Without Brain Data

It is possible that some JNNSE(Brain+Text) di-
mensions are being used exclusively to fit brain
activation data, and not the semantics represented
in both brain and corpus data. If a particular
dimension j is solely used for brain data, the
sparsity constraint will favor solutions that sets
A(i,j) = 0 for i > w′ (no brain data constraint),
and A(i,j) > 0 for some 0 ≤ i ≤ w′ (brain data
constrained). We found that there were no such
dimensions in the JNNSE(Brain+Text). In fact for
the ` = 1000 JNNSE(Brain+Text), all latent di-
mensions had greater than ∼ 25% non-zero en-
tries, which implies that all dimensions are being
shared between the two data inputs (corpus and
brain activation), and are used to reconstruct both.

To test that the brain activation data is truly in-
fluencing rows of A not constrained by brain acti-
vation data, we performed a dropout test. We split
the original 60 words into two 30 word groups (as
evenly as possible across word categories). We
trained JNNSE(fMRI+Text) with 30 words, and
tested word prediction with the remaining 8 sub-
jects and the other 30 words. Thus, the training
and testing word sets are disjoint. Because of the
reduced size of the training data, we did see a drop
in performance, but JNNSE(fMRI+Text) vectors
still gave word prediction performance 7% higher
than NNSE(Text) vectors. Full results appear in
the supplementary material.

5.3 Predicting Corpus Data
Here we ask: can an accurate latent representa-
tion of a word be constructed using only brain
activation data? This task simulates the scenario
where there is no reliable corpus representation of
a word, but brain data is available. This scenario
may occur for seldom-used words that fall below
the thresholds used for the compilation of corpus
statistics. It could also be useful for acronym to-
kens (lol, omg) found in social media contexts
where the meaning of the token is actually a full
sentence.

We trained a JNNSE(fMRI+Text) with brain
data for all 60 words, but withhold the corpus data
for 30 of the 60 words (as evenly distributed as
possible amongst the 12 word categories). The
brain activation data for the 30 withheld words
will allow us to create latent representations in
A for withheld words. Simultaneously, we will
learn a mapping from the latent representation to
the corpus data (D(c)). This task cannot be per-

Table 2: Mean rank accuracy over 30 words
using corpus representations predicted by a
JNNSE(MEG+Text) model trained with some
rows of the corpus data withheld. Significance
is calculated using Fisher’s method to combine p-
values for each of the subject-dependent models.

Latent Dim size Rank Accuracy p-value
250 65.30 < 10−19

500 67.37 < 10−24

1000 63.47 < 10−15

formed with a NNSE(Text) model because one
cannot learn a latent representation of a word with-
out data of some kind. This further emphasizes the
impact of brain imaging data, which will allow us
to generalize to previously unseen words in corpus
space.

We use the latent representations in A for each
of the words without corpus data and the mapping
to corpus space D(c) to predict the withheld cor-
pus data in X . We then rank the withheld rows of
X by their distance to the predicted row of X and
calculate the mean rank accuracy of the held out
words. Results in Table 2 show that we can recre-
ate the withheld corpus data using brain activation
data. Peak mean rank accuracy (67.37) is attained
at ` = 500 latent dimensions. This result shows
that neural semantic representations can create a
latent representation that is faithful to unseen cor-
pus statistics, providing further evidence that the
two data sources share a strong common element.

How much power is the remaining corpus data
supplying in scenarios where we withhold cor-
pus data? To answer this question, we trained an
NNSE(Brain) model on 30 words of brain activa-
tion, and then trained a regressor to predict cor-
pus data from those latent brain-only representa-
tions. We use the trained regressor to predict the
corpus data for the remaining 30 words. Peak per-
formance is attained at ` = 10 latent dimensions,
giving mean rank accuracy of 62.37, significantly
worse than the model that includes both corpus
and brain activation data (67.37).

5.4 Mapping Semantics onto the Brain
Because our method incorporates brain data into
an interpretable semantic model, we can directly
map semantic concepts onto the brain. To do
this, we examined the mappings from the latent
space to the brain space via D(b). We found that
the most interpretable mappings come from mod-
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(a) D(b) matrix, subject P3, dimension with top words bath-
room, balcony, kitchen. MNI coordinates z=-12 (left) and z=-18
(right). Fusiform is associated with shelter words.
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(b) D(b) matrix; subject P1; dimension with top words ankle,
elbow, knee. MNI coordinates z=60 (left) and z=54 (right). Pre-
and post-central areas are activated for body part words.
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(c) D(b) matrix; subject P1; dimension with top scoring words
buffet, brunch, lunch. MNI coordinates z=30 (left) and z=24
(right). Pars opercularis is believed to be part of the gustatory
cortex, which responds to food related words.

Figure 4: The mappings (D(b)) from latent se-
mantic space (A) to brain space (Y ) for fMRI and
words from three semantic categories. Shown are
representations of the fMRI slices such that the
back of the head is at the top of the image, the
front of the head is at the bottom.

els where the perceptual features had been scaled
down (divided by a constant factor), which en-
courages more of the data to be explained by
the semantic features in A. Figure 4 shows the
mappings (D(b)) for dimensions related to shel-
ter, food and body parts. The red areas align
with areas of the brain previously known to be
activated by the corresponding concepts (Mitchell
et al., 2008; Just et al., 2010). Our model
has learned these mappings in an unsupervised
setting by relating semantic knowledge gleaned
from word usage to patterns of activation in the
brain. This illustrates how the interpretability of

JNNSE can allow one to explore semantics in
the human brain. The mappings for one subject
are available for download (http://www.cs.
cmu.edu/˜afyshe/papers/acl2014/).

6 Future Work and Conclusion
We are interested in pursuing many future projects
inspired by the success of this model. We would
like to extend the JNNSE algorithm to incorporate
data from multiple subjects, multiple modalities
and multiple experiments with non-overlapping
words. Including behavioral data and image data
is another possibility.

We have explored a model of semantics that in-
corporates text and brain activation data. Though
the number of words for which we have brain acti-
vation data is comparatively small, we have shown
that including even this small amount of data has
a positive impact on the learned latent representa-
tions, including for words without brain data. We
have provided evidence that the latent representa-
tions are closer to the neural representation of se-
mantics, and possibly, closer to semantic ground
truth. Our results reveal that there are aspects of
semantics not currently represented in text-based
VSMs, indicating that there may be room for im-
provement in either the data or algorithms used to
create VSMs. Our findings also indicate that using
the brain as a semantic test can separate models
that capture this additional semantic information
from those that do not. Thus, the brain is an im-
portant source of both training and testing data.
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